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Abstract: In this article, we present a joint modeling approach that com-
bines information from multiple diseases. Our model can be used to obtain
more reliable estimates in rare diseases by incorporating information from
more common diseases for which there exists a shared set of important risk
factors. Information is shared through both a latent spatial process and a
latent temporal process. We develop a fully Bayesian hierarchical imple-
mentation of our spatio-temporal model in order to estimate relative risk,
adjusted for age and gender, at the county level in Iowa in five-year intervals
for the period 1973–2002. Our analysis includes lung, oral, and esophageal
cancers which are related to excessive tobacco and alcohol use risk factors.
Lung cancer risk estimates tend to be stable due to the large number of
occurrences in small regions, i.e. counties. The lower risk cancers (oral and
esophageal) have fewer occurrences in small regions and thus have estimates
that are highly variable and unreliable. Estimates from individual and joint
modeling of these diseases are examined and compared. The joint modeling
approach has a profound impact on estimates regarding the low risk oral and
esophageal cancers while the higher risk lung cancer is minutely impacted.
Clearer spatial and temporal patterns are obtained and the standard errors
of the estimates are reduced leading to more reliable estimates.

Key words: Autoregressive prior, CAR, disease mapping, hierarchical Bayes,
Markov chain Monte Carlo.

1. Introduction

The spatial analysis of disease incidence data, known as disease mapping,
is a dynamic area of biostatistical, epidemiological, and public health research.
Using geographical mapping, we can detect “hot-spots” of disease incidence in
which nearby areas are often related because they share similar risk factors. This
attention has led to a greater use of geographical, GIS, and spatial analysis tools
in studying data routinely collected for public health purposes.

Disease mapping is commonly used to describe the variation in health out-
comes over geographic regions. Mapping of crude disease rates can be quite
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misleading, particularly at a small area (county) level. This is often due to the
relatively small incidence counts in regions and the presence of spatial correlation
in the rates. With large amounts of data at the state level, estimates are quite
reliable. At the small area level though, the number of incident cases tends to
be much smaller resulting in unreliable estimates. High prevalence diseases may
have a large amount of information at the county level. For low prevalence dis-
eases, however, stable estimates at the county-specific level are difficult to attain.
A statistical model that combines information from related diseases can reduce
the variability in estimates and help in identifying “hot-spots” for less prevalent
diseases which, in turn, improves potential prediction of the diseases.

Most methods for disease mapping focus on the spatial modeling of a single
disease. Some recent developments have examined relationships between multiple
diseases (Knor-Held and Best, 2001; Kim et al. 2001; and Held et al., 2005). Held
et al. (2005) also consider a Bayesian shared component model. That model,
however, ignores any temporal changes. Kim et al. (2001) proposes a Bayesian
joint spatio-temporal analysis but in a framework limited to two diseases. In
this article, we proposed a framework that can easily incorporate any number
of diseases while accounting for temporal correlation. A Bayesian hierarchical
modeling approach is taken in the development of our new technique for relating
two or more diseases.

Our research is motivated by an investigation of the spatial and temporal vari-
ation in lung, oral, and esophageal cancer rates at the county level in the state
of Iowa for the years 1973–2002. These cancers are all highly associated with
tobacco-related risk factor and all but lung cancer are further associated with ex-
cessive alcohol consumption. There may be an indirect relationship between lung
cancer and excessive alcohol consumption though, in that most people who smoke
also drink alcohol. Because of the inherent relationships between these cancers,
we take a joint modeling approach to estimate and map their corresponding rel-
ative risks. Patterns for less frequent cancers (oral and esophageal) are difficult
to visualize across space due to high variability as a result of the small number
of cases. We expect to reduce that variability by incorporating information from
a more prevalent disease (lung) which shares similar risk factors both spatially
and temporally.

From the disease mapping, we can detect “hot-spots” of disease incidence in
which nearby geographic areas are often related because they share similar risk
factors. When diseases share common risk factors, such as tobacco and alcohol
use which are more prevalent in some communities than in others, the corre-
lation between diseases leads to similar geographic and temporal patterns. In
such settings, information from one or more diseases can help estimate relative
risks for another disease. This is particularly helpful when data are unavail-
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able for the risk factors and the disease of interest has a very low incidence. The
additional information “borrowed” from the related diseases can help reduce vari-
ability in the relative risk estimate, thus strengthening the estimate based on low
counts. This relationship can be recognized through a joint analysis. We develop
a Bayesian hierarchical model to combine information from multiple diseases that
share common risk factors in order to facilitate the mapping and elucidation of
spatio-temporal patterns in disease incidence.

We outline the data and motivation of the problem in Section 2. We then
describe the hierarchical model and Bayesian formulation in Section 3. In Section
4, the modeling results are presented. This begins with a look at modeling
estimates obtained for each of the three cancers without any joint information
and concludes with presenting the estimates using the joint model. Estimates
from the two methods are compared. We conclude with a discussion in Section
5.

2. Data and Motivation

Smoking and excessive alcohol use are risk factors for a large number of can-
cers. According to the National Cancer Institute (www.cancer.gov), smoking
damages nearly every organ in the body and is linked to at least ten different
cancers. It accounts for nearly 30% of all cancer deaths—a primary reason why
tobacco use is the leading modifiable risk factor for cancer. Tobacco use is specif-
ically associated with cancers of the lung and bronchus, oral cavity (excluding
lip), and esophagus. Of these tobacco-related cancers, the strongest associations
between alcohol use and cancer are in cancers of the oral cavity and esophagus.
The risk of these cancers increases significantly when tobacco and alcohol are
used together.

The necessary data for our analysis are available through the National Cancer
Institute’s SEER*Stat program1. According to SEER data, incident lung cancers
were observed at a rate of 72.2 cases per 100,000 individuals in Iowa during
2002. Iowa lung cancer rates have increased in recent years. In particular, state-
wide incidence rates increased by 60% during the period 1973–2002. During this
time, rates in Iowa went from being much lower than the national average (41.5
per 100,000 people in 1973) to being higher than the national average (58.9 per
100,000 people in 2002). The increase was more profound in some counties than
others. We note that incidence rates in Iowa’s metropolitan statistical area (MSA)
counties peaked around 1984 and have subsequently shown a decline. Rural
counties in Iowa, however, appear to continue a general increase in incidence

1See www.seer.cancer.gov (2006). Surveillance, Epidemiology, and End Results (SEER) Pro-
gram, Public-Use Data (1973-2002), National Cancer Institute, DCCPS, Surveillance Research
Program, Cancer Statistics Branch.
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rates and mortality rates. Similar increases can be seen for oral and esophageal
cancers for which the respective incidence rate increases went from 7.6 to 9.9 per
100,000 and 2.1 to 5.6 per 100,000 individuals during 1973–2002. As is the case
for lung cancer, Iowa’s rates for these cancers are well below the 1973 national
averages of 10.1 per 100,000 and 4.5 per 100,000 yet above the 2002 national
averages of 9.8 per 100,000 and 4.4 per 100,000 for oral and esophageal cancers,
respectively.

Changes over time are more difficult to detect at the county-specific level
for cancers that have low incidence rates such as oral and esophageal cancers.
County-specific estimates based on low counts tend to be more variable and
unreliable. For example, the risk of oral cancer in Iowa for 2002 is an estimated
30% higher than the risk in 1973. Since oral cancer incidence is about 7 times
less than lung cancer incidence, the associated risk estimates are considerably
less precise. As noted previously for lung cancer, the temporal trend for oral
cancer appears to be more profound in some counties than others. Moreover, the
county-to-county variation appears to be greater for oral cancer, but at least part
of that perception is an artifact due to extremely small counts.

Typically, incidence rates are calculated for regions where population counts
are readily available (e.g., per county). It is also useful to compare the observed
number of cases in a region to the number that would be expected in the at-risk
population in order to adjust for important demographic covariates. For instance,
we apply the national crude incidence rate to the county-specific age and gender
distributions to obtain expected counts for each of the three cancers under our
investigation. The ratio of observed to expected counts provides an estimate of
the Standardized Morbidity Ratio (SMR). This ratio is an estimate of the age-
and gender-adjusted relative risk in each county. In this study, we will focus on
incidence, rather than mortality, as our disease outcome of interest and use a
fully Bayesian approach to estimate the SMR.

Relative risks are not confined to political boundaries and the underlying risk
factors are also not constrained to these boundaries. It may be reasonable to
assume that relative risks in neighboring counties are generally similar (corre-
lated) through a spatial process that could be the result of a number of factors;
e.g., environmental condition, work-related risk factors, or lifestyle choices. This
underlying spatial process is likely to be very similar for those cancers that share
common or similar risk factors.

In addition to being correlated over space, the diseases may follow related
patterns over time due to temporal changes in the shared risk factors. Thus, our
model also includes a joint temporal relationship. Because of the small number
of occurrences for these cancers on a yearly basis, we aggregate into six intervals
of five year increments. They are 1973–1977, 1978–1982, 1983–1987, 1988–1992,
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Figure 1: Modeling temporal and spatial effects. (a) MLEs of the state-wide
relative risks for lung, oral, and esophageal cancers. (b) Posterior means for
the latent temporal parameter t in the individual and joint Bayesian models.
The following plot means for the latent spatial process, Zi, in the individual
disease models: (c) Lung Cancer, (d) Oral Cancer, and (e) Esophageal Cancer.
(f) The posterior mean spatial process in the joint model.

1993–1997, and 1998–2002. Many methods of correlating information over time
assume data are stationary. This is a safe assumption to make for the three
cancers in our study. While the incidence rates and relative risks have shown
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an increase since 1973, there is reason to believe that those rates have leveled
off and will begin to decrease in the future (See Figure 1(a)). According to
the Behavioral Risk Factor Surveillance System (BRFSS), binge drinking among
Iowa adults has shown an increase from 13.4% in 1990 to 20.1% in 2002. These
numbers are increasing faster than the U.S. median which only rose from 15.3%
to 16.1% during that time span. Smoking levels reported by the BRFSS in Iowa
have increased from 21.7% in 1990 to 23.2% in 2002. Levels peaked in 1996 at
23.6%. The nationwide median has remained steady at 23.0% over this same
time frame.

3. Hierarchical Model

3.1 Linear model

We propose a hierarchical fully Bayesian model to provide improved estimates
of county-specific cancer relative risks. Let Yijk be the number of cancer inci-
dences, where i represents the county (1–99), j the six time periods, and k the
cancer (lung, oral, and esophageal). Given the SMR θijk, the number of inci-
dences, Yijk, for each county, time, and cancer category is assumed to follow a
Poisson distribution with mean Eijkθijk, where Eijk denotes the expected num-
ber of cases adjusted for age and gender and is a fixed quantity in the model.
It is calculated by applying the national crude incidence rate for the associated
cancer to the county-specific age and gender distributions (available through the
SEER*Stat program). The parameter θijk represents the true, but unknown
SMR. A ratio less than one indicates risk less than the national average whereas
a ratio greater than one indicates risk greater than the national average. The Pois-
son distributional assumption for Yijk is appropriate for rare and non-contagious
diseases.

We will employ a log-linear model for the cancer incidence rates. By including
effects for spatial and temporal variation, our model will account for variability
in θijk due to county, year, and cancer. We propose a latent spatial process
representing relationships among neighboring counties, similar to that of Oleson
and He (2006). We also designate a latent temporal process to characterize
correlation over time. The underlying spatio-temporal relationship is driven by
the common tobacco and alcohol risk factors. The model is specified using the
following:

Yijk ∼ Poisson (Eijkθijk)
log(θijk) = αk + φkZi + ψktj + eijk. (3.1)

In this framework, i = 1, . . . , 99 are the counties, j = 1, . . . , 6 are the time periods,
and k = 1, 2, 3 are lung, oral and esophageal cancers, respectively. The parameter
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Figure 2: Lung cancer relative risks estimates by county and time period:
Row 1 contains MLEs, Row 2 contains posterior means from the independent
Bayesian model, and Row 3 contains posterior means from the joint model.
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Figure 3: Oral cancer relative risks estimates by county and time period: Row 1
contains MLEs, Row 2 contains posterior means from the independent Bayesian
model, and Row 3 contains posterior means from the joint model.
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Figure 4: Esophageal cancer relative risks estimates by county and time period:
Row 1 contains MLEs, Row 2 contains posterior means from the independent
Bayesian model, and Row 3 contains posterior means from the joint model.
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αk is a disease specific intercept. The Zi is a random spatial effect for county i
whereas φk is a spatial scaling parameter for disease k. These are discussed further
in Section 3.2. The tj represents a random temporal effect of the jth time period,
and ψk is a temporal scaling parameter, as described in Section 3.3. Finally, the
eijk are distributed as eijk

iid∼ Normal(0, δe) and allow for extra-Poisson variation
due to risk factors not accounted for by the model.

3.2 Spatial correlation

Located in the first rows of Figures 2, 3, and 4 are the maximum likelihood
estimates (MLEs) of the relative risks for lung, oral, and esophageal cancers,
respectively. Spatial patterns are not readily apparent in these plots due to
variability caused by small counts in the individual counties and time periods. We
can make the assumption, though, that similarities exist in the spatial patterns
because of risk factors shared among the three cancers. In the model, cancers are
linked to a common correlation structure through the Zi parameter. However,
the φk scaling parameter allows the spatial variances to differ. Thus, we will be
interested in examining if φ1 = φ2 = φ3 = 1. This equality would suggest no
difference between the spatial structures of the three cancers. For identifiability,
we set φ1 = 1 since lung cancer has the most county-level data.

The random spatial effects for counties follow the conditional autoregressive
model (CAR) (Besag, 1974). Define a 99 × 99 adjacency matrix as C = (Cuv)
where Cuv = 1 if two counties u and v share a common boundary and 0 otherwise,
with Cuu = 0. The vector of county effects is denoted as Z = (Z1, . . . , Z99)′ and
a 99 × 99 diagonal weighting matrix D = diag(di) with di =

∑
j Cij. Then, the

conditional distribution of Zi is normally distributed with conditional mean and
variance

E
(
Zi|Z−(i)

)
=
ρz

di

99∑

j=1

CijZj and V ar
(
Zi|Z−(i)

)
=
δz
di
,

respectively, where Z−(i) denotes the vector of the spatial effects in all areas
except the ith area. The parameter δz represents the degree of precision and
controls the variability in Zi while ρz symbolizes the degree of spatial association
among regions. Sun et al. (2000) include the overall degree of spatial dependence
parameter ρz in the CAR model. To ensure a proper (non-degenerate) distribu-
tion for Z, ρz is bound between -1 and +1 by the theorem of diagonal dominant
matrix (Graybill, 1983, p. 251).



Spatio-Temporal Modeling of Low Incidence Cancers 115

3.3 Temporal correlation

Correlation over time can be seen by plotting the state-wide relative risk for
each cancer since 1973 (see Figure 1(a)). There is a general increase from the
1973–1977 period to the 1998–2002 period in the relative risks for lung, oral,
and esophageal cancer. Thus, a common latent temporal process represented as
tj is appropriate, although the variances of the temporal processes are allowed
to vary across diseases through the model parameters ψk. We will examine if
ψ1 = ψ2 = ψ3 = 1; i.e., whether the cancers are homogenous with respect to
their temporal structures.

We select an autoregressive model, AR(1), to model the temporal process
across j = 1, . . . , 6. The implementation is similar to that of Oleson and He
(2004) and Kim and Oleson (2005), and we write

tj = ρttj−1 + εj.

Assume that εj ∼ Normal(0, τj) is additional random noise with τ1 = δt/(1−ρ2
t )

and τj = δt for j = 2, . . . , 6.
This formulation assumes a stationary process. While the incidence rates

have shown an increase since 1973, there is reason to believe that those rates
will begin to decrease in the near future. This is evidenced by nationwide trends
where the number of cigarettes sold in the U.S. is at the lowest number since
1961.

3.4 Bayesian model specification

A hierarchical Bayesian modeling approach provides a simplified conceptual
framework to solve extremely complex problems involving covariance structures
and latent spatial structures that would be particularly difficult to model other-
wise. An additional advantage of the Bayesian paradigm is the ability to incor-
porate prior scientific knowledge in the analysis.

Priors were chosen to ensure a proper posterior distribution. We specified
relatively vague Normal(0, 100) priors for the mean parameter, αk, and for the
scaling parameters φk and ψk for k = 2, 3. Gamma(.01, .01) priors for the in-
verse variance parameters are chosen. The correlation parameters ρz and ρt have
Uniform(−1,+1) priors.

In a fully Bayesian hierarchical model such as this, computation via numerical
integration is not feasible. Instead we use Markov chain Monte Carlo (MCMC)
techniques, such as Gibbs sampling, to simulate draws from the full conditional
distributions. Many of the full conditionals in our model are normal or inverse-
gamma which are easily sampled. Fortran 95 implementations of appropriate
MCMC algorithms were developed and are available from the first author. Three
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chains with dispersed starting values were generated from parallel runs of the
MCMC sampler. Posterior inference was based on a total of 240, 000 simulated
draws, after discarding the first 20, 000 iterations of each chain as a burn-in
sequence. To monitor the convergence of our MCMC sampler, we used the di-
agnostics of Gelman and Rubin (1992) as well as graphical monitoring of the
sample paths. All plots and maps were generated with R statistical software
tools2. Convergence diagnostics and posterior summaries were performed with
the BOA software3). The method of Chen and Shao (1999) was used to compute
95% highest posterior density (HPD) intervals.

4. Numerical Results

4.1 Maximum likelihood estimation

We begin by examining MLEs of θijk for each of the cancers separately. These
are simply the observed counts divided by the age-gender adjusted expected
counts, i.e., θ̂ijk = Yijk/Eijk. The ratios are located in the first row of Fig-
ures 2–4 for lung, oral and esophageal, respectively. We have assumed similar
spatial structures and temporal structures for these three cancers. Patterns are
very difficult to discern from these maps, particularly for oral (Figure 3) and
esophageal (Figure 4) cancers. Due to the small number of cases for these two
cancers at the county level, individual estimates are not reliable thus making it
difficult to recognize consistent spatial or temporal trends.

For example, we expect that neighboring counties will have similar relative
risks, i.e. are spatially correlated. This type of pattern is not immediately recog-
nizable when we examine the SMR MLEs for esophageal cancer (row 1 of Figure
4). In the map for 1973–1977, we see many instances where counties with the
lowest category of relative risk (< 0.2) share a boundary with a county that had
the highest category of relative risk (≥ 1.0). Eighteen of the nineteen counties
found in the lowest relative risk category had zero cases of esophageal cancer in
this time span. Many of the counties in the highest risk category are a product of
a small number of incidences in sparsely populated counties rather than being a
true high relative risk. This scenario is apparent when the neighboring counties
have low risks. The same phenomenon is true for oral cancer as well.

The small counts also have a dramatic affect on temporal trends. Again,
turn to esophageal cancer for an example. In the first row of Figure 4, we can
see a general increase over time. Statewide, this general increase is true, but
trends at the individual county-specific level are not as apparent. We illustrate

2See http://www.r-project.org.
3Smith, B. J. (2005). Bayesian Output Analysis Program (BOA), Version 1.1.5,

http://www.public-health.uiowa.edu/boa.
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with Mahaska County in southeast Iowa. Mahaska County is in the third row
of counties from the bottom and the fourth from the right. The relative risk
MLEs for the six time periods are 0.50, 0.50, 0.69, 0.00, 0.85, and 0.17. The
corresponding counts during these time periods are 3, 3, 4, 0, 5, and 1 respectively.
With the small changes in the number of incidences, the relative risks should not
vary to the great extent that the MLEs do. Similar examples are present for oral
cancer as well. These large fluctuations over space and time are not as drastic
for lung cancer but similar disparities can certainly be seen.

4.2 Individual Bayesian modeling

Even with small counts and population sizes, a Bayesian model will be able
to smooth the estimates for cancer relative risk. The results should show a more
discernable spatial pattern and clearer temporal trends. To obtain independent
Bayesian estimators for the cancer risks, equation (3.1) is used separately for
k = 1, 2 and 3 with φk = 1 and ψk = 1. The three models used are

log(θij(lung)) = α(lung) + Zi(lung) + tj(lung) + eij(lung) (4.1)
log(θij(oral)) = α(oral) + Zi(oral) + tj(oral) + eij(oral) (4.2)

log(θij(esophageal)) = α(esophageal) + Zi(esophageal)

+ tj(esophageal) + eij(esophageal). (4.3)

Posterior summaries of the model parameters are provided in Table 1.

Table 1: Individual disease modeling: Bayesian posterior parameter estimates
based on 240,000 MCMC samples.

Lung Cancer Oral Cancer Esophageal Cancer

Parameter Mean 95% HPD Mean 95% HPD Mean 95% HPD

α -0.198 (-0.572, 0.100) -0.358 (-0.502,-0.223) -0.275 (-0.707, 0.145)
δy 0.004 ( 0.002, 0.006) 0.007 ( 0.002, 0.014) 0.010 ( 0.002, 0.019)
δz 0.129 ( 0.088, 0.175) 0.165 ( 0.089, 0.247) 0.102 ( 0.019, 0.195)
δt 0.031 ( 0.004, 0.084) 0.011 ( 0.001, 0.028) 0.049 ( 0.005, 0.134)
ρz 0.595 ( 0.162, 0.985) -0.527 (-0.990, 0.222) -0.206 (-0.990, 0.715)
ρt 0.634 (-0.021, 0.999) 0.239 (-0.651, 0.989) 0.679 ( 0.087, 0.999)

The relative risk estimates from the independent models of (4.1) through (4.3)
are mapped in the second row of Figures 2–4 for lung, oral and esophageal, re-
spectively. The spatio-temporal modeling smoothed the risk estimates so that
there is less county-to-county variability and patterns are more clearly seen. The
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example from Section 4.1 of highly variable clustering has been removed. Neigh-
boring counties now have similar relative risk estimates. In particular, there are
no counties that fall into either the lowest category or the highest category in
the first time period. Mahaska County shows a steadier trend across time as well
with relative risk estimates of 0.51, 0.52, 0.61, 0.64, 0.80, and 0.85 for the six time
periods. Note that there appears to be a higher pocket of relative risks for all
three cancers near Pottawattamie County in western Iowa (third row of counties
from the bottom in the far left) and surrounding Polk County in central Iowa
(fourth row of counties from the bottom and the sixth from the left). Higher
levels also appear in eastern Iowa. Lower levels of relative risk are seen in most
of northwest Iowa for all three cancers.

Table 2: Joint Disease modeling: Bayesian posterior parameter estimates based
on 240,000 MCMC samples.

Parameter Mean 95% HPD

α(lung) -0.182 (-0.443, 0.050)
α(oral) -0.350 (-0.446,-0.269)
α(esophagus) -0.345 (-0.714,-0.046)
δy(lung) 0.005 ( 0.003, 0.007)
δy(oral) 0.010 ( 0.003, 0.019)
δy(esophagus) 0.011 ( 0.002, 0.023)
δz 0.130 ( 0.089, 0.174)
δt 0.028 ( 0.003, 0.075)
ρz 0.463 (-0.074, 0.930)
ρt 0.622 (-0.033, 0.999)
φ(oral) 0.869 ( 0.694, 1.051)
φ(esophagus) 0.704 ( 0.473, 0.942)
ψ(oral) 0.280 ( 0.099, 0.462)
ψ(esophagus) 1.323 ( 1.038, 1.611)

From Figure 1(a) we determined that relative risks had the same general
increasing trend with a leveling off at the last time period. The time components,
tj , are plotted in Figure 1(b). The modeled patterns match the actual trends
for the MLEs displayed in Figure 1(a). In addition, they all show the same
general increasing pattern. A joint modeling of all three cancers will capture this
information while the scaling parameters will allow for subtle differences.

The three individual spatial parameters, Z, for each cancer are shown in
Figures 1(c)–1(e). We see a similar underlying structure for these three cancers.
There are low values in the northwest quadrant and much of northern Iowa. A
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high pocket can be seen in central and eastern Iowa. These three maps do indeed
show similar spatial trends and further support the use of a common latent spatial
process in a joint model.

While we have smoothed the estimates to locate “hot-spots” in Iowa, there is
still a great deal of variability in the estimates for the two lower risk cancers. A
joint modeling of the three cancers should reduce the variability.

4.3 Joint Bayesian modeling

Finally, a simultaneous analysis of the three cancers was performed with the
joint hierarchical Bayesian model developed in Section 3. Posterior summaries of
the model parameters are provided in Table 2.

Significant temporal correlation resulted. A posterior mean of 0.622 was ob-
served for ρt with a 95% HPD covering (-0.033, 0.999). In Figure 1(b), the
posterior mean obtained for tj in the joint analysis is plotted across time. As ob-
served in the separate analyses, the cancer risks have been increasing over time
with a recent leveling off. The joint values behave very similarly to the values
from the lung cancer model. Not only does lung cancer have the most data, but
the value in tj for lung cancer generally falls between that of oral and esophageal
cancers.

The temporal relationship is further evidenced by the estimates of ψk. A value
of ψk = 1 implies that the temporal patterns are the same between the baseline
disease and disease k. Lung cancer was used as the baseline because it had the
most data to work with. The posterior mean for the esophageal scale parameter
is 1.323, but the 95% HPD of (1.038, 1.611) excludes unity. This suggests that it
follows a similar temporal pattern to lung cancer but is somewhat more variable
over time. Oral cancer exhibits a relatively attenuated trend that is character-
ized by a mean estimate of ψ(oral) = 0.280 with a 95% HPD of (0.099, 0.462).
Overall, the results for the temporal scale parameters are consistent with the
trend differences apparent in Figure 1(a). Returning to the figure, we note that
esophageal cancer exhibits a slightly steeper increase than lung cancer, whereas
oral exhibits a relatively flatter increase. The posterior estimates from the joint
model indicate that although they have all shown increases, there are significant
differences between the increases over time for the three cancers.

There are important associations over space as well. When φk = 1, the spatial
patterns are the same between the baseline disease and disease k. Recall that
lung cancer is used as the baseline in our analysis. The mean for the esophageal
scale parameter is 0.704 with a 95% HPD of (0.473, 0.942). Oral cancer has an
estimate of 0.869 (0.694, 1.051) for φ(oral). Unlike the case of temporal variance,
oral and lung cancer appear to have very similar spatial variances.
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Figure 5: Comparison of relative risk posterior means (first three rows) and
standard deviations (last three rows) between independent (horizontal axis) and
joint Bayesian modeling (vertical axis) of lung, oral, and esophageal cancer by
county and time period.
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Next, consider the the risk estimates in the third row of Figures 2–4. There
are many similarities between the separate modeling estimates and the joint mod-
eling estimates. The lung cancer results are particularly similar. This is expected
as there were a relatively large number of lung cancer cases in Iowa. The dif-
ferences between the two methods will be found in examining the two lower risk
cancers. Many counties had zero cases of esophageal or oral cancers during cer-
tain time periods. Each of the independent models smooth using information
from neighboring counties and time periods for a single cancer. The joint model
uses more knowledge by utilizing additional counts and spatio-temporal informa-
tion for the two other cancers. We can now clearly see higher relative risks in
south and southwest Iowa and lower risks in northwest Iowa.

Relative risk estimates from the individual modeling (horizontal axis) are
plotted against the estimates from the joint modeling (vertical axis) in the first
three rows of Figure 5. Lung cancer estimates found in the first row are relatively
unaffected by the joint modeling. Oral cancer in the second row and esophageal
cancer in the third row show larger county-level changes. The state averages
appear to be similar, apart from the 1998–2002 period for esophageal cancer.

We expect the joint modeling to also reduce the variability in risk estimates.
An examination of rows four through six of Figure 5 shows this to be the case.
Similarly to the mean estimates, the variability in lung cancer estimates did not
differ much between the separate and joint modeling approaches. The major
increase in precision came for the lower risk diseases. We see dramatic reductions
in variability for the oral and esophageal estimates in every time period.

5. Discussion

We have presented a model that incorporates joint information from multiple
diseases sharing common disease risk factors. This model is beneficial when one
or more diseases have small counts that lead to highly variable estimates. When a
disease has small counts, the high variability in the small area estimates can make
spatio-temporal patterns difficult to discern. Our approach has the potential
to improve the precision of risk estimates through the joint modeling of related
diseases. Information across different diseases is combined via the common spatial
and temporal correlation structures specified in our model. Furthermore, we
include scaling parameters to compare the strength of the spatial and temporal
signals across diseases. The model is fit within a hierarchical Bayesian framework
and so posterior inference can be performed on all model parameters and relative
risks of interest. On the one hand, our model can improve upon the detection
of “hot-spots” when different diseases are highly associated with the same risk
factors. In such cases, the common spatial (temporal) structure could be used to
identify regions that might benefit from risk reduction interventions. On the other
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hand, the model can be used to determine how well a common spatial (temporal)
structure describes patterns in different diseases. We found that there is a spatial
relationship between lung, oral and esophageal cancers in Iowa. We also see a
joint trend in time between the three diseases. Our proposed framework can easily
incorporate any number of diseases while accounting for temporal correlation as
well as spatio-temporal interaction.
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