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Abstract: Functional magnetic resonance imaging (fMRI) has, since its de-
scription fifteen years ago, become the most common in-vivo neuroimaging
technique. FMRI allows the identification of brain areas which are related to
specific tasks, by statistical analysis of the BOLD (blood oxigenation level
dependent) signal. Classically, the observed BOLD signal is compared to
an expected haemodynamic response function (HRF) using a general linear
model (GLM). However, the results of GLM rely on the HRF specification,
which is usually determined in an ad hoc fashion. For periodic experimental
designs, we propose a multisubject frequency domain brain mapping, which
requires only the stimulation frequency, and consequently avoids subjective
choices of HRF. We present some computational simulations, which demon-
strate a good performance of the proposed approach in short length time
series. In addition, an application to real fMRI datasets is also presented.
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1. Introduction

Since the description of the blood oxygenation level dependent signal (BOLD)
by Ogawa et al. (1990), the number of studies based on functional magnetic res-
onance imaging (fMRI) has increased very rapidly. Tolias et al., 2005; Logothetis
et al., 2002; Logothetis and Pfeuffer, 2004) showed that BOLD signal can be
considered as an indirect measure of neuronal activity, reflecting local blood flow
properties. In an fMRI session, many images are acquired at short time intervals,
allowing the temporal monitoring of the relationships between the BOLD signal
and stimulus presentation. Hence, BOLD signal reflects the activation level at a
specific brain region (voxel). An important point is that the concept of stimuli
is something related to conditions or active tasks performed by an individual.
Thus, hands movements, speaking, calculating, are also considered as stimuli.
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Structural magnetic resonance images are commonly acquired for medical di-
agnostics following lesions, tumors or strokes. In contrast, functional magnetic
resonance imaging (fMRI) focuses on the observation of neuronal activity in the
whole brain at short time intervals to establish the relationship of BOLD to
a specific stimulus. The main advantages of fMRI analysis compared to EEG
(eletroencefalography) and PET (positron emission tomography) are its non-
invasive properties and also the high spatial resolution. The images in a fMRI
session are acquired as multiple slices (Figure 1A) providing a 3-dimensional vi-
sualization of the whole brain (volume). In terms of data structure, each slice
is a matrix composed by X × Y voxels, and each voxel represents a small brain
area. Therefore, considering all the slices, the whole brain is represented by a
3-dimensional matrix of voxels. In a fMRI scanning session, several volumes are
acquired through time (Figure 1B), resulting in T observations {yt, t = 1, .., T}
for each voxel (a volume is a set of voxels). In conclusion, an fMRI dataset
consists in many time series of BOLD, each one related to a small brain area.

Figure 1: A: A brain volume of multiple slices acquired at one time point.B: A
fMRI time series is a set of volumes (BOLD in each voxel) observed at different
time points.

In a fMRI experiment, individuals lie inside a magnetic resonance scanner and
are exposed to a sequence of stimuli. The evaluation of the temporal change in
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BOLD can then be used to infer neural dynamics, i.e., response to an experimental
task. A general linear model (GLM, Graybill (1976)) is the most often used to
identify brain regions activated by a particular task. SPM (statistical parametric
mapping) is the most commonly used technique to describe the analysis results.
In GLM analysis, a linear regression is performed considering the observed BOLD
signal as dependent variable and the expected haemodynamic response function
(HRF) as the regressor (Turner et al. (1998), Buchel et al. (1996), Friston et al.
(1998,b)). The HRF is the expected variation or response of BOLD signal after
a stimulus presentation (examples of possible choices for HRF are plotted in the
left side of Figure 2). The model is given by

Yt = α+ βXt + εt, (1.1)

where Yt is the value of BOLD signal observed at time t, Xt is the expected
predicted response assuming stimulation (HRF) and εt is a random error. As the
dependent variable is obtained directly from the data, the first issue in this analy-
sis is the choice of the HRF regressor, which is subjective. Assuming that the se-
quence and times of stimulus are known, there are many suggestions for an appro-
priate HRF (Buchel et al. (1998), Friston et al. (2000)) based on haemodynamic
delay, e.g., Gamma functions, Volterra kernels, and non-parametric smoothing.
Finally, the decision if a certain voxel was or not activated by the stimulus, is
reached by evaluating the statistical significance of activation obtained using a
Wald statistics on HRF coefficient (β). The null hypothesis of no activation is
given by H0 : β = 0. In other words, the GLM analysis provides a decision
whether an observed BOLD signal is similar to an expected variation under stim-
ulation (HRF).

Here, we propose a multisubject activation mapping in frequency domain for
cases of periodic stimulation. In this approach, HRF specification is not necessary,
avoiding subjective or incorrect choices. This paper is structured as follow: the
proposal is presented in section 2. Section 3 contains simulation results related
to statistical power and small sample approximations. Finally, an application of
the proposed approach to a real fMRI dataset involving a motor task is presented
in section 4.

2. Methods

2.1 Time series analysis

A time series is a set of observations yt, each one recorded at a specified
time t. The obvious correlation introduced by the sampling of adjacent points in
time can often restrict the applicability of many conventional statistical methods,
which rely on the assumption that these adjacent observations are independent
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and identically distributed. Time series analysis is the systematic approach by
which one goes about answering the mathematical and statistical questions posed
by these temporal correlations. In general, we observe one or more realizations
{yt, t = 1, · · · , T} of a stochastic process {Yt}, describe its properties and make
inferences. In time series analysis, there are two common approaches: time do-
main and frequency domain analysis. An interesting focus of several studies has
been the class of second order stationary processes. The main properties of these
processes are: a) the time-invariant unconditional expectation and b) variance
and covariance between observations in different time points depending only on
the delay between them (Brillinger, 1980).

In the time domain, the correlation structure of a second order stationary
process is described by the autocovariance function (acf) γy(k) defined as

γy(k) = Cov(yt, yt−k) = E[(yt − µ)(yt−k − µ)],

where µ is the unconditional expectation of the process. This function measures
the linear dependence between two points separated by lag k in a series.

In the frequency domain, the correlation structure is represented by the spec-
tral density, f(λ), λ ∈ [−1/2, 1/2], defined by

f(λ) =
∞∑

k=−∞
γ(k) exp(−2πiλk), (2.1)

where λ is measured in cycles per unit of time. The spectral density describes the
properties of the process in terms of periodic components at different frequencies
in any given realization. In addition, the spectral density may also be interpreted
as a variance decomposition in orthogonal components (sines and cosines).

2.2 Spectral analysis of periodic stimulus designs

In the analysis of fMRI voxel time series, considering for periodic designs, the
stimulation frequency is defined as the fundamental frequency of activation (λa).
Our aim is the identification of voxels which have BOLD signal oscillating at the
stimulus frequency. As in the case of GLM, the analysis is performed in order to
detect responses to the stimulus. We consider the model

yt =
K∑

j=1

Rj sin(2πλjt+ ψ) + εt, t = 1, · · · , T, (2.2)

where yt represents the BOLD signal, K is the number of components, Rj is the
amplitude, λj is the frequencies of interest and εt is a white noise series.
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Figure 2: Some haemodynamic response functions and their respective peri-
odograms.

The variance of a voxel time series, {yt, t = 1, · · · , T}, attributable to an
oscillation of frequency λj is obtained through the spectral density (1) with λ =
λj , which can be estimated by the periodogram defined as

Iy(λj) =| dy(λj) |2, (2.3)

where dy(λj) is the discrete Fourier transform of y1, . . . , yT , at the Fourier fre-
quencies

λj =
j

T
, j = 0, 1, 2, · · · ,

[
T

2

]
,

and defined as

dy(λj) =
1
T

T∑
t=1

yt exp(−i2πλjt). (2.4)

In practice, the discrete Fourier transform is obtained using the Fast Fourier
Transform (fft) algorithm, which is computationally efficient. Most of the fre-
quencies will contain information solely about the correlation structure of the
underlying stochastic process at the chosen voxel. The value of the periodogram
at each frequency represents the amount of time series variance related to this
frequency (power). Figure 2 shows some haemoresponse functions and their re-
spective periodograms. The amount of variance explained by a frequency is de-
fined as the power (or energy) in this frequency. Note that the power (Eq. 4) at
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the fundamental frequency is so large, that visually, it makes the power in other
frequencies seems to be zero.

The large value of the periodogram Iy(λj) at the fundamental frequency is
indicative of response to the stimulus. Hence, for a periodic design, we are only
interested in the spectral density at a fourier frequency λa (the fundamental
frequency of activation).

The asymptotic sampling properties of the periodogram are well-known. For
stationary series,

(I) Iy(λj) and Iy(λk) are asymptotically independent, for all j �= k;

(II) for k = 1, · · · ,K, K � T , k
T ≈ λ and k

T �= 0,±1/2, · · · , when T → ∞,

2Iy(λk)
f(λ)

D−→ χ2
2, (2.5)

independently, where χ2
2 denotes a chi-squared random variable with 2 de-

grees of freedom (Shumway and Stoffer (2000), Brillinger (1980, 1981)), and
D means convergence in distribution.

2.3 Testing for a response to the stimulus

The periodogram provides a baseline to test the null hypothesis of no power
peak in a frequency of interest. We define the ratio statistic at the fundamental
frequency of activation (frequency of stimulus), λa, for each voxel time series as

Wa =
([T/2] − 1)I(λa)∑[T/2]

j=1,j �=a I(λj)
, (2.6)

as to obtain a test statistic for significant activation. Large value of Wa indicates a
large effect at the fundamental frequency, and consequently, that the BOLD signal
of this brain area is correlated with the stimulus presentation. It is important
to highlight that, theoretically, the Wa statistic is adequate only in cases where
the energy of the signal is concentrated solely in one frequency. The power of
the test is reduced if there are two or more peaks. However, in some cases, the
power at the frequency of interest is so large compared to the other peaks, that
an approximation to the asymptotic distribution of Wa statistic holds.

From (I) and (II), under the hypothesis of no activation, the asymptotic
distribution of Wa is given by

2Wa
a∼ χ2

2,
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when T → ∞ (Shumway and Stoffer (2000), Brillinger (1980), 1981)). Analo-
gously, for a multisubject analysis considering N individuals, we have

W ∗
a =

([T/2] − 1)
∑N

n=1 In(λa)∑N
n=1

∑[T/2]
j=1,j �=a In(λj)

, (2.7)

(2N)W ∗
a

a∼ χ2
2N . (2.8)

Hence, we reject the hypothesis of no activation for large energy in the fun-
damental frequency of activation. Nevertheless, some fMRI time series are au-
tocorrelated. In these cases, pre-whitening filters which preserve the time series
periodicity should be applied. Periodicity detection is the main concern in the
analysis of fMRI cyclical experiments, hence trends or other components are not
important and may be discarded.
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Figure 3: W ∗
a estimated probability density function (full line). The theoretical

function is represented by the dashed line.

3. Simulations

Following the derivation of the asymptotic distribution of W ∗
a statistic, the

validity of approximation in small samples need to be evaluated. Further, the
effects of the number of subjects, energy in the frequency of interest or time series
length are also unknown. Hence, in this section, we present the results of Monte
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Figure 4: a) Test power as a function of energy in the fundamental frequency
of activation(Ra). b) Test power as a function of time series length(T ). c)
Test power as a function of the number of subjects(N)
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Carlo simulations related to these questions. All simulations were performed
using the R Statistical Software (www.r-project.org).

Firstly, consider the case of a white noise time series. We simulated 10000
Gaussian white noise processes of length 100 for 6 subjects in order to empirically
estimate theW ∗

a probability density function under the null hypothesis (frequency
λa = 0.05). The histogram, theoretical and estimated (Kernel) densities are
presented in Figure 3. Note that the estimated and theoretical densities are
similar, indicating a good asymptotic approximation even for short length time
series.

Focusing on the power evaluation, consider the following model:

xtn = Ra sin(2πλat/T ) + εtn, t = 1, ..., T, (3.1)

where T is the time series length, n = 1, .., N is an index representing each sub-
ject, λa is the fundamental frequency of activation, Ra is a coefficient representing
the energy in frequency λa and εt is a Gaussian white noise. Ten thousand sim-
ulations were performed for each evaluation and the size of the tests is α = 0.05.
The effect in the power of the test by increasing the energy in the fundamental
frequency of activation Ra for N = 6, T = 100 and λa = 0.05 is shown in Figure
4A. The effects of sample length (T ) and number of subjects (N) are presented
in Figures 4B and 4C, respectively.

The simulations provide evidence of a satisfactory performance of the pro-
posed statistical test. Figure 3 shows that W ∗

a statistic asymptotic distribution
is a reasonable approximation even for short length time series. This result is
useful, as that in many cases of periodic designs, the fMRI time series have short
length in order to avoid habituation effects. Further, Figure 4 shows a reasonable
increase in the test power, as the energy at the frequency of interest (Ra), the
time series length (T ) and the number of subjects (N) increase, respectively.

4. Application to fMRI Data

In this section, we illustrate the usefulness of the proposed approach in the
analysis of a fMRI motor dataset with a block design. An experiment with block
design consists on segmented presentation of stimulus. In other words, each type
of stimulus (e.g., sounds, fingertap, lights, resting, etc) is presented during long
time intervals. In a session (run), the subjects are exposed to these stimuli, which
may occur alternately or periodically.

Seven right handed healthy volunteers (4 male and 3 female, 36 to 75 years-
old) participated in this study. The datasets were acquired at the HC Radiology
Institute - University of Sao Paulo (Brazil). The subjects performed a simple
motor task: finger tapping movements of right hand.
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Figure 5: Block design data analysis: the maps show brain slices and red
spots indicating the areas (voxels) related to the motor stimulus (radiological
notation).

A volume contains observations of BOLD signal of each voxel (regions) in
the whole brain. Each volume was composed of 15 slices acquired in a 1.5Tesla
Signa LX (GE, Milwaukee, USA) magnetic resonance scanner. For each subject,
one hundred volumes were acquired in different time points, resulting in BOLD
signals of length 100 per voxel (T = 100). The sampling of BOLD signal occurs
at fixed intervals called TR (time of repetition), which is in general specified in
miliseconds (ms). Thus, for each region in the brain the BOLD signal of seven
individuals (N = 7) was monitored.

The frequency domain multisubject periodicity test was then applied to these
time series, resulting in statistical measures of association between stimulation
and activity of each brain region. The visualization of the regions with significant
periodicity (red spots) is overlayed on structural brain images.

Each block design session consisted of 5 cycles with two conditions each (30
seconds of active finger movements and 30 seconds of rest) in response to a visual
cue. The BOLD sampling interval is TR=3000ms. Notice that the sequence of
stimulations is periodic (rest followed by motor task), with fundamental frequency
of activation, λa, corresponding to 0.05TR/s. Here, the main interest is the iden-
tification of brain voxels which show a significant periodicity in the stimulation
frequency, indicating that these regions are activated by the stimulus.

The images were preprocessed considering motion realignment, slice time cor-
rection (SPM2, http://www.fil.ion.ucl.ac.uk/spm/ ) and spatial smoothing. This
first stage is necessary to remove scanning artifacts. Individuals have different
brain sizes and shapes, thus, warping the volumes to a common brain template
(stereotatic space of Talairach and Tornoux (1988) is necessary in multisubject
analysis.

The BOLD signal was detrended (polinomial of order 2) and also pre-whitened
considering an AR(1) model in order to remove autocorrelation from the data
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(Marchini and Smith (2003), Woolrich et al. (2001)). This filter does not change
the periodicity of the signal. Finally, brain activation maps were obtained using
the proposed multisubject periodicity test. The red spots show the brain areas
activated during the fingertap task (Figures 5 and 6).

Figure 6: Block design data analysis: the figure shows a 3D-view of activated
voxels (red spots) in different angles.
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Figure 7: Block Design data analysis: Subjects average time series correspond-
ing to an active voxel in primary motor area and its periodogram.

According to activation maps (p-value< 10−4, less than 1 expected false ac-
tivated voxel per slice), we found more activated clusters in left primary motor
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cortex (LM1), left primary sensitive area (LS1) and supplementary motor area
(SMA). Small clusters were found in right primary motor cortex (RM1). The left
primary motor area is classicaly involved in right hand movements and SMA is
often related to movements programming. The activation in LS1 is expected as
fingertap tasks involve also finger touching. The interhemispheric communication
is thought to be responsible for a reduction of the oxygenation, and consequently
BOLD effect in this area, probably in order to give priority to the motor learning
in the RM1 (Li et al. (1996), Tinazzi and Zanette (1998), Allison et al. (2000)).
This pattern of activation has also been found in classical fMRI motor studies
with finger-tapping, which is a simple task but with motor and sensory com-
ponents (Bandettini et al. (1992), Kwong et al. (1992), Allison et al. (2000)).
Figure 7 presents the average time series of all subjects corresponding to an active
voxel in primary motor area.

In conclusion, we found that all activated regions detected using the proposed
approach are in total agreement with the literature related to this topic. This
provides preliminary evidence for the reliability of the method.

5. Conclusion

The number of neuroscientific studies based on fMRI has been increasing
rapidly. However, the quality of results relies on the choice of haemodynamic
response function (HRF). In this paper, we propose a frequency domain multi-
subject approach, which is based solely in stimulus periodicities, avoiding sub-
jective specification of HRF. The power and usefulness of the new approach in
small samples are evaluated by simulations. We also present an application to
fMRI dataset involving a motor experiment. The results provide evidence of the
reliability of the proposed approach in normal subjects. Future works involve the
application of this approach to detect differences of activation between healthy
and unhealthy groups.
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