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Abstract: Frequentist and Bayesian hypothesis testing are often viewed
as “two separate worlds” by practitioners. While theoretical relationships
of course exist, our goal here is to demonstrate a practical example where
one must be careful conducting frequentist hypothesis testing, and in that
context illustrate a practical equivalence between Bayesian and frequentist
testing. In particular, if the sample size is random (hardly unusual in prac-
tical problems where the sample size may be “all available experimental
units”), then choosing an α level in advance such as 0.05 and using it for
every possible sample size is inadmissible. In other words, one can find a dif-
ferent overall procedure which has the same overall type I error but greater
power. Not coincidentally, this alternative procedure is based on Bayesian
testing procedures.
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1. Introduction

It is well known there are drastic differences between Bayesian and frequentist
hypothesis testing. This is called Jeffrey’s (or Lindley’s) paradox, which occurs
when a dataset results in rejecting the null hypothesis using a standard frequentist
hypothesis test, but the posterior probability of the null hypothesis is near 1,
creating opposite conclusions depending on your statistical paradigm.

Theoretically, the reasons for this difference are well known, see for example
Cox (1958), Lehmann (1958), Jeffreys (1961), Lindley (1971), and Seidenfeld et.
al (1990). Our goal here is not to present a new theoretical resolution for the
paradox, but to provide a straightforward practical example of how the paradox
occurs and some practical implications of ignoring it. Indeed, foundational ar-
guments continue in substantive journals, see for example the article by Miller
(2004), indicating that the practical aspects of hypothesis testing are still being
explored in applied fields. While most theorists may consider it “well-known”,
in our experience most researchers are surprised to learn that in an experiment
where the sample size cannot be determined in advance (for example the simple
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case of patient dropout, or an example where one samples all available units and
is unsure in advance how many will be available) it is inadmissible to plan on
using a prespecified α level test for all sample sizes such as α = 0.05. One can
achieve a better overall procedure by varying α with the sample size. Note this is
a separate issue from sequential procedures, where the sample size is determined
by the data. Here the sample size may vary, but does not depend on the data.

Our example involves a simple experiment where one of two sample sizes may
be chosen. One possible analysis is to plan on conducting a standard hypothesis
test using α = 0.05 regardless of the sample size. An alternative method is to
choose different α levels for each of the two sample sizes. We demonstrate that
one can choose the differing α levels such that 1) the overall type I error rates for
both procedures are the same, and 2) one achieves better power when using the
differing α levels. Not coincidentally, the ideal choice of differing α levels occurs
when the α levels are chosen based on Bayesian methods, which decrease the α
level as n increases.

In Section 2 we show the example, define some notation, and define an intu-
itive, easy to visualize rule for avoiding the problems shown in the example. In
Section 3 we illustrate the consequences of this rule for testing hypotheses with
normally distributed data. In Section 4 we provide a discussion of the results.

2. Preliminaries

2.1 An unpleasant example

For illustration, let X1, . . . ,Xn ∼ N(µ, 1) and suppose we are testing H0 :
µ = 0 against HA : µ = 1. Suppose also that n = 5 with probability 0.5 and
n = 10 with probability 0.5.

One procedure is to choose α = 0.05 for whichever n appears. Some algebra
reveals that the power of the α = 0.05 test for n = 5 is 0.7228 while the power for
the α = 0.05 test with n = 10 is 0.9354. The overall procedure involves a 50-50
shot at each end, so the overall procedure has type I error probability 0.05 and
power (0.7228 + 0.9354)/2 = 0.8291.

An alternative procedure is to choose α = 0.06 when n = 5 (resulting in
power 0.7522) and α = 0.04 when n = 10 (with power 0.9210). The entire pro-
cedure, taking into account the random sample size, has type I error probability
(0.04+0.06)/2 = 0.05 and power (0.7522+0.9210)/2 = 0.8366. Note this second
procedure has the same overall type I error probability but higher power, and
thus should be preferred.

Of course, one must wonder whether there are other sets of α levels which
perform even better in that they produce the 0.05 overall type I error probability
but an even higher power. In what follows we show a simple criteria which allows



Hypothesis Testing with Random Sample Sizes 77

one to visually see where the optimal α levels should occur. In Section 3.1 we
use this criteria to illustrate that using α = 0.0676 when n = 5 (power 0.7710)
and α = 0.0324 when n = 10 (power 0.9059) produces the highest overall power
(0.8384) while fixing the overall α level at 0.05.

This example was created by beginning with a constant α level, and then
decreasing α for one sample size and increasing α by the same amount for the
other sample size. This assures the new procedure has the same overall type I
error rate. Since increasing α always results in increasing power, and decreasing
α always results in decreasing power, the overall procedure will gain power if and
only if the increase in power for the one sample size is greater than the decrease
in power for the other sample size.

If the change in α is small, the change in power is accurately described by
the change in α multiplied by the derivative of the power function. Thus, the
optimal choices for α can be found using the derivatives of the power function,
which we describe below. Note that one can equivalently determine these results
using a general form of the Neyman-Pearson Lemma, but again our goal here is
more practical.

2.2 Some theory

Suppose X1, . . . ,Xn ∼ f(x|θ) and we are testing H0 : θ = θ0 against H1 : θ =
θ1. Suppose further that with probability p we observe a sample size n = n1 and
with probability 1− p we observe a sample size of n = n2 (we address more than
two possible values of n at the end of this section). In addition, suppose for each
n and α there exists a uniformly most powerful (UMP) level α test Tn(α), which
has type I error α and type II error βn(α) (which will depend on f(x|θ), θ0, and
θ1). Note that we have chosen βn(α) to be the type II error function rather than
the power function. This avoids numerous (1 − βn(α)) quantities through the
calculation. Suppose further that if n = n1, we use Tn1(αn1), and if n = n2, we
use Tn2(αn2). Thus, given n, we potentially choose different significance levels.

In our example, our first procedure was to use T5(0.05) and T10(0.05) (a
constant α) while our second procedure was to use T5(0.06) and T10(0.04). We
found the latter procedure to be superior.

Using this information, we can compute the probabilities of type I and type II
error for the entire procedure. The probability of type I error is pαn1 +(1−p)αn2

and the probability of type II error is pβn1(αn1) + (1 − p)βn2(αn2). We define
a pair (αn1 , αn2) to be inadmissible if there exists another pair (α′

n1
, α′

n2
) such

that the probabilities of both errors are equal or reduced, and that at least one
of the errors is strictly reduced. Theorem 2.1 illustrates a condition on (αn1 , αn2)
required for admissibility.
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Figure 1: Example of an Inadmissible Test with Random Sample Sizes. The
solid curves indicate the power of the test as α varies for n = 5 (top solid curve)
and n = 10 (bottom solid curve). Test T uses α = 0.05 when n = 5 and when
n = 10 (marked with circles, with the average also denoted with a circle), while
test T ′ uses α = 0.06 when n = 5 and α = 0.04 when n = 10 (marked with
triangles, with the average also denoted with a triangle). Test T ′ has the same
overall type I error probability, but has greater power.

Theorem 2.1 Let X1, . . . ,Xn ∼ f(x|θ) and suppose we are testing H0 : θ = θ0
against H1 : θ = θ1. Furthermore assume the sample size n is random, where
n = n1 with probability p and n = n2 with probability 1− p. Given an observed
n, we test H0 versus H1 using the UMP level αn test (assumed to exist). Let
βn(αn) be the type II error probability for the UMP level αn test, and let

d1 =
d

dαn1

βn1(αn1) d2 =
d

dαn2

βn2(αn2)

If d1 �= d2, then there exist α′
n1

and α′
n2

such that 1) the overall type I error
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probability of the entire procedure is the same and 2) the overall type II error
probability of the entire procedure is reduced. Specifically

pαn1 + (1 − p)αn2 = pα′
n1

+ (1 − p)α′
n2

pβn1(α
′
n1

) + (1 − p)βn2(α
′
n2

) < pβn1(αn1) + (1 − p)βn2(αn2)

Thus, to avoid this inadmissibility issue (given a constant type I error probability,
one always want the smallest type II error probability), d1 must equal d2.

The proof is in the appendix.
Heuristically, Theorem 2.1 states that if the derivatives of the power functions

are not identical, one can increase α for one value of n and decrease α for the
other value of n such that 1) the size remains identical and 2) the power increases.
You increase α in the direction of the larger derivative.

This may be seen visually in Figure 1. The solid curves in Figure 1 show
β5(α) (the top solid curve) and β10(α) (the bottom solid curve) for α between
0.04 and 0.06. The two tests in the first procedure (constant α) are marked as
labelled small circles on the plot. When the randomness in n is included, the
overall error rates are (0.05, 0.1709) (the midpoint, or average, of the two tests),
which is marked by a circle labelled T on the plot.

Note that the derivative of β5(α) at α = 0.05 is steeper than the derivative of
β10(α) at α = 0.05. Theorem 2.1 therefore implies we can construct a dominating
test by increasing α for n = 5 and decreasing α for n = 10. Essentially we move
“downhill” for n = 5 more than we move “uphill” for n = 10 and thus achieve
better power.

Suppose we choose T5(0.06) (with errors (0.06, 0.2478)) when n = 5 and
T10(0.04) (with errors (0.04, 0.0790)) when n = 10. These tests are marked with
triangles in the plot. Again taking the randomness of n into consideration, this
procedure has overall error rates of (0.05, 0.1634), marked as a triangle labelled
T ′ on the plot. Since the type I error rate is identical to T but the type II error
rate is lower, T ′ dominates T and therefore T is inadmissible. We may do even
better than these α values, as noted in the next section.

Note our initial discussion involves two values of n, but Theorem 2.1 can
be directly applied to arbitrarily many possible sample sizes. Suppose, for any
n ≥ 1, pn provides the probability the sample size will be n. The overall error
probabilities are

Pr(type I) =
∑

n

pnαn Pr(type II) =
∑
n

pnβn(αn)

Suppose one chooses α levels αn for each n but there exist n1 and n2 such that the
α levels do not result in equal derivatives d1 and d2. Then one can increase α for
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one n (n1 or n2) and decrease α for the other n such that the type I error remains
constant (by making the increase and decrease in each α equal) but the type II
error decreases. Essentially one applies Theorem 2.1 to the terms involving n1

and n2 in the error probabilities, keeping the remaining αn constant.
Since this result implies the derivatives of the type II error probabilities must

be equal for any pair of possible sample sizes, the derivatives of the type II error
probabilities must be equal for all possible sample sizes.

3. Hypotheses about Normal Means

3.1 Simple versus simple hypotheses

Let X1, . . . ,Xn ∼ N(µ, σ2), with σ2 known. In this section we consider
testing simple null and alternative hypotheses. Without loss of generality, we
can consider testing H0 : µ = 0 against H1 : µ = 1, since with suitable linear
transformations of the data these hypotheses are equivalent to H0 : µ = µ0 and
H1 : µ = µ1.

Theorem 2.1 states that to acquire admissibility, we must choose the αn se-
quence such that the derivative of the type II error function βn(αn) is equal across
all n. Theorem 2.1 does not state what this common value must be, but once αn

is specified for any single sample size, all the other α values are determined. In
this section we derive how a common derivative translates into rejection regions
for the test based on X̄n and thus how selecting a rejection region for one n
determines the rejection regions for all other n. On a related topic, we illustrate
how this procedure relates to Bayesian hypothesis testing.

We begin by finding the derivative of the type II error function. Using stan-
dard results (with φ being the standard normal pdf and Φ being the standard
normal cdf), the UMP level αn test rejects when X̄/(σ/

√
n) > z∗1−αn

and has
type II error function

βn(αn) = P

(
X̄

σ/
√
n
< z∗1−αn

|µ = 1
)

= 1 − Φ

(
Φ−1(1 − αn) − n1/2

σ

)

Setting the derivative of the type II error function to a constant, we find

C = d/dαn βn(αn) = −φ
(

Φ−1(1 − αn) − n1/2

σ

)
1

φ(Φ−1(1 − αn))

which simplifies to
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−C = exp

{
−1

2

[
n

σ2
− 2n1/2

σ
Φ−1(1 − αn)

]}
.

Solving for αn,

αn = 1 − Φ
(

2σ2 log(−C) + n

2σn1/2

)
. (3.1)

This choice of αn is intuitive. After some simplification, one rejects the null
hypothesis if

X̄n >
σ2 log(−C)

n
+

1
2
. (3.2)

As n tends toward infinity, one rejects the null hypothesis if X̄n is greater than
1/2. One chooses the hypothesis closest to the sample mean.

This sequence of αn values is of course not constant, but decreases exponen-
tially fast. By Mill’s ratio (Read 1985) equation (3.1) implies

αn �
(

2σn1/2

2σ2 log(C) + n

)
exp

{
−1

2

[
2σ2 log(−C) + n

2σn1/2

]2
}
,

so

αn = O
(
n−1/2 exp

{
− n

8σ2

})
.

In fact, this sequence of αn values corresponds exactly to tests based on Bayes
Factors (Kass and Raftery 1995), with C determining the value of the Bayes
Factor required to choose the alternative hypothesis. The Bayes factor against
H0 is

BF =
Pr(X|µ = 1)
Pr(X|µ = 0)

= exp
{ −1

2σ2

∑[
(Xi − 1)2 − (Xi − 0)2

]}

= exp
{−n

2σ2
+

2
2σ2

∑
Xi

}
.

If one chooses to reject the null hypothesis if BF is greater than a reference value
BF0, then one rejects if

exp
{−n

2σ2
+

2
2σ2

∑
Xi

}
> BF0,



82 Scott Berry and Kert Viele

which simplifies to rejecting if

X̄n >
2σ2 lnBF0 + n

2n
=
σ2 lnBF0

n
+

1
2

This is the same rejection region as shown in equation (3.2), with BF0 = −C.
Of course, this sequence of αn values is not unique. However, the central idea

is that specifying α for one value of n specifies the value of α for all other values
of n, otherwise the sequence would allow an inadmissible procedure.

To finish our initial example from Section 2, note the distribution of n is
known (n = 5 with probability 0.5, n = 10 with probability 0.5). If in addition
to admissibility we add the requirement that the overall α level must be 0.05, we
can use Equation (3.1) to determine α for all sample sizes. The added constraint
that the overall α level is 0.05 requires that the chosen αn follow the equation

0.5 α5 + 0.5 α10 = 0.05

Since the only unknown in this equation is the constant C, we may solve for
C numerically and find α5 = 0.0676 and α10 = 0.0324. In general, if pn is the
probability the sample size is n, then setting the overall α level to α∗ introduces
the equation

∑
n

pnαn = α∗

Since all the αn are determined by C, this is a single equation with a single
unknown which yields a unique solution.

3.2 Possible extension to composite alternatives

The extension to composite alternative hypotheses requires use of a weight
function, and is therefore more controversial. Suppose we are testing H0 : µ ≤ 0
versus H1 : µ > 0 using the most powerful level αn test, Tn(αn). In this case there
are uncountably many values in the alternative hypothesis and the probability of
a type II error is different for each value of the alternative. We account for this
by using a weighted type II error function

βn(α) =
∫

H1

βn(αn, z)w(z)dz.

If the weight function w is an indicator function, I[z=a], then this reduces to the
simple-simple case covered in Section 3.1. To compute the sequence αn we again
perform derive conditions under which the derivatives of the type II errors are
equal.
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Theorem 3.1 If w is integrable, continuous at 0, and w(0) > 0, then in order
for d/dαn βn(αn) to remain constant as n increases, αn = O

(
(n lnn)−1/2

)
.

Proof
d

dαn
βn(αn) =

d

dαn

∫ ∞

0
Φ

(
Φ−1(1 − αn) − zn1/2

σ

)
w(z)dz

By exchanging the derivative and the integral,

d

dαn
βn(αn) =

∫ ∞

0
ψ

[
Φ−1(1 − αn) − z

√
n

σ

] [ −1
ψ(Φ−1(1 − αn))

]
w(z)dz.

= −
∫ ∞

0
exp

{
− n

2σ2

[
z − σΦ−1(1 − αn)

n1/2

]2
}

exp

{
n

2σ2

[
σΦ−1(1 − αn)

n1/2

]2
}
w(z)dz

(3.3)
If we let fn be the density of a normal distribution with mean Φ−1(1−αn)σ/n1/2

and variance σ2/n, then Equation (3.3) can be rewritten as

d

dαn
βn(αn) = −σ(2π/n)1/2 exp

{
n

2σ2

[
σΦ−1(1 − αn)

n1/2

]2
}∫ ∞

0
fn(z)w(z)dz.

Since w is continuous and positive at 0, then as n tends to infinity the integral
converges to 1

2w(0). In order for the derivative to remain constant

C = −σ(2π/n)1/2 exp

{
n

2σ2

[
σΦ−1(1 − αn)

n1/2

]2
}

1
2
w(0),

which implies that

αn = 1 − Φ



[
2 log

(
−2Cn1/2

w(0)σ(2π)1/2

)] 1
2


 . (3.4)

Applying Mills’ ratio yields

αn � w(0)σ
−2Cn1/2

[
log
(

4nC2

w(0)2σ22π

)]− 1
2

,

so

αn = O
(
(n log n)−1/2

)
.
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Unlike simple alternative hypotheses, in the composite case the resulting αn

sequence does not exactly agree with testing based on Bayes Factors. However,
the resulting asymptotic rates for αn do agree (and the resulting αn sequence is
certainly not constant, as is typically done in practice). For testing the hypotheses
H0 : µ = 0 against HA : µ �= 0, the Schwarz approximation to the log of the Bayes
factor is

logBF =
−1
2σ2

∑
(Xi − X̄n)2 +

1
2σ2

∑
(Xi − 0)2 − log n

2
+O(1).

This simplifies to

logBF =
n(X̄n)2

2σ2
− log n

2
+O(1)

Choosing a reference value of the Bayes factor for performing the test, BF0, we
reject H0 if

n(X̄n)2

2σ2
− log n

2
> logBF0.

This simplifies to rejecting H0 if

X̄n >

(
σ2 log n+ 2σ2 logBF0

n

)1/2

This rejection region corresponds to

αn = 1 − Φ

[(
n

σ2

σ2 log n+ 2σ2 logBF0

n

) 1
2

]

= 1 − Φ
[(

2 log(BF0n
1/2)

) 1
2

]
. (3.5)

The αn sequence corresponding to this rejection region is not the same as the
αn sequence shown in Equation (3.4). The asymptotic rate is the same, however.
Applying Mill’s ratio to Equation (3.5),

αn � 1
BF0n1/2

[
log(BF0)2n

]−1/2
,

so

αn = O((n lnn)−1/2).

which is the same rate shown for the admissible sequence.
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4. Discussion

Note that the suggestion of decreasing α with n is not equivalent to adopting
the Bayesian paradigm of testing. The change is motivated by creating an ad-
missible overall procedure that has greater experimental power than choosing a
constant α level.

An obvious practical question is what changes might be implemented from
the “standard” procedure of selecting an α level in advance and using that α level
for all sample sizes. Unfortunately, in practice we rarely know the distribution of
the sample size, and thus except for choosing a constant α, we rarely have any
other way of assuring a specified type I error probability. However, this leads us
to the unpleasant situation where we know a better procedure exists. One way of
avoiding this altogether is to choose to test based on Equation (3.1) or Equation
(3.4), where the constant C may be chosen to acquire a specific α for a specific
n.

A decreasing α level results in other intuitive benefits. Many textbooks justify
the procedure of choosing α in advance, instead of specifying the power, under
the reasoning that type I error is more important to avoid. For moderate or
large sample sizes choosing α = 0.05 as the “more important error” results in a
probability of type I error of 5% but a type II error probability that is negligible,
clearly not controlling the “more important error”. For example, consider the
simple hypothesis testing problem of testing H0 : µ = 0 against H1 : µ = 1
(assume for simplicity σ2 = 1). You choose to use α = 0.05 for n = 30, which
rejects for X̄30 > 0.3578 and thus sets lnC = (−4.2646) in Equation (3.1). The
required companion α for n = 100 is 2.3978∗10−6 (rejecting when X̄100 > 0.4573).
This is a very small α, but it still achieves power 1− (2.87 ∗ 10−8), almost 100%.
One can make both type I and type II error probabilities negligible at n = 100,
so why choose α = 0.05 at n = 100 and have such a relatively high probability of
type I error? By decreasing α appropriately, one can acquire “the best of both
worlds”, where the probabilities of both errors are close to 0 for moderate or large
sample sizes.

Appendix

Proof of Theorem 2.1

Suppose d1 > d2 (the proof for the reverse inequality is analogous) and define
d̄ = (d1 + d2)/2. Then, using the definition of derivative, for some constant c > 0
there must exist α′

n1
and α′

n2
such that

α′
n1

=
c(1 − p)

p
+ αn1 α′

n2
= αn2 − c
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βn1(α
′
n1

) < βn1(αn1) − d̄(α′
n1

− αn1) βn2(α
′
n2

) < βn2(αn2) + d̄(αn2 − α′
n2

)

If such points didn’t exist, it would contradict the limit involved in the definition
of derivative. The size of the test using the pair (α′

n1
, α′

n2
) is

pα′
n1

+ (1 − p)α′
n2

= p

[
c(1 − p)

p
+ αn1

]
+ (1 − p)(αn2 − c) = pαn1 + (1 − p)αn2

Thus, the size of the test using the pair (αn1 , αn2) is the same as the size of the
test using the pair (α′

n1
, α′

n2
). In addition, the above equality establishes the

relation

p(α′
n1

− αn1) = (1 − p)(αn2 − α′
n2

)

which in turn establishes

pβn1(α
′
n1

) + (1 − p)βn2(α
′
n2

) < p
[
βn1(αn1) − d̄(α′

n1
− αn1)

]
+ (1 − p)

[
βn2(αn2) + d̄(αn2 − α′

n2
)
]

= pβn1(αn1) + (1 − p)βn2(αn2)

Thus the pair (α′
n1
, α′

n2
) results in a test with smaller probability of type II

error. Since the sizes were identical, this makes the test using the pair (αn1 , αn2)
inadmissible, and thus proves the theorem.
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