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Abstract: Several statistical approaches have been proposed to consider
circumstances under which one universal distribution is not capable of fit-
ting into the whole domain. This paper studies Bayesian detection of mul-
tiple interior epidemic/square waves in the interval domain, featured by
two identical statistical distributions at both ends. We introduce a simple
dimension-matching parameter proposal to implement the sampling-based
posterior inference for special cases where each segmented distribution on a
circle has the same set of regulating parameters. Molecular biology research
reveals that, cancer progression may involve DNA copy number alteration
at genome regions and connection of two biologically inactive chromosome
ends results in a circle holding multiple epidemic/square waves. A slight
modification of a simple novel Bayesian change point identification algo-
rithm, random grafting-pruning Markov chain Monte Carlo (RGPMCMC),
is proposed by adjusting the original change point birth/death symmetric
transition probability with a differ-by-one change point number ratio. The
algorithm performance is studied through simulations with connection to
DNA copy number alteration detection, which promises potential applica-
tion to cancer diagnosis at the genome level.

Key words: Dimension-matching, DNA copy number, Gibbs sampler, ran-
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1. Introduction

Change point models usually incorporate either a single series of observa-
tions where change points are taken as “separations” of neighboring distinct seg-
ments described by individual statistical distributions, or across multiple serials
of signals where change points are taken as physical locations in a continuous
one-dimensional linear space (Liu et al, 2006). From Bayesian viewpoint, the
aforementioned comprehensive statistical model may be described by dimension-
varying parameter θ, which takes the form of θK , K = 1, 2, . . ., where K is
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the dimension and θK is the parameter of dimension K. The prior distribution
π(θ) could be written as

∑
K∈N π(θK |K)π(K), where N represents the positive

integer set, π(K) is the mixture probability for dimension K and π(θK |K) is
the individual prior distribution within the K-dimensional space. For regular-
ity, we assume

∑
K∈N π(K)=1 and

∫
ΘK

π(θK |K)dθK=1 for each K ∈ N . Since
π(K, θK) equals π(K)π(θK |K), the posterior distribution of (K, θK) is

π(K, θK |X) =
f(X | θK)π(θK |K)π(K)∑

K∈N (
∫
ΘK

f(X | θK)π(θK |K)dθK)π(K)
, (1.1)

where the denominator is the normalization constant not needed for posterior
sampling. (K, θK) is a realization of dimension-varying θ, where only the second
component θK is sufficient to represent a possible value of θ and the first compo-
nent K only helps to induce the prior density as well as the posterior density in
(1.1). Sampling-based approaches for change point detection in the literature are
the reversible jump Markov chain Monte Carlo (RJMCMC) by Green (1995), the
continuous time birth/death process MCMC by Stephens (2000), the product par-
tition model based Bayesian algorithm by Loschi, Cruz and Arellano-Valle (2005)
which stems from Yao (1984) and Barry and Hartigan (1992, 1993), non-MCMC
based recursive sampling algorithm by Fearnhead (2005) and others. Denison
et al (2002) observe that, the partitioning and wrapping up the segments leads
to an exponentially increasing computational cost as the discrete model space
grows. From frequentist perspective, Sen and Srivastava (1975) tested whether
the means of independent sequential random variables are the same or there is
a shift after some point; Olshen et al (2004) developed a frequentist sequential
circular binary segmentation (CBS) algorithm to detect multiple interior waves
in a linear domain, which is essentially a circular domain by connecting two ends
with identical statistical properties. Circular domains are broadly existent in the
real world, e.g., subway route, electric current in wire loop exposed under mag-
netic field, remanent magnetization distribution in rock samples (Fisher and Lee,
1986) and certain circular DNA molecules (Stanfield and Lengyel 1979) among
others. Specifically, Mailfert and Vincent-Viry (2001) studied generating uniform
force field in circular domain for energy storage, and Fouts et al (1978) exper-
imentally identified the relative change sites of cleavage sensitivity to enzymes
EcoRI and HindIII along C.acanthocephali circular kDNA molecule. Compared
with linear domain segmentation where the first segment always starts from the
left domain end point and the last segment always ends at the right domain end
point, the circular domain segmentation is to be implemented without explicit
end points. We may cut the circle open at any preselected point on the circle,
expand it into a linear domain and apply the linear segmentation introduced by
Liu et al (2006). However, this may complicate the work on two end segments
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since they almost surely belong to the same segment (distribution) without the
need for redundant regulating parameters. In other words, any preselected ref-
erence point almost surely falls into the interior of certain segment, other than
onto certain segment boundary. The present work proposes a simple Bayesian
version of multiple interior epidemic/square wave (change point) detection, where
each segmented distribution has the same set of regulating parameters. This is
a slight modification of the random grafting-pruning Markov chain Monte Carlo
(RGPMCMC) algorithm introduced by Liu et al (2006). One of the promising
applications is for biomarker identification in modern bioinformatics research.

The organization of this article is as follows: Section 2 introduces the back-
ground of Bayesian dimension-matching and proposes our simple sampling algo-
rithm; Section 3 tests the algorithm by several simulations under diverse config-
urations with application to DNA copy number alteration detection; Section 4
concludes with discussion.

2. Random Grafting-pruning Markov Chain Monte Carlo (RGPM-
CMC)

We introduce a common dimension-varying scenario which we aim to work
on: Several disjoint segments exist on a circle without gaps, each segment has an
individual set of observations regulated by segment-specific means and variances,
and the interested observations are indexed by the locations along the circle. Our
objective is to identify the segment boundaries as well as the regulating means
and variances. We use a graphical model to demonstrate the data and our pro-
posed algorithm. For certain K ∈ N and a circle with circumference L, there are
K change points along it to form K segments Ck, k = 1, . . . ,K. After preselect-
ing an arbitrary reference origin on the circle, say O, the clockwise distance away
from O to any point on the circle is taken as this point’s location such that any
location is between 0 and circle circumference L, and by this way we make all
locations comparable in terms of magnitude. For each k ∈ [1,K], Ck spans from
location tk to tk+1 and holds nk data point pairs (xkj, ykj), j = 1, . . . , nk, where
xkj is the location along the circle such that tk ≤ xkj ≤ tk+1, i.e., xkj ∈ Ck,
1 ≤ j ≤ nk, and ykj is our interested measurement indexed by location xkj,
which can be visualized as a centrifugal/zero/centripetal distance away from the
circle boundary if ykj is positive/zero/negative. tK+1 equals t1 for notational
convenience. Note that, the reference origin is only used to assign change point
location vector T̃K = (t1, t2, . . . , tK) given any K ∈ N and the fulfillment of the
sampling algorithm does not require a specific origin or circle circumference scale
(the unit of L), although the prior density may depend on L value (details later
in parameter sampling process). Assuming a normal distribution N(µk, σ

2
k) for

all y’s (directional distances away from circle boundary) whose locations (x’s) are
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within Ck , k = 1, . . . ,K and K ∈ N , we are interested in estimating: the most
likely change point number K, change point location (segment starting location)
vector T̃K = (t1, t2, . . . , tK) (segmenting x’s) as well as parameter sets (µk, σ

2
k)

for these K normal distributions. As for change point birth/death, we propose a
comprehensive stochastic parameter sampling process where four move types are
considered to achieve the desired posterior sampling from (1.1). The motivation
is described as follows: without change point birth/death, we are working with or-
dinary posterior sampling under same dimension, where some routine procedure
follows, say applying conjugate normal or inverse-gamma posterior distributions
to update µk and σ2

k, k = 1, . . . ,K, or Metropolis-Hastings algorithm for change
point location T̃K updating, the other necessary procedure is to realize change
point birth/death, which results in dimension-changing. Once these tasks are
fulfilled, a dimension-matching parameter sampling process will be mobilized.
Specifically, we use the same notations for these four move types (H, P , +, −)
as suggested by Green (1995), where “H” represents the proposal for all those
regulating parameters (µk, σ2

k, k = 1, . . . ,K) other than change point location
T̃K ; “P” represents change point location T̃K proposal without change point
birth/death; “+” represents change point birth proposal (new t∗, µ∗ and σ2∗);
“−” represents change point death proposal (deleting certain t∗, µ∗ and σ2∗). We
specify (H, P , +, −) probabilities to be (π(H), π(P ), π(+), π(−)) with summa-
tion of one and give transdimensional change relatively higher probabilities, say
0.9 (details follow in the parameter sampling process). For convenience, we apply
N-Inv-χ2(µ0,σ2

0/κ0;ν0,σ2
0) conjugate prior (Gelman et al, 1995) to parameter pair

(µ,σ2), where µ |σ2 ∼ N(µ0,σ2/κ0) and σ2 ∼ Inv-χ2(ν0,σ2
0), corresponding to the

following joint prior density

π(µ, σ2) ∝ σ−1(σ2)−(ν0/2+1) exp(− 1
2σ2

[ν0σ
2
0 + κ0(µ0 − µ)2]). (2.1)

We let y = (y1, y2, . . . , yn) represent the observed independent random variables
coming from N(µ, σ2) with density function

∏n
i=1

1√
2πσ

exp(− 1
2σ2 (yi − µ)2). The

joint posterior density is thus

π(µ, σ2 | y) ∝ σ−1(σ2)−(ν0/2+1) exp(− 1
2σ2

[ν0σ
2
0 + κ0(µ − µ0)2])

× (σ2)−n/2 exp(− 1
2σ2

[(n − 1)s2 + n(ȳ − µ)2])

∼ N-Inv-χ2(µn, σ2
n/κn; νn, σ2

n),

where, s2 and ȳ are the sample variance and sample mean of y respectively. It
can be shown that,
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µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ

κn = κ0 + n

νn = ν0 + n

νnσ2
n = ν0σ

2
0 + (n − 1)s2 +

κ0n

κ0 + n
(ȳ − µ0)2.

It is known that the marginal posterior distribution of σ2 is scaled Inv-χ2 with

σ2 | y ∼ Inv-χ2(νn, σ2
n) (2.2)

and the conditional posterior distribution of µ given σ2 is

µ |σ2, y ∼ N(µn, σ2/κn) = N
(

κ0µ0 + nȳ

κ0 + n
,

σ2

κ0 + n

)
. (2.3)

Thus the joint posterior sampling of (µ,σ2) within each segment is to be imple-
mented through (2.2) followed by (2.3). Let µ̃K and σ̃2

K represent all (µk, σ2
k)

pairs, X and Y represent all (xkj,ykj) pairs, 1 ≤ j ≤ nk, 1 ≤ k ≤ K, we obtain
the following likelihood function for the model described at the beginning of this
section

f(X ,Y |K, T̃K , µ̃K , σ̃2
K) =

K∏
k=1

∏
1≤j≤nk

1√
2πσk

exp(− 1
2σ2

(ykj − µk)2), (2.4)

and the posterior distribution is simply

f(K, T̃K , µ̃K , σ̃2
K |X ,Y )

∝ f(X ,Y |K, T̃K , µ̃K , σ̃2
K)π(K)π(T̃K |K)[

K∏
k=1

π(µk, σ
2
k)]

= π(K)π(T̃K |K)

×
K∏

k=1

(
∏

1≤j≤nk

1√
2πσk

exp(− 1
2σ2

k

(ykj − µk)2))π(µk, σ2
k), (2.5)

where, locations X only help to construct the likelihood function of Y and
the posterior distribution only incorporates Y and our interested parameters.
Note that, the (T̃K ,µ̃K ,σ̃2

K) is the θK in (1.1) for each K ∈ N . If we assume
π(K) follows a truncated Poisson or uniform discrete prior between two positive
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integers, then K belongs to a subset of N a priori and each π(K) in (1.1) is
zero for those K’s which are not within this subset; we assume π(µk, σ

2
k) follows

joint conjugate prior (2.1). As suggested by Green (1995), to avoid too short
segments we assume π(T̃K |K) is the distribution of even order statistics from
uniform random variables along a circle with density

π(T̃K |K) =
(2K − 1)!

L2K

K∏
k=1

(tk+1 − tk),

where t1 = tK+1.

Proposition 1 On a circle with circumference L, the K dimensional (m+1)-th
ordered uniform random variables (t1, t2, . . ., tK)=(X(0), X(m+1), X(2m+2), . . .,
X(Km+K)) has the following distribution density

π(t1, t2, . . . , tK) =
(K(m + 1) − 1)!

LK(m+1)

K∏
k=1

(tk+1 − tk),

where t1 = tK+1.

Proof.

Given random variable indexes and equal number (m) of random variables
between every (m+1)-th change point,

Pr(T1 ∈ (t1, t1 + ∆1), T2 ∈ (t2, t2 + ∆2), . . . , TK ∈ (tK , tK + ∆K))

=
K∏

k=1

[(
∆k

L
)(

tk+1 − tk
L

)m],

the final result is observed by letting ∆k (k = 1, 2, . . . ,K) approaching zero and
confounding the K random variable indexes for these (m+1)-th ordered random
variables by exhaustive permutation.

Parameter Sampling Process

1). First we choose one of these four move types based on move type probabil-
ities (π(H), π(P ), π(+), π(−)), where π(+) is taken to be equal to π(−),
say 0.45.

2). For “H” move type, we refer to the conjugate posterior distributions from
equations (2.2) and (2.3). ȳk = 1

nk

∑
1≤j≤nk

ykj and s2
k = 1

nk−1

∑
1≤j≤nk

(ykj−



DNA Copy Number Alteration Detection 59

ȳk)2. σ2
k is to be sampled from its marginal posterior distribution Inv-χ2(ν ′

k,
η′k), where

ν ′
k = ν0 + nk and η′k =

σ2
0ν0

νn
+

(nk − 1)s2
k

νn
+

κ0nk

νn(κ0 + nk)
(ȳk − µ0)2,

then µk is to be sampled from its posterior conditional distribution N(ζk,φ2
k)

given σ2
k, where ζk = (κ0µ0 + nkȳk)/(κ0 + nk) and φ2

k = σ2
k/(κ0 + nk).

3). For “P” move type, we randomly sample a change point separating two
neighboring segments, say t∗, with equal probability 1/Kold, and a loca-
tion is uniformly randomly selected within these two fused segments for a
new substituting candidate change point to replace the current separation
point t∗. The other parameters associated with this change point mutation
proposal is kept unchanged. This is a symmetric transition (Proposition
3) leading to following acceptance probability in the Metropolis-Hastings
algorithm within Gibbs sampler

min

{
1,

f(K, T̃K , µ̃K , σ̃K [after ] |Y )
f(K, T̃K , µ̃K , σ̃K [before CPMP] |Y )

}
,

where CPMP stands for “change point mutation proposal” for short.

4). For “+” move type, if Kold = Kmax, we go to 1) since the maximum
threshold is reached; if Kold < Kmax, we randomly sample one of the
Kold segments formed by current Kold change points with equal proba-
bility 1/Kold, say Cj. Within this sampled segment, we uniformly sample
a candidate change point birth at location t∗, a new segment is thus em-
bedded into current segments Cj and Cj+1, then we propose non-change
point parameters accompanying this change point location candidate by
µ∗ = log( U1

1−U1
)(µj + µj+1)/2 and σ2∗ = ( U2

1−U2
)σjσj+1, where U1 and U2

∼ U [0, 1] independently. Based on the observations in Liu et al (2006),
the segment birth proposal involved in “+” move type, along with the
segment death proposal in the following “−” move type, constructs a sym-
metric transition in the one-dimensioanl infinitesimal space which holds
the potential change points. Proposition 2 observes that, the acceptance
probability in the Metropolis-Hastings algorithm within Gibbs sampler for
circular domain is simply

min

{
1,

f(K, T̃K , µ̃K , σ̃K [after CPDP] |Y )
f(K, T̃K , µ̃K , σ̃K [before CPDP] |Y )

× Kold

Kold + 1

}
,

where CPDP stands for “change point death proposal” for short.
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5). For “−” move type, if Kold = Kmin, we go to 1) since the minimum thresh-
old is reached; if Kold > Kmin, we randomly sample one from current Kold

change points with equal probability 1/Kold, say at location t∗, to delete.
Then we simply delete the associated µ∗ and σ2∗ for change point at t∗, and
the likelihood function is to be computed accordingly after deletion. The
acceptance probability in the Metropolis-Hastings algorithm within Gibbs
sampler is simply (Proposition 2)

min

{
1,

f(K, T̃K , µ̃K , σ̃K [after CPDP] |Y )
f(K, T̃K , µ̃K , σ̃K [before CPDP] |Y )

× Kold

Kold − 1

}
.

We may propose a more general framework:

� Change point location birth: after selecting segment Cj to work on, we let

t∗ = gt∗(U1; tj, tj+1) ∈ (tj, tj+1),

where gt∗(U1; tj, tj+1) is a one-to-one mapping from random variable U1

to change point location t∗ given allowable domain (tj , tj+1). We take
gt∗(U1; tj, tj+1) to be (tj + tj+1g1(U1))/(1 + g1(U1)), i.e., (t∗ − tj)/(tj+1 −
t∗)=g1(U1), where g1(·) is any monotonic function with domain (0,1) and
range (0,∞), and U1 ∼ U [0, 1]. It can be seen that t∗ is a monotonically
increasing function of U1. We simply use g1(u) = u/(1 − u), thus t∗ =
tj + (tj+1 − tj)U1, a uniform random variable ∈(tj, tj+1);

� Lifted normal distribution mean µ∗: we proceed by letting

µ∗ = gµ∗(U2;µj, µj+1),

where gµ∗(U2;µj , µj+1) is a one-to-one mapping from random variable U2 to
lifted normal mean µ∗ given neighboring µj and µj+1. We take gµ∗(U2;µj , µj+1)
to be g2(U2)(µj + µj+1)/2, where g2(·) is any monotonic function with do-
main (0,1) and range (-∞,+∞), and U2 ∼U [0, 1]. It can be seen that
µ∗ is a monotonically increasing function of U2. We simply use g2(u) =
log(u/(1 − u)) in our proposal;

� Lifted normal distribution variation σ∗: we proceed by letting

σ2∗ = gσ2∗(U3;σ2
j , σ

2
j+1),
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where gσ2∗(U3;σ2
j , σ

2
j+1) is a one-to-one mapping from random variable U3 to

lifted normal variance σ2∗ given current neighboring σ2
j and σ2

j+1. We take
gσ2∗(U3;σ2

j , σ
2
j+1) to be (σ2

j σ
2
j+1)

1/2g3(U3), i.e., (σ∗/σj)/(σj+1/σ∗)=g3(U3),
where g3(·) is any monotonic function with domain (0,1) and range (0,∞),
and U3 ∼ U [0, 1]. It can be seen that σ2∗ is a monotonically increasing func-
tion of U3. We simply use g3(u) = u/(1−u), thus σ2∗ = (σ2

j σ
2
j+1)

1/2U3/(1−
U3).

We first briefly describe a simple case where only change point locations are
considered. Considering measure based probability and assuming segment Cj is
randomly selected for change point (with index ∗) birth proposal, i.e., the new
candidate segment starting location t∗ ∈(tj ,tj+1)=Cj , and A is any Borel mea-
surable set within segment Cj . The change point (segment) birth proposal prob-
ability given current Kold segments is the product of 1/Kold and A/(segment
Cj length), where the former one is the probability of selecting segment Cj out of
current Kold ones, the latter one is the probability of landing in set A conditional
on segment Cj , i.e.,

Proposition 2 Under stochastic “+/−” move type in the parameter sampling
process, birth/death proposal has transition probability only proportional to the
ratio of two differ-by-one segment numbers.

1
Kold

× A

segment Cj length
.

Suppose we have Kold+1 available segments after presumed birth proposal and
consider the exact reverse (change point/segment death) transition probability by
integrating the current state (preceding t∗) over A within segment Cj . The change
point (segment) death proposal probability given current Kold+1 segments is
the product of A/(segment Cj length) and 1/(Kold+1), where the former one is
the natural probability measure of Borel set A conditional on segment Cj , the
latter one is the probability of selecting change point starting at t∗ out of current
Kold+1 ones, i.e.,

A

segment Cj length
× 1

Kold + 1
.

The proof for only change point birth/death ends. We now describe the statis-
tical properties for the comprehensive parameter sampling process arising from
four move types (H, P , +, −). The segment (change point) birth/death proposal
process takes account of current change point density information, e.g., dense
change points attract more attention in view of the fact that, we work on seg-
ment indexes with equal weights, other than segment length-based selection. We
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essentially map the individual parameter set (t∗, µ∗, σ2∗) back into the generating
spaces of variables U1, U2 and U3. See “+” move type and the general parameter
proposal framework after parameter sampling process. The probability is only in
the sense of latter spaces. The product probability of certain measurable balls
around the observed parameter set

B(t∗) × B(µ∗) × B(σ2
∗), (2.6)

is corresponding to

B′(U1) × B′(U2) × B′(U3), (2.7)

where the B′(·)s are simply the mapped generating sets for observed parameter
sets B(·)s. For change point birth, 1/Kold is the probability of randomly selecting
a segment ∗ out of current Kold ones, out of which a candidate change point grows
up at randomly chosen location, say t∗, in terms of Borel set (2.6) specified by as-
sociated parameter set (t∗,µ∗,σ2∗). We essentially work on two parts of interested
parameters: the segment index ∗ (I) along with the describing set (t∗,µ∗,σ2∗) (D).
The “+” move type realizes “I ”and “D” parts sequentially while independently.
We may imagine trying proposing the reverse process (change point death) by
tracing the presumed change point birth proposal: a current “I”, say ∗, is ran-
domly selected with equal probability 1/Kold with available describing parameter
set “D”, say (t∗,µ∗,σ2∗). The presumed birth proposal for this very change point
is to be replayed independently (we are looking at the combined two segments as
one possible original segment for change point birth location proposal within this
selected segment, see the move type “+”) within this selected segment. Any non-
exact overlap with the original change point describing “D” parameters (within
the same segment) represents an ineffective change point death proposal (no pro-
posal for Metropolis-Hastings algorithm) and only an exact overlap represents
an effective change point death proposal, with an obvious identical probability
as random change point birth within this very segment. This equally proba-
ble reverse events within the same segment (original single segment for change
point birth proposal or two joined neighboring segments for change point death
proposal) simply quantitatively verifies our within-segment symmetric transition
process between change point birth and death in a probabilistic manner. The
ineffective change point death proposal (no proposal) leads to proposal-freezing
Metropolis-Hasting algorithm based Markov chain, which is probabilistically use-
less for Metropolis-Hastings algorithm based inference. Conditioning on choos-
ing one change point out of current K ones separating two neighboring segments
(combined segments) on the circle, we imagine equal E-partition on all such com-
bined segment pairs. Due to the aforementioned change point death proposal by
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effective exact overlap with a presumed change point birth proposal, on the cir-
cular domain the probability of realizing a specific birth for this change point is
π(+)( 1

K−1 )( 1
E ), the probability of realizing a specific death for this change point

is π(−)( 1
K )( 1

E ), the probability of no action (proposal freezing) is π(−)( 1
K )(E−1

E ).
The aforementioned parameter proposal process statistically discards unnecessary
proposal freezing for efficient Markov chain based inference. Random grafting-
pruning Markov chain Monte Carlo (RGPMCMC) arises from the change point
birth/death proposal which acts like randomly grafting or pruning a plant: after a
random selection of the branch interval or branch, change point birth/death pro-
posal physically takes place along the plant stem (circle), the set of sub-branches,
i.e., the describing parameter set (including change point birth/segment starting
location and regulating parameters for individual normal distribution), are lifted
independently for change point birth proposal, or deleted for change point death
proposal. The branch (segment) birth and death proposal should be committed
alternatively in a probabilistic manner. If we happen to choose to randomly delete
one branch, then we may randomly add this very branch in the same place in the
preceding birth proposal; on the other hand, if we happen to choose to randomly
add one branch, then we may randomly delete this very branch in the succeed-
ing death proposal, the equal probable branch birth/death is realized physically
(under differ-by-one branch number ratio adjustment). The information balance
could also be intuitively justified in this way: among well established segments,
it is equally difficult to add another segment into any existent segment, or to fuse
any two neighboring segments which are already well established. The grafting
step (move type “+”) is quite noninformative by essentially requiring randomly
harvesting a branch from the garden, which could be done by designing any
convenient one-to-one mapping proposal functions ((2.6) and (2.7)); the pruning
step (move type “−”) is also trivial by just randomly deleting one branch. We
simplifies the acceptance rate in Metropolis-Hastings algorithm as only a local
adjustment, e.g., for segment birth we only reassign the y’s in one original seg-
ment into two split segments (a new segment starting location comes into one
of current segments), incorporate an additional prior set for new regulating pa-
rameters (t∗,µ∗ and σ2∗) and reconstruct the likelihood function due to this new
segment, and vice versa for segment death.

Proposition 3 Random single change point location mutation proposal within
combined segments as described in move type “P” is a symmetric transition.

Proof.

Assume two non-zero measurable sets dt and dt′ are located within the two
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fused segments with length C, we have

P (dt → dt′) =
∫

dt
P (t → dt′) =

dt′

C

dt

C
=

dt

C

dt′

C
=

∫
dt′

P (t′ → dt) = P (dt′ → dt).

The “+/−” move type realizes one type of symmetric transition (equally probable
change point birth and death) after segment number ratio adjustment; “P” move
type realizes another type of symmetric transition (equally probable location
selection within two combined segments).

Proposition 4 This Markov chain is irreducible, aperiodic.

Interpretation. In view of detailed balance proposal, there is a positive probability
that the chain lies in any small neighborhood after one sampling iteration to meet
the aperiodicity; the chain can move from any value to any other value in steps
of one at a time to establish the irreducibility.

3. Simulation Study

We use the same notations from Section 2: L is the circle circumference, K
is the number of change points along it, the K segments are Ck, k = 1, . . . ,K.
The reference location origin is specified at an arbitrary point with nominal zero
value. Segment Ck ([tk, tk+1]) holds nk data pairs (xkj, ykj), j = 1, . . . , nk, where
xkj is the clockwise location along the circle from certain reference origin and ykj

is the measurement (represented by centrifugal/centripetal distance away from
circle boundary). All y’s in segment Ck follow a normal distribution N(µk, σ

2
k),

k = 1, . . . ,K. We are interested in: change point number K, change point
location vector T̃K = (t1, t2, . . . , tK) and parameter sets (µk, σ

2
k), k = 1, . . . ,K

for these K normal distributions. We take (π(H)=0.05, π(P )=0.05, π(+)=0.45,
π(−)=0.45) to be four move type probabilities. The prior for segment number
is K ∼ U [1, 100], and 51 is taken as starting change point number for iteration
and equal circular 51-partition as initial change points. We assign L=10 for our
simulation and computations. The results are given in Figures 1 and 2.
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Figure 1: Simulation profiles and estimated profiles. (constructed from segment
partition, segment means and segment variations).
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Figure 2: Posterior segment number distribution and iteration
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Simulation 1.

� True parameters: K = 10, nk = 100, tk = (k − 1) L
K , µk = k, (k =

1, . . . , 6) and µk = 12 − k, (k = 7, . . . ,K), σk = 0.30;

� Priors: κ0 = 1.0, ν0 = 6.0, σ2
0 = 1

3 , µ0 = 3.0;

� Observations: The change points are completely identified and the
estimation profile is consistent with the simulation profile.

Simulation 2.

� True parameters: K = 5, nk = 50, tk = (k − 1) L
K , µk = k, (k =

1, . . . ,K), σk = 0.20;

� Priors: κ0 = 1.0, ν0 = 6.0, σ2
0 = 1

3 , µ0 = 3.0;

� Observations: Under smaller nk the change points are completely iden-
tified and the estimation profile is wider than the simulation profile,
indicating potential sensitivity to dispersion prior in this specific sce-
nario.

Simulation 3.

� True parameters: K = 15, nk = 20, tk = (k − 1) L
K , µk = sin(2k), (k =

1, . . . ,K), σk = 0.15;

� Priors: κ0 = 1.0, ν0 = 6.0, σ2
0 = 1

3 , µ0 = 0.5;

� Observations: Under smaller µk variation, nk and σk, the change point
number follows a posterior distribution with multiple non-ignorable
probabilities around change point number 11 and the estimated profile
is wider than the simulation profile indicating potential sensitivity to
dispersion prior in this specific scenario.

Simulation 4.

� True parameters: K = 15, nk = 100, tk = (k−1) L
K , µk = sin(2k), (k =

1, . . . ,K), σk = 0.50;

� Priors: κ0 = 1.0, ν0 = 6.0, σ2
0 = 1

3 , µ0 = 0.5;

� Observations: Under larger nk and larger σk (in contrast to simulation
3) 14 out of 15 change points are identified and the estimation profile is
wider than the simulation profile, another minor posterior change point
number is 15 representing complete recovery with a smaller probability.

We find that, when the segment-specific normal means are substantially dif-
ferent from neighbors (simulations 1 and 2), or segment-specific normal variations
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are small, the sampler recovers segmentation information very well; when more
data points fall into each segment (simulations 1 and 4), the sampler will also
identify segmentation satisfactorily. Intuitively, these two effects make the change
points more visually clustered. We hypothesize that, the variation effect domi-
nates the number of data points effect by referring to normal likelihood function
(square effect vs. linear effect), and this was verified in Olshen et al (2004).
The sampler locates change point number within seconds in an efficient manner
and intensive local mutation pinpoints accurate change point locations around
segment boundaries.

At quantitative biology research, except for enzyme sensitivity change region
detection in circular kDNA molecule (Fouts et al, 1978), we now highlight an
important application of our proposed algorithm to modern bioinformatics with
connection to disease diagnostics at the genome level. The comparative genomic
hybridization (CGH) introduced by Kallioniemi et al (1992) offers a DNA se-
quence copy number map along the entire genome. The test DNA and normal
reference DNA are differentially labeled and hybridized simultaneously to nor-
mal chromosome spreads. Regions of gain or loss of DNA sequences, are seen as
changes in the ratio of the two color intensities and change regions were identified
for tumor DNA as disease biomarkers. Lucito et al (2003) developed a CGH-
based large-scale ROMA (representational oligonucleotide microarray analysis)
for genomic aberration detection in cancer and normal humans. They hybridized
designed oligonucleotide probes from human genome sequence with “represen-
tations” from cancer and normal cells, and detected genome regions with al-
tered copy number. ROMA could identify variation between cancer and normal
genomes for potential genome-wide disease marker discovery. Some statistical
tools were developed recently in the frequentist framework: Huang et al (2005)
applied penalized least square estimate with consideration of spatial dependence,
Lai and Zhao (2005) applied bootstrapped one-sample t-test and the false dis-
covery rate control to identify chromosomal alteration regions, and Olshen et
al (2004) developed sequential circular binary segmentation (CBS) algorithm to
identify DNA copy number alterations among others. These algorithms need
tuning parameters in order to obtain biologically consistent results. We apply
the same simulation study from Section 5 in Olshen et al (2004) to test the per-
formance of our Bayesian algorithm, where the prior specification takes the role
of tuning parameters required by frequentist methods. The data are simulated
based on the CBS fit to chromosome 11 of a real ROMA (Lucito et al, 2003)
breast cancer experiment. There are 497 DNA copy number markers in chromo-
some 11 with six change points estimated at 137, 224, 241, 298, 307, 331 and the
average log-ratios of intensities within segments are given in the following table.
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Segment Ck [1,137] [138,224] [225,241] [242,298]

Mean f(k) -0.18 0.08 1.07 -0.53

Segment Ck [299,307] [308,331] [332,497]

Mean f(k) 0.16 -0.69 -0.16

In view of all segmentation means and the close mean values at two ends, it is
reasonable to form a circle by connecting two ends into a joint segment, and this
assumption is not casual data manipulation since it is biologically reasonable to
assume that, DNA copy number changes are owing to long term evolution tak-
ing place in sporadic locations between two inactive chromosome ends. Massive
biological data sets indicate this pattern. The data are generated using the model
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Figure 3: DNA copy number segment estimation (σ = 0.1). (From top to
bottom: no trend, short period and long period; the left panels are simulation
set-ups and the right panels are posterior estimations).
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Figure 4: DNA copy number segment estimation (σ = 0.2). (From top to
bottom: no trend, short period and long period; the left panels are simulation
set-ups and the right panels are posterior estimations).

ykj = µk + εkj (ykj ∈ segment k), where µk is the mean and ε’s are the errors
independently distributed as N(0,σ2). A local trend component was incorporated
into the mean for robustness study by µk = f(k) + 0.25σsin(aπk). The normal
distribution variation σ is set to be 0.1 or 0.2, and the trend parameter a was
set to be 0 (no trend), 0.01 (short period) or 0.025 (long period). For Gibbs
sampling, the circle length L is 497 (as a continuous value) and the reference
circle origin is fixed between marker 1 and marker 497 after end connection.
We assign four move type probabilities: π(H)=0.05, π(P )=0.05, π(+)=0.45,
π(−)=0.45, π(K) ∝ U[1,100], κ0 = 1, ν0 = 12, σ2

0=1/12 and µ0=0.0 (refer to
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(2.1)). The starting change point number is K=(1+100)/2=51, equal circular
51-partition creates initial change point (segment) locations, the burn-in is 5,000
and the thinning is 2,000. The results are given in Figures 3 (σ=0.1) and 4
(σ=0.2), where three rows of panels from top to bottom are: no trend, short
period and long period respectively. We find that, when the noise has a smaller
dispersion (σ=0.1, Figure 3), it recovers all of the original change points, while
when the noise has a larger dispersion (σ=0.2, Figure 4), it recovers 5 out of
original 6 change points, where certain smaller segments may be combined into
one segment. The trend period is not crucial for algorithm performance and equal
tails are computationally detected by observing no change point between 1 and
491 circular location (the reference origin on the circle).

4. Discussion

For multiple distributions with same set of regulating parameters (segment
starting location t, normal mean µ, and normal variance σ2, for example) in the
circular domain, we make use of an interesting probabilistic process which could
be taken as a symmetric transition adjusted by the ratio of differ-by-one segment
numbers to implement the posterior parameter sampling. While the algorithm
introduced here enjoys substantial simplicity under this special circumstance, we
would like to emphasize that, the prior elicitation is crucial for reliable posterior
statistical inference, since highly informative and reasonable prior specifications
will improve the segment pattern estimation. We anticipate that, the general
while simple change point detection by means of Bayesian algorithm developed
here will help researchers with biomarker identification within the bioinformatics
community.
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