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Abstract: Risks for many chronic diseases (coronary heart disease, can-
cer, mental illness, diabetes, asthma, etc) are strongly linked both to socio-
economic and ethnic group and so prevalence varies considerably between
areas. Variations in prevalence are important in assessing health care needs
and in comparing health care provision (e.g. of surgical intervention rates)
to health need. This paper focuses on estimating prevalence of coronary
heart disease and uses a Bayesian approach to synthesise information of dif-
ferent types to make indirect prevalence estimates for geographic units where
prevalence data are not otherwise available. One source is information on
prevalence risk gradients from national health survey data; such data typ-
ically provide only regional identifiers (for confidentiality reasons) and so
gradients by age, sex, ethnicity, broad region, and socio-economic status
may be obtained by regression methods. Often a series of health surveys
is available and one may consider pooling strength over surveys by using
information on prevalence gradients from earlier surveys (e.g. via a power
prior approach). The second source of information is population totals by
age, sex, ethnicity, etc from censuses or intercensal population estimates, to
which survey based prevalence rates are applied. The other potential data
source is information on area mortality, since for heart disease and some
other major chronic diseases there is a positive correlation over areas be-
tween prevalence of disease and mortality from that disease. A case study
considers the development of estimates of coronary heart disease prevalence
in 354 English areas using (a) data from the Health Surveys for England for
2003 and 1999 (b) population data from the 2001 UK Census, and (c) area
mortality data for 2003.

Key words: Coronary heart disease, deprivation, ethnicity, power prior,
prevalence. mortality, small area.
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1. Introduction: Need for Spatially Disaggregated Prevalence Esti-
mates

Often small area prevalence data for major diseases are not collected, or if
collected are subject to measurement and administrative biases. However, many
countries have regular national health surveys which provide an indication on
national trends in prevalence. Such surveys typically provide only broad regional
identifiers, whereas health planners require estimates at a much more spatially
disaggregated scale, and for those strata (age, sex, ethnicity) by which area popu-
lations are recorded — in censuses or by intercensal population estimates. Addi-
tionally the estimates should take account of the impact of socioeconomic factors
on chronic disease prevalence. In geographic applications, measures of the so-
cioeconomic status of an area’s residents include what are known as deprivation
indices, where deprivation refers to hardship due to low income, poor housing,
high rates of unemployment, etc. In the UK there have been significant develop-
ments in the methodology for measuring neighbourhood deprivation (e.g. Noble
et al., 2000; Bailey et al., 2003), especially in small neighbourhoods of around
1500-2000 people, there being around 32500 such neighbourhoods in England
(ONS, 2006).

This paper describes a Bayesian methodology for obtaining prevalence esti-
mates for chronic disease for 354 English areas, with a particular focus on heart
disease. The first source of information is provided by national health surveys.
In many countries, a series of health surveys (often annual) is available — among
many examples are the Swedish National Public Health Survey, the Italian Na-
tional Health Survey, and the Taiwan National Health Interview Survey — and
one may consider pooling strength over surveys. The analysis here uses the 2003
Health Survey for England, with an earlier 1999 survey providing historical data
under a power prior approach (Chen et al., 2000). Except for neighbourhood
deprivation category (the quintile rank among 32500 neighbourhoods, with no
further identifying information), the spatial scale in the two surveys used con-
sists of nine government regions (the North East of England, the North West,
Yorkshire & Humberside, the East Midlands, the West Midlands, Eastern Eng-
land, London, South East England, and South West England) — see Table 1 for
a summary of regional differences. A binomial regression is used to model survey
evidence on gradients by age, sex, ethnicity, broad region, and neighbourhoood
deprivation.

The second source of information is population totals by age, sex, ethnicity,
etc from censuses or intercensal population estimates, to which survey based
prevalence rates are to be applied. The populations used here are specific for
age, sex and ethnic group, and are drawn from the UK 2001 Census - intercensal
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population estimates by age, sex and ethnicity are not made in the UK, though
they are in other countries such as the US (Smith, 1998).

The third source of relevant information is mortality data which typically
(unlike prevalence) are well recorded at a disaggregated spatial level. Evidence is
presented of a positive correlation between heart disease prevalence and mortality,
which points to the benefit of adjusting survey based estimates of area prevalence
to take account of proxy information on prevalence provided by mortality data
over the 354 areas. When mortality is only infrequently linked to a particular
type of morbidity (e.g. asthma, psychiatric illness), other sources of area data can
be used as proxies for morbidity — examples are hospital admissions or referrals
to community care.

The methodology therefore provides an approach to indirect prevalence esti-
mation, applying survey based gradients for heart disease over those stratifiers
by which populations for areas are available (e.g. age, sex, ethnic group), while
also taking account of neighbourhood deprivation, and of proxy information on
prevalence (from mortality) at the required area level. The methodology adopts
a fully Bayesian strategy, with prior densities on parameters updated via the
likelihood of the observed data. Iterative Monte Carlo Markov Chain techniques
(Gelfand and Smith, 1990) are used to estimate models, as implemented in the
WINBUGS program (Spiegelhalter et al., 2003).

The following four sections outline the survey based component of the preva-
lence estimation procedure. They are followed by a section considering how area
mortality and prevalence are jointly modelled so that prevalence estimates can
incorporate information on spatial mortality patterns. The final section considers
possible developments to the methodology.

2. Survey Model: Populations, Survey Variables and Choice of Bino-
mial Link

To apply survey evidence on disease gradients to estimate prevalence in area
populations requires equivalent variables to be available in both Census popu-
lations (or in intercensal population estimates) and for respondents in national
health surveys. Many countries provide population data by age, sex, and eth-
nicity; for example, the UK 2001 Census includes a tabulation of populations by
age, sex and ethnic group.

It is also typically necessary to take account of socioeconomic gradients in
disease prevalence (e.g. gradients by individual occupational status or by the
deprivation level of the neighbourhood in which individuals live). This suggests
that ideally one would require populations by age, sex, ethnicity and occupation,
or populations by age, sex, ethnicity and neighbourhood deprivation level. How-
ever, in many countries populations are not available to this level of detail. For
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example, the UK Census does not provide a four way disaggregation by age, sex,
ethnicity and neighbourhood deprivation. In these circumstances, it is proposed
here that prevalence estimates by age, sex and ethnicity are scaled by a survey
based prevalence gradient over deprivation levels.

A binomial regression is applied to data from the 2003 and 1999 Health Sur-
veys for England to provide model based rates of heart disease prevalence. Survey
subjects are classed as having coronary disease if they reported (in the previous
year) having angina or a heart attack, confirmed by a doctor. The survey cate-
gorisations relevant to estimating area prevalence are age (a = 1, . . . , 7, namely
ages 0-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85+), sex (s = 1, 2; namely male,
female), ethnicity (e = 1, . . . , 4; namely white, black, south Asian, all other eth-
nic groups), and regions r = 1, . . . , 9 as in the columns of Table 1. Additionally
the 2003 survey includes neighbourhood deprivation quintile (d = 1, . . . , 5, with
d = 5 for most deprived). Respondents are aggregated by risk category cells —
Greenland (2001) refers to these as distinct covariate patterns. So the observa-
tions become numbers at risk, naserd and diseased subjects yaserd, both taking
account of survey weighting for differential non-response (JHSU, 2004).

Table 1: Age standardised chd prevalence (ages 35+) with 95% confidence
intervals by sex & government office region 2003 Health Survey for England.

North North Yorkshire East West
East West & Humberside Midlands Midlands

Males 7.5 9.4 11.6 9.2 10.5
2.5% 4.2 7.2 8.7 6.4 7.8
97.5% 10.8 11.6 14.5 12.0 13.2
Females 9.9 6.6 7.9 7.1 7.4
2.5% 6.4 4.8 5.6 4.7 5.2
97.5% 13.4 8.4 10.2 9.5 9.6

East London South South England
East West

Males 7.3 8.1 8.2 6.6 8.8
2.5% 5.1 5.9 6.3 4.5 8.0
97.5% 9.5 10.3 10.1 8.7 9.6
Females 3.9 4.6 4.3 3.9 5.8
2.5% 2.3 3.0 2.9 2.3 5.2
97.5% 5.5 6.2 5.7 5.5 6.5
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A log-binomial regression is applied, allowing inferences on prevalence pro-
portion ratios rather than prevalence odds ratios (Skov et al., 1998; Zocchetti et
al. 1997); this is also called the log-linear binomial (Greenland, 2004). For ex-
ample, using this link permits estimation of the prevalence relative risk gradient
over neighbourhood deprivation quintiles, whereas logit coefficients only provide
relative risks under a rare disease assumption. To avoid probabilities above 1, an
upper limit of 0.999 on cell probabilities was imposed. MCMC sampling produced
this default value only in the first 100 to 200 iterations.

To assess possible interactions between risk factors, the prevalence model for
the 2003 survey data includes main effects in all variables and second order inter-
actions for which there is evidence in health outcome literature, not necessarily
heart disease. The historical data model (for the 1999 survey) is the same except
for excluding the main deprivation effect and any interactions involving depri-
vation. The second-order interactions included are for age-sex, sex-region, sex-
ethnicity, sex-deprivation, age-deprivation, age-ethnicity, and ethnicity-deprivation.
The sex-region interaction is suggested by Table 1, while different gender-age
heart disease risk profiles have been reported as well as sex-ethnicity interactions
(Primatesta and Brookes, 2000). While completeness in modelling terms might
indicate including several interactions, some studies of cardiovascular outcomes
that include area deprivation and area type report few interactions as significant
(e.g. Martinez et al., 2003). Thus for parsimony, the age and deprivation variables
when included in interactions are reframed as binary: ages up to 64 (a∗ = 1) are
compared with ages 65 and above (a∗ = 2), and the top two deprivation quintiles
(d∗ = 2) are contrasted with the lower three (d∗ = 1). Substantive justification
for such a contraction exists: for example, the main impact of deprivation is on
premature ill health and mortality (e.g. Barnett et al., 2001).

3. Survey Model Specification and Pooling over Surveys

A model including main effects and the above mentioned interactions is then

yaserd ∼ Bin(naserd, ρaserd)
log(ρaserd) = α1s + α2a + α3e + α4d + β1es + β2a∗s

+ β3ea∗ + β4a∗d∗ + β5d∗s + β6ed∗ + γrs (3.1)

where parameters treated as fixed effects {α2a, α3e, α4d, β1es, β2a∗s, β3ea∗ , β4a∗d∗ ,
β5d∗s, β6ed∗} are subject to corner constraints, except for the gender terms α1s

that are both taken as unknown. The model for the 1999 survey data, denoted
{yh

aser, n
h
aser} and lacking the deprivation category, has the form

yh
aser ∼ Bin(nh

aser, ρ
h
aser)

log(ρh
aser) = α1s + α2a + α3e + α4d + β1es + β2a∗s + β3ea∗ + γrs (3.2)
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Priors on {α, β} in (3.1) and (3.2) are based on accumulated epidemiological
evidence, such as that provided by UK studies of treated heart disease preva-
lence. Data from the Key Health Statistics from General Practice (ONS, 2000)
give heart disease prevalence rates of 0.1 per 1000 at ages under 34 (for both
males and females) ranging to 205/1000 (males) and 172/1000 (females) at ages
over 85. Because of this wide range in risk, normal priors N(−9, 5) and N(0, 5)
are adopted for α1s and α2a respectively. For the remaining risk factors (for eth-
nic and deprivation categories) and the interactions, accumulated evidence (e.g.
Hoare, 2003) is that N(0, 1) priors will encompass likely ranges in relative risk.
This corresponds to a prior belief that the associated relative risks will be be-
tween 0.14 and 7.1 with 95% certainty. It might well be possible to justify more
informative elicited priors on relative risk and it is straightforward to include this
when a log link is used in the binomial regression (e.g. Greenland, 2001).

The regional effects γrs are treated as random and follow a bivariate spatial
conditional autoregressive prior (see Appendix 1), with the multivariate CAR
precision matrix Φ−1

γ assumed to follow a Wishart prior with 2 degrees of freedom
and identity scale matrix. Reasons for expecting spatial correlation in regional
relativities include the north-south contrast in prevalence (Table 1), as well as
environmental factors, such as water hardness (Shaper et al., 1980; Catling et al.,
2005).

Let θ = {α, β, γ,Φγ} parameters, and 0 ≤ δ ≤ 1 be a precision parameter
(with beta prior) that weights the historical data Dh relative to the likelihood of
the current study data D. Following Chen et al. (2000, p. 124) the power prior
takes the form

π(θ.δ|Dh) ∝ [P (Dh|θ)]δδaδ−1(1 − δ)bδ−1 (3.3)

where P (Dh|θ) is the binomial likelihood, and (aδ , bdelta) are pre-specified beta
density hyperparameters. With δ an unknown the joint posterior density for (θ, δ)
is then

P (θ, δ||D,Dh) ∝ P (D|θ)[P (Dh|θ)]δδadelta−1(1 − δ)bδ−1. (3.4)

For the current analysis there is expected to be considerable continuity between
the two surveys in prevalence differentials and the 1999 survey data includes rel-
evant information on ethnic prevalence gradients; on the other hand, the model
forms for 2003 and 1999 differ (because only the 2003 model includes neigh-
bourhood deprivation) and so some downweighting is appropriate. Here three
alternative beta priors for δ are considered, namely Be(250,1), Be(100,1) and
Be(50,1).
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4. Survey Model Results

Inferences are based on iterations 1000-5000 of two chain sampling runs start-
ing from dispersed starting values, with convergence achieved by iteration 1000
using Gelman-Rubin criteria (Gelman et al., 1995). Comparisons of models use
the deviance information criterion (DIC) of Spiegelhalter et al. (2002), namely
the posterior mean deviance plus a complexity measure pe, derived as the differ-
ence between D̄ and the deviance, Dev(Ψ̄), at the posterior mean of Ψ = (θ, δ).
So the DIC can be obtained as Dev(Ψ̄) + 2pe. For model checking, new data
(ynew,aserd) are sampled from the model and compatibility with actual data as-
sessed by the extent to which 95% intervals for new data include the actual data
(Gelfand, 1996).

Table 2 shows parameter estimates (log relative risks) under alternative δ pri-
ors. Average deviances are similar across the three options on δ, though DICs
decrease slightly with larger values of δ because of lower pe. The posterior predic-
tive checking procedure of Gelfand (1996) is satisfactory, with actual cases yaserd

in all cells covered by 95% intervals for replicate data sampled from P (ynew|y),
regardless of the prior on δ.

Age and sex effects are significant under all options, while ethnic group ef-
fects for δ ∼ Be(250,1) show lower risk for blacks and higher risk for south
Asians (cf Primatesta and Brookes, 2000). Under all δ priors, the deprivation
effects (centred around their average) show the main contrast is between ex-
tremes of neighbourhood deprivation with a relatively flat intermediate effect.
The regional effects support a north-south contrast in prevalence within Eng-
land; three coefficients are significant under δ ∼ Be(250,1), and the parameter
contrasts γ31 − γ91, γ12-γ92, and γ32-γ92 have posterior means (95% intervals) of
0.37 (0.07,0.69), 0.61 (0.19,1.07) and 0.45 (0.08,0.85). The fact that regional
effects exist after controlling for population composition and neighbourhood de-
privation suggests genuine contextual variation in heart disease risk. Of the
interactions β122 is significant in terms of its 95% credible interval under the two
more informative priors on δ, reflecting higher prevalence among black women
as compared to men. Both β322 and β332 are significantly negative under δ ∼
Be(250,1), showing black and south Asian elders to have lower risk.

5. Relevant Survey Outputs for Prevalence-Mortality Model

The goal of the analysis is to estimate heart disease prevalence in 354 English
areas, for which Census population counts Niase by age, sex and ethnic group
are obtainable. Further population disaggregation by neighbourhood deprivation
quintile is not available. However, to ensure the area prevalence estimates take
account of neighbourhood deprivation, it is possible to obtain population totals
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Nid, providing proportions wid = Nid/Ni of total area population living in each
deprivation quintile. Let ri ∈ {1, . . . , 9} denote the region in which the i-th area
is located, then the impact of neighbourhood deprivation in area i is based on
averaging the probabilities ρaserid according to the population split wid. Then
age-sex-ethnic specific prevalence rates Riase are estimated as a weighted average

Riase = (
∑

d

widρaserid), (5.1)

and prevalent cases in each area and for age, sex and ethnic groups are estimated
as Piase = RiaseNiase.

English area mortality data are not specific to ethnic group (see section 4).
To generate a prevalence rate that can be modelled jointly with mortality, the
Piase are aggregated over ethnic groups (at each MCMC iteration) to form area-
age totals Pias that are in turn divided by area-age-sex specific populations Nias

to give area-age-sex prevalence rates Rias. These are then applied to European
standard populations Sa (e.g. Hedman et al., 1999) to provide age standardised
prevalence rates πis for each area by sex (and for ages over 35). To provide a
suitable input to the joint prevalence-mortality analysis, the transforms xis =
logit(πis) are monitored, as these are more likely to be approximately normal
than the prevalence rates themselves. Posterior means and variances of the xis

are denoted Xis(Vis).

6. Joint Prevalence-Mortality Model

As argued above, evidence on variation in area prevalence is provided indi-
rectly by area heart disease mortality; it is likely that mortality will closely reflect
prevalence, though other factors may be involved. Evidence justifying a joint
analysis is obtained from heart disease registers associated with a new payment
scheme for English general practitioners (Strong et al., 2006). These data may
be subject to under or over-registration (especially at lower spatial scales) and
so do not necessarily provide a ”gold standard” prevalence estimate. However,
Table 3 shows a clear correlation between prevalence and the selected mortality
index at regional level; the Pearson correlation is 0.9.

Let Di1 and Di2 be area deaths for males and females (ages over 35), and ED
i1

and ED
i2 be expected deaths (using England age-specific rates for 2003). Assuming

Poisson sampling, one has Dis ∼ Po(µisE
D
is ), where µis are relative mortality

risks for sex s (1=M, 2=F) and area i. The goal is to adjust survey based
logit prevalence rate estimates xis to reflect spatial patterning of these mortality
relative risks.
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Table 3: Associations between prevalence and mortality, regional level

Government Region Standard Prevalence CHD Mortality 2001-3
Ratio (Data from Directly Standardised

GP Payment System) rates, Ages < 75

North East 132 76
North West 120 74
Yorkshire 119 69
& Humberside

E. Midlands 100 62
W. Midlands 99 66
East 89 50
London 87 61
South East 86 50
South West 90 50

Let z be the underlying true (logits of) prevalence, measured with error. The
bivariate model can be seen as following a form

P (µ, z|x) = P (µ|z)P (z|x)P (x), (6.1)

namely a marginal prevalence model and a model including an impact of preva-
lence on mortality. Similar models are mentioned by Xia and Carlin (1998) and
Bernardinelli et al. (1997), and both of these studies incorporate spatial correla-
tion in the underlying rate.

In the application here, spatially correlated effects pool information over areas
and genders. There are many reasons to expect unmeasured risk factors to be
spatially correlated, for example between adjacent urban as against rural areas,
or between adjacent areas in northern as against southern regions of England.
Thus, urban air pollution is a risk for heart disease (Chen et al., 2005), while
regional differences in smoking and physical activity are reported by Morris et al.
(2003). Regional differences in drinking-water hardness have also been linked to
cardiovascular disease variations (Monarca et al., 2004; Catling et al., 2005).

So for sexes s = 1, 2 the following joint model is postulated

Dis ∼ Po(µisE
D
is ) (6.2)

log(µis) = ηs + ωszis

zis = xis + uis

xis ∼ N(Xis, Vis)
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Local Authority Areas
Prevalence (%)

Under 5.4

5.4 - 5.9

6.0 - 7.1

7.2 - 8.2

Over 8.2

Figure 1: Male prevalence of heart disease
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Local Authority Areas
Prevalence (%)

Under 3

3.0 - 3.2

3.3 - 4.0

4.1 - 4.6

Over 4.6

Figure 2: Female prevalence of heart disease
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where the spatial correlated errors (ui1, ui2) follows a bivariate conditional au-
toregressive prior (see Appendix 1), with the effects ui1 and ui2 centred around
respective means at each iteration. From the form of the model it is apparent
that z will be affected by µ as well as vice versa, by virtue of the reverse regression
implicit in many measurement error models (Maddala, 2001, Ch 11). The preci-
sion matrix Φ−1

u is assumed to follow a Wishart prior with 2 degrees of freedom
and identity scale matrix; the intercepts ηs and slopes ωs are assigned N(0, 100)
priors. The last 15000 of a two chain run of 25000 iterations show the coefficients
ω1 a nd ω2 in model (6.2) as clearly significant, with means (95% intervals) of 0.42
(0.36,0.48) and 0.23 (0.17,0.31). The correlation between (ui1, ui2) is estimated
at 0.71 (0.54,0.84).

Compared to the mean prevalences πis from the survey model, the adjusted
prevalences ζis = exp(zis)/(1 + exp(zis)) from the joint model show greater in-
equality (i.e. higher coefficients of variation), possibly as they reflect local vari-
ations in mortality relative risks. Figures 1 and 2 contain quintile maps for the
posterior mean prevalence rates ζi1 and ζi2, with the North-South contrast again
visible. The fact that this contrast remains after controlling for neighbourhood
deprivation and ethno-demographic structure suggests that health behaviours
(e.g. diet) and environmental factors are also relevant to prevalence differences.

As an application with policy relevance, the prevalence rates ζis are compared
to revascularisation rates for the 354 areas in 2002. There are recognized to be
variations in provision of revascularisation, namely coronary artery bypass grafts
and percutaneous transluminal coronary angioplasty that other studies suggest
are not explained by morbidity (Hippisley-Cox and Pringle, 2000; Payne and
Saul, 1997). In fact, the correlation between provision and prevalence rates is
−0.02 for males and 0.08 for females, indicating possible variations in access to
surgical care not matched to need for such care (as reflected in prevalence).

7. Discussion

While mortality and hospitalisation data are often used as proxies for preva-
lence (morbidity) and hence health need (Ebrahim et al., 2002), there is value
in using available survey evidence to provide direct estimates of prevalence and
morbidity. The present study has outlined a methodology to combine spatially
aggregated survey evidence with information on spatially disaggregated patterns
in heart disease mortality, which reflect geographic variations in prevalence (e.g.
see Table 3).

This methodology can be seen as a form of meta-analysis over different forms
of evidence that can be applied to other types of morbidity. The pooling of
information over surveys (here the 1999 and 2003 Health Surveys for England)
can be performed using the power prior method. An alternative analysis to
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the one adopted in the paper could arguably input more informative priors to
the power prior likelihood, further developing on the theme of evidence pooling.
There is accumulated epidemiological evidence on heart disease risk factors that
could justify more informative priors, especially on main effects. For example,
south Asian ethnicity is often reported as associated with higher relative heart
disease risk in the UK. So one could for instance, following Greenland (2001, p.
665), assume a prior relative risk between 1 and 3 for this group, translating
into a N(0.55, 0.08) prior. On the other hand, there may be relatively little prior
evidence on certain interactions (especially in a particular geographical setting
such as England with its distinct health care system) and adopting an informative
prior approach may also imply the need to run a sensitivity analysis over different
informative priors.

There are other options for modelling that might be considered. One option
is to introduce information on prevalence from hospital admission data. These
are sometimes suspect as indicators of morbidity because they reflect supply of
care, but for events where hospitalisation is usually unavoidable (e.g. myocardial
infarction) they may improve the estimation of morbidity. One might also seek
to jointly model, and so make indirect area estimates for, more than one type
of prevalence (e.g. smoking, diabetes or obesity prevalence) in conjunction with
modelling heart disease prevalence. In the UK prevalence of these behaviours
or conditions is also monitored by the Health Survey for England and they are
known risk factors for heart disease. Similar potentialities exist for using national
health survey data of other countries to indirectly estimate area prevalence in
conjunction with other relevant and locally disaggregated information (e.g. on
mortality, hospital admissions).

Appendix. Univariate and Multivariate CAR priors

To explain the form of the CAR prior, first consider a univariate conditional
autoregressive prior. Let (e1, . . . , en) be a vector of effects associated with areas
1,..,n such as relative mortality risks. Then a univariate conditional autoregres-
sive prior or CAR prior (Rue and Held, 2005), involves specifying the n full
conditionals

ei|e[i] ∼ N(
∑

j �=i

cijej/ci+, φe/ci+) (A.1)

where e[i] = (e1, e2, . . . , ei−1, ei+1, . . . , en) is the collection of effects excluding
area i, C = [cij ] is an n n matrix of spatial interactions cij , often known but
sometimes involving unknown parameters, the sums ci+ =

∑
j cij total over rows

in this matrix, and φe is a conditional variance. The conditional density uniquely
determines the joint density of the effects (e1, . . . , en), a feature noted by Besag
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(1974) and Jin et al. (2005). The multivariate normal CAR is the multivariate
generalisation of the prior in (A.1). If there are K outcomes, then φe is replaced
by a K×K covariance matrix Φe. A common practice is to define cij = 1 if areas
i and j are adjacent, and cij = 0 otherwise, in which case ci+ is the number of
areas adjacent to area i.
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