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Abstract: Receiver operating characteristic (ROC) methodology is widely
used to evaluate diagnostic tests. It is not uncommon in medical practice
that multiple diagnostic tests are applied to the same study sample. A va-
riety of methods have been proposed to combine such potentially correlated
tests to increase the diagnostic accuracy. Usually the optimum combina-
tion is searched based on the area under a ROC curve (AUC), an overall
summary statistics that measures the distance between the distributions
of diseased and non-diseased populations. For many clinical practitioners,
however, a more relevant question of interest may be ”what the sensitivity
would be for a given specificity (say, 90%) or what the specificity would be
for a given sensitivity?”. Generally there is no unique linear combination
superior to all others over the entire range of specificities or sensitivities.
Under the framework of a ROC curve, in this paper we presented a method
to estimate an optimum linear combination maximizing sensitivity at a fixed
specificity while assuming a multivariate normal distribution in diagnostic
tests. The method was applied to a real-world study where the accuracy
of two biomarkers was evaluated in the diagnosis of pancreatic cancer. The
performance of the method was also evaluated by simulation studies.

Key words: Diagnostic accuracy, optimal linear combination test, receiver
operating characteristic (ROC) curve, sensitivity, specificity.

1. Introduction

In recent years many efforts have been made on studying biomarkers that
could provide accurate and non-invasive ways of disease diagnosis or prognosis.
Many of these biomarkers are measured in a continuous scale and receiver op-
erating characteristic (ROC) curve is widely used for evaluating the accuracy of
such a continuous diagnostic test (Hanley and McNeil 1984; Hanley 1989; Begg
1991). Suppose that, based on some gold standard independent of the diagnostic
tests to be evaluated, subjects belong to 1 of 2 basic conditions – diseased (D+)



2 Feng Gao et al.

and non- diseased (D−). The ROC curve evaluates the ability of the diagnostic
test to discriminate the two conditions. By plotting the true positive rates (sensi-
tivity) versus the false positive rates (1-specificity) across all possible thresholds,
ROC curve reflects the relative trade-off between true and false positive rates.
The area under the ROC curve (AUC) measures the distance between the dis-
tributions of diseased and non-diseased populations and is frequently used as a
global measure for the accuracy of the diagnostic test (Swets and Pickett 1982;
DeLong, Vernon and Bollinger 1985; Ma and Hall 1993). If a test could perfectly
discriminate, then there exists a cut-point above which all member of one group
(diseased or non-diseased) will fall and below which all members of the alterna-
tive group will fall. The ROC curve would then pass through the point (0,1) on
the grid [0, 1] × [0, 1], with an AUC of one. The closer the AUC comes to this
ideal, the more discriminating ability the test has. Zhou et al (2002) and Pepe
(2003) provide excellent reviews of the existing methods on the analysis of ROC
curves.

In clinical studies, it is not uncommon that multiple diagnostic tests are ap-
plied to the same sample. In such a case, the diagnostic tests are more likely to be
correlated. A variety of methods have been proposed to evaluate and compare the
performance of such correlated diagnostic tests. Greenhouse and Mantel (1950),
and Linnet (1987) compared two sensitivities at a single fixed specificity. McClish
(1987) proposed a way to assess the relative diagnostic accuracy of independent
ROC curves using the difference of areas under curves (AUC). Metz et al. (1984)
generalized the statistical comparison of the binormal ROC model (i.e., assuming
the data in both diseased and non-diseased groups follow normal distributions)
to bivariate case for comparing the difference on AUC between correlated ROC
curves. DeLong et al. (1988) and Venkatraman and Begg (1996) developed non-
parametric methods to compare the areas under two ROC curves. Wieand and
colleagues (1989) proposed a more general family of non-parametric statistics to
compare the weighted average of sensitivities. Their method can be used to com-
pare the diagnostic tests either over a restricted range of specificity or under an
entire ROC curve. However, since different markers are usually representative
to different aspects of diseases, it is desirable to combine the correlated tests to
increase the diagnostic accuracy. Assuming that the biomarkers of interest have
a multivariate normal distribution in each of the diseased and non-diseased popu-
lations, Su and Liu (1993) worked under a linear discriminant analysis framework
to separate the two conditions. They showed that the linear combination derived
from discriminant function maximizes the area under the ROC curve. Based on
the same binormal assumptions, recently Xiong and colleagues (2004) proposed
an approach to construct the optimum linear combination over all possible lin-
ear combinations under a ROC analysis framework. Based on the eigenvalue of
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the optimum linear combination of the diagnostic tests, they presented closed
forms for the estimation of maximum AUC and its variance. Both of the above
methods developed the optimum linear combinations based on the area under a
ROC curve, an overall summary statistics that measures the distance between the
distributions of diseased and non-diseased populations. In clinical applications,
however, a marker’s usefulness is generally determined by its specific settings. For
example, a test with 20% false positive rate (80% specificity) may be acceptable
for cancer prognosis, but usually will be too high for cancer screening. Therefore,
a more frequently question raised by a clinician could be ”How much sensitivity
(specificity) can be achieved at a given specificity (sensitivity)?”.

This article addresses the problem of combining multiple correlated diagnos-
tic tests under a similar framework as Xiong et al. (2004). Instead of searching
optimal linear combination that maximizes AUC, our method is seeking an opti-
mum linear combination in discriminating between the diseased population and
the healthy population at a single fixed specificity. More specifically, we con-
sider all possible linear combinations of multiple diagnostic tests and numerically
search for the best set of coefficients (weights) that maximizes the sensitivity at a
given specificity of interest. The standard deviation and 95% confidence interval
of the estimate are constructed taking a parametric bootstrap approach (Gentle
2002). The method is exemplified with a study on the diagnosis of pancreatic
cancer where two serum markers are measured at 90 patients with pancreatic
cancer and 51 patients with pancreatitis. The performance of the method is also
evaluated by simulation studies.

2. Method

We assume that a total of r tests are used for each subject in both the diseased
population and the healthy population. Without loss of generality, we assume
that higher values of each test are associated with the positive results. Let D+ and
D− denote the diseased (i.e., the positive condition) group and the non-diseased
(i.e., the negative condition) group respectively. Let X = (X1,X2, . . . ,Xr)t (t
stands for the transpose) be the values of the r test results for a subject in group
D+, and Y = (Y 1, Y 2, . . . , Y r)t be the values of the r test results for a subject in
group D=. We assume that (X1,X2, . . . ,Xr)t follows a multivariate normal dis-
tribution MV Nr(µ+,Σ+) with mean vector µ+ = (µ+

1 , . . . , µ+
r )t and covariance

matrix Σ+ = (σ+
ij)1≤I,j≤r and that (Y 1, Y 2, . . . , Y r)t follows another multivariate

normal distribution MV Nr(µ−,Σ−) with mean vector µ− = (µ−
1 , µ−

2 , . . . , µ−
r )t

and covariance matrix Σ− = (σ−
ij)1≤I,j≤r. As mentioned earlier, we assume that

µ+ > µ− in each test. We also assume that Σ+ and Σ− are positive definite.
Considering the scenario of a single test (i.e., i-th test), let (µ+

i , σ+
ii ) and (µ−

i , σ−
ii )
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denote means and variances in the diseased and non-diseased groups respectively.
For a given specificity Q, the cut-off value Cγ in the non-diseased group can be

determined as Cγ = µ−
i +

√
σ−

ii Φ
−1(Q). After applying Cγ to the diseased group,

the corresponding sensitivity will be

1 − Φ


Cγ − µ+

i√
σ+

ii


 = Φ


C+

µi
− Cγ√
σ+

ii


 = Φ


µ+

i − µ−
i −

√
σ−

ii Φ
−1(Q)√

σ+
ii


 .

Therefore, the binormal ROC model can be written as

f(Q) = Φ[a + bΦ−1(1 − Q)], with a =
µ+

i − µ−
i√

σ+
ii

and b =
σ−

ii

σ+
ii

, (2.1)

where the double subscripted σ represents variances, Φ(·) is the cumulative dis-
tribution of a standard normal distribution, Φ−1(·) is its inverse function, and
Q is a given specificity. Note that in our notation σ represents variances rather
than standard deviations. The above model plays a central role in ROC analysis
similar to the role of normal distribution in classical statistical modeling, and it
has been shown that this model provides a good approximation to a wide range of
ROC curves encountered in practice (Pepe 2003; Hanley 1996). In the presence
of multiple (correlated) tests, we seek a linear combination of r diagnostic tests
such that the sensitivity is maximized over all possible linear combinations when
the specificity is fixed at Q (preferably 0.5 < Q < 1). Let w = (w1, w2, . . . , wr)t

be a set of weights (coefficients), S = wtX and T = wtY be the scores of linear
combinations of the r diagnostic tests at the diseased and health populations
respectively. The corresponding ROC associated with S and T is given by,

g(Q) = Φ[c + dΦ−1(1 − Q)], (2.2)

where

c =
wt − µ+ − wµ−

wtΣ+w

d =

√
wtΣ−w
wtΣ+w

.

Since the cumulative distribution of the standard normal distribution Φ is strictly
monotonic, the maximization of g(Q) given Q over the choice of w is equivalent
to the maximization of,

C(w) = c + dΦ−1(1 − Q) =
wtµ+ −wtµ− +

√
wtΣ−wΦ−1(1 − Q)√

wtΣ−w
,
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where w = (w1, w2, . . . , wr)t is obtained numerically with the constraint
∑r

i=1 w2
i

= 1.
Since the distribution of the maximal sensitivity, g(Q), is analytically in-

tractable, the standard deviation and confidence interval of the estimated sensi-
tivity will be constructed taking a parametric bootstrap approach. Specifically,
means and covariance matrices will be estimated from the study sample, and 1000
samples (each with the same number of observations as in the original data) will
be generated from multivariate normal distributions based on these estimates.
For each of the generated samples, a maximal sensitivity, g(Q)∗, will be esti-
mated based on (2.2). Then, the standard deviation and 95% confidence interval
of g(Q) can be obtained based on the estimated distribution of g(Q)∗ (Gentle
2002).

3. Application: Biomarkers for the Diagnosis of Pancreatic Cancer

For illustration, we apply the proceeding method to a real-world data on the
diagnosis of pancreatic cancer with two tumor markers (CA19-9 and CA125).
CA19-9 is a carbohydrate antigen that tends to be elevated especially in subjects
with carcinomas of the gastrointestinal tract while CA125 is a cancer antigen that
is associated with a variety of malignancies including breast, cervix, pancreas, and
lung, etc. A study conducted at Mayo Clinic considered 90 “cases” of patients
with pancreatic cancer (D+) and 51 ”controls” of patients with pancreatitis (D−).
Serum CA19-9 and CA125 were measured on each of these patients and both of
the markers were measured in continuous scales. The data was first presented
by Wieand et al. (1989) to compare the relative accuracy of the two biomarkers
for the diagnosis of pancreatic cancer. Zhou and others (2002) used the data to
illustrate the maximum likelihood method and more recently Cai and Moskowitz1
(2004) exemplified the data with two semi-parametric approaches for fitting ROC
models. The objective of our current analysis is to derive an optimum linear
combination of the two markers that maximizes the sensitivity over all possible
linear combinations at a fixed specificity (90%, say).

Let X = (X1,X2)t be the values of CA19-9 and CA125 for pancreatic cancer
patients and Y = (Y 1, Y 2)t be the marker values for pancreatitis patients respec-
tively. The original distributions of CA19-9 and CA125 are found to be badly
skewed to the right because some of the marker values tend to be extremely large,
and thus a logarithm transformation was performed for both markers to improve
the normality. Based on the behavior of the majority data (Figure 1), we can
assume that log(X) and log(Y) have a bivariate normal distribution,

log(X) ∼ MV N(µ+,Σ+) and log(Y) ∼ MV N(µ−,Σ−).

Then the maximum likelihood estimates of the parameters in the cancer group
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can be obtained as

µ̂+ = (5.42, 3.26)t and Σ̂+ =
(

5.483 0.328
0.328 0.977

)

and the corresponding estimates in the pancreatitis group are

µ̂− = (2.47, 2.67)6 and Σ̂− =
(

0.748 −0.095
−0.095 0.612

)
.

Without considering the possible correlations between the two markers, approx-
imately 78% sensitivity can be achieved for CA19-9 alone while the maximum
sensitivity for CA125 alone is 34% at a given 90% specificity. After applying
our proposed method, the optimum weights are searched numerically as 0.89
for CA19-9 and 0.455 for CA125. For a fixed 90% specificity, the resulting lin-
ear combination, 0.89 × log(CA19 − 9) + 0.455 × log(CA125), will achieve an
approximately 80% (SD=4.0%) sensitivity , with a 95% confidence interval of
[72.0%, 87.4%]. The dotted line in Figure 2 corresponds to the 90% specificity of
the resultant optimum linear combination which is the best one over all possible
linear combinations, w1×log(CA19−9)+w2×log(CA125), such that w2

1+w2
2 = 1.

Figure 1: The Q-Q plots for log(CA19 − 9) and log(CA125) in 51 pancreatitis
patients (D−) and 90 pancreatic cancer patients (D+).
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Figure 2: The scatter plot for log(CA19 − 9) versus log(CA125)in 51 pancre-
atitis patients (D−) and 90 pancreatic cancer patients (D+), where dotted line
corresponds the optimum linear combination that maximizes sensitivity at a
fixed 90% specificity.

4. Simulation Studies

Simulation studies are designed to evaluate the performance of proposed
method in the presence of correlated multiple diagnostic tests. In practice, the
true mean and the true covariance matrix of a vector of multivariate diagnostic
tests are rarely known, and the best linear combination has to be derived based
on the estimated means and covariance matrices. Therefore, it is important to
assess how the sample size and inter-marker correlation affect the performance
of the estimated optimum combination. The simulation assumes 3 correlated di-
agnostic tests. These diagnostic tests in the diseased (D+) group are assumed to
have a 3-dimensional normal distribution MV N(µ+,Σ+) of

µ+ = (2.5, 4.5, 6.0)t and Σ+ =




σ+
1 ρ1

√
σ+

1 σ+
2 ρ1

√
σ+

1 σ+
3

ρ1

√
σ+

1 σ+
2 σ+

2 ρ1

√
σ+

2 σ+
3

ρ1

√
σ+

1 σ+
3 ρ1

√
σ+

2 σ+
3 σ+

3




with the vector of variance to be (σ+
1 , σ+

2 , σ+
3 ) = (3, 2, 1). The tests in the healthy

(D−) group are also assumed a 3-dimensional normal distribution MV N(µ−,Σ−)
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of

µ− = (2.0, 3.0, 4.0)t and Σ− =




σ−
1 ρ1

√
σ−

1 σ−
2 ρ1

√
σ−

1 σ−
3

ρ1

√
σ−

1 σ−
2 σ−

2 ρ1

√
σ−

2 σ−
3

ρ1

√
σ−

1 σ−
3 ρ1

√
σ−

2 σ−
3 σ−

3


 ,

with the variance vector of (σ−
1 , σ−

2 , σ−
3 ) = (6, 2, 4).

For simplicity, we consider a common correlation parameter (ρ = ρ+ = ρ− in
our simulation and let ρ take 3 values (ρ = 0.2, 0.5, 0.8). We also assume that
diseased and healthy groups have an equal sample size, and in the simulations 4
sample sizes (N = 25, 50, 100 and 200) are considered for each group. For each
selected sample size, 1000 random samples are generated from MV N3(µ+,Σ+)
and MV N3(µ−,Σ−) at a given ρ respectively. In this study the simulation
was implemented by the statistical package S-Plus (version 6.2). The random
samples were generated from the function RMVNORM (the random generation
function for the multivariate normal distribution) while the optimum weights
(coefficients) w = (w1, w2, w3)t for linear combinations were searched numeri-
cally by the function NLMINB (the function for nonlinear minimizations subject
to box constraint). To satisfy the constraint of

∑3
i=1 w2

i = 1, the actual min-
imization was performed on the unconstrained parameters γ = (γ1, γ2, . . . , γr)t

such that wi = γi/
√∑

γ2
i . In the simulations, we evaluated the performance of

the method given Q = 80% and 90%, two specificities that are usually of most
interest to clinicians.

By assuming that all the mean vectors and variance-covariance matrices in
both diseased and healthy populations are known, Table 1 shows the optimum
weights and the expected maximum sensitivities at different combinations of ρ
and Q. These optimum weights will produce the best linear combination that
gives the maximum sensitivity over all possible linear combinations of the 3 diag-
nostic tests. The results show that the optimum weights (and thus the maximum
sensitivity) are a function of the inter-marker correlation. When there exists a
weak correlation among these 3 biomarkers (ρ = 0.2) at a given Q = 90%, for
example, the optimum weights ŵ = (−0.079, 0.820, 0.567)t will give the best lin-
ear combination as S =

∑3
i=1 ŵiXi in the diseased sample and T =

∑3
i=1 ŵiYi in

the healthy sample. Then a maximum 52% sensitivity can be achieved based
on the scores of S and T . In contrast, a different set of optimum weights
ŵ = (−0.589, 0.521, 0.617) will be obtained in the presence of a strong corre-
lation (ρ = 0.8) among the 3 tests, and the resultant combined test will allow us
a maximum 72% sensitivity at the fixed Q = 90%. The optimum weights in Table
1 are consistent in signs with the expected weights ŵ = (−0.3845, 0.6767, 0.1692)
by Xiong et al. (2004) who took a similar parameter setups as ours but searched
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for the optimum combination maximizing area under ROC curve (AUC). Our
simulations show that optimum weights are also a function of the specificity (Q).
In the presence of a weak inter-marker correlation (ρ = 0.2), for example, the
optimum coefficients for Q = 80% are ŵ = (−0.080, 0.626, 0.776) while the coef-
ficients are ŵ = (−0.079, 0.820, 0.567) for Q = 90%, and the corresponding linear
combinations will result in 75% and 52% maximum sensitivities respectively. Our
finding is consistent to the work by Anderson and Bahadur (1962) that generally
there is no unique linear combination superior to all others over the entire range
of specificities (sensitivities).

Table 1: The optimum weights and the expected maximum sensitivity at a
fixed specificity (Q) when the means and variance-covariance matrices of the
diagnostics tests are known, where ρ represents the inter-test correlation.

Q ρ Optimum weights Expected Maximum Sensitivity

w1 w2 w3

80% 0.2 -0.080 0.626 0.776 0.751
0.5 -0.354 0.532 0.770 0.752
0.8 -0.551 0.308 0.776 0.902

90% 0.2 -0.079 0.820 0.567 0.524
0.5 -0.342 0.782 0.521 0.529
0.8 -0.589 0.521 0.617 0.721

In real-world applications, the true mean and the true covariance matrix of a
vector of multivariate diagnostic tests are rarely known, and the best linear com-
bination of the diagnostic tests has to be derived based on the estimated means
and covariance matrices. Table 2 presents the averages of estimated maximum
sensitivity and its standard deviation based on 1000 random samples. The results
show that the estimated maximum sensitivity becomes closer to the expected ones
as the sample size increases and an accurate estimate can be achieved even in
a relatively small sample size. The last column in Table 2 shows the empirical
coverage probabilities of 95% confidence interval (CI). We see that, though the
empirical coverage probabilities tend to be lower than the nominal 95% cover-
age probability when sample sizes are relatively small, the estimated confidence
intervals perform very well for moderate to large sample sizes.
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Table 2: The averages of the estimated maximum sensitivity, the average of
the estimated standard deviation (SD), and the empirical coverage of 95%
confidence intervals based on 1000 random samples, where ρ represents inter-
test correlation and N is the sample size in each group.

Q = 80% Q = 90%

ρ N ĝ(Q)± SD CI ρ N ĝ(Q)± SD CI

0.2 25 0.777±0.114 0.928 0.2 25 0.581±0.141 0.921
50 0.765±0.086 0.932 50 0.555±0.106 0.933
100 0.762±0.062 0.942 100 0.547±0.077 0.943
200 0.755±0.046 0.942 200 0.535±0.055 0.947

0.5 25 0.776±0.116 0.923 0.5 25 0.582±0.141 0.922
50 0.767±0.088 0.935 50 0.551±0.105 0.923
100 0.764±0.064 0.948 100 0.540±0.077 0.950
200 0.755±0.047 0.951 200 0.531±0.055 0.956

0.8 25 0.904±0.081 0.931 0.8 25 0.752±0.127 0.916
50 0.905±0.057 0.935 50 0.736±0.098 0.934
100 0.906±0.041 0.939 100 0.732±0.072 0.946
200 0.903±0.030 0.952 200 0.725±0.052 0.949

5. Discussion

In this paper, we proposed an approach to estimate the maximum sensitivity
at a fixed specificity in the presence of multiple correlated diagnostic tests. Al-
though we focused on seeking the maximum sensitivity at a fixed specificity, it is
a straightforward extension to obtain the maximum specificity at a given sensi-
tivity. By assuming multivariate normal distributions for the diagnostic tests in
both the diseased and healthy populations, an optimum linear combination test
is searched numerically over all possible linear combinations under a binormal
ROC setting. The method is exemplified with a real-world data on the diagno-
sis of pancreatic cancer. The performance of the method is also assessed with
simulation studies. Results show that the proposed method can provide an ac-
curate point estimate of the expected maximum sensitivity even in a relatively
small sample size. The performance of the estimated confidence interval is also
evaluated in terms of attaining the nominal 95% coverage based on the empiri-
cal coverage probability in the simulation study. The results show that a better
coverage can be produced with moderate to large sample sizes.

The means and covariance for most populations are unknown in practice,
and the corresponding maximum likelihood estimates (MLE) from the observed
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samples are frequently used. It is important to point out that the results from
this work depend on the assumption of multivariate normality for the multiple
diagnostic tests. In addition, our maximization process is based on the MLEs of
the first two moments rather than individual measurements, and the proposed
method may be relatively more sensitive to the normality assumption. In cases
where a real-world data does not satisfy this assumption, some transformations
may be necessary to improve normality and the proposed method can then be
applied to the transformed data. When the normality assumption of X and
Y fails, there will be in general some degeneration in the performance of our
method, similar to that of a classical binormal ROC curve modeling. Note that
the weights are dimensionless and thus are more appropriate for diagnostic tests
with similar units. Otherwise certain data preparation (such as data transforma-
tion or normalization) is needed to reduce the dissimilarity among values from
different tests. It also should be pointed out that, as explained by Anderson and
Bahadur (1962), the method to identify optimum linear combination at a fixed
specificity (sensitivity) may become problematic when the specificity (sensitivity)
is extremely large. In such a case, we will work at a location of normal distri-
bution that is far away from its central and thus the variance will dominate the
estimation procedure.
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