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Abstract: Through a series of carefully chosen illustrations from biometry
and biomedicine, this note underscores the importance of using appropriate
analytical techniques to increase power in statistical modeling and testing.
These examples also serve to highlight some of the important recent devel-
opments in applied statistics of use to practitioners.
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1. Introduction

Scientists who work in applied research may have learned introductory sta-
tistical methods in the days when emphasis was placed on fitting data analysis
problems into the paradigms of t-tests, ANOVA, linear repeated measures anal-
ysis, or linear regression, and have found it challenging to stay current with im-
portant subsequent developments — even those over the past 30 or so years. One
might then become aware of these newer developments when a reviewer returns
a submitted manuscript requesting a more-appropriate analysis. For example,
somewhat dated textbooks emphasize modifying non-normal, proportion or non-
linear data using an appropriately chosen transformation; they also lead us to
believe that a choice has to be made between parametric tests such as a t-test or
ANOVA on the one hand and a nonparametric test on the other.

With an eye to researchers and undergraduate and graduate students, this
note underscores some of the common shortcomings observed in current data
analysis. We do so using a series of illustrative examples; our list is in no way
exhaustive but it is quite typical. Additional key references include Lange et al.
(1994), Krzanowski (1998), Lindsey (2004), and Good and Hardin (2006). Given
the fast pace at which new statistical methods are being developed, our aim is to
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also update practitioners and students with some of the recent developments in
techniques useful for biometric and biomedical research.

For those familiar with the Minitab and SAS packages, we provide programs
and output in the Appendices posted at our website1.

To aid in exposition here, we reference results given in these Appendices in
this paper.

2. Some Important Illustrations

The following five examples have been chosen to demonstrate the advantages
of statistical modeling, of examining original data instead of collapsing or pooling
them, of incorporating pairing into data analysis, and of choosing the statistical
technique that maximizes power and whose assumptions match the analysis.

Example 1 . Misapplying the usual χ2 test; choosing a good statistical model.

When asked to examine the count data in Table 1 comparing two drugs
in terms of pain relief, some researchers might incorrectly find no significant
difference between the two treatments using either the generic chi-square test
(p = 0.1422) or Fisher’s Exact test (p = 0.1618).

Table 1: Count data relating Pain Relief and Drug factors.

Pain Relief Total

Drug Complete (1) Substantial (2) Some (3) None (4)

A 5 (20%) 10 (40%) 7 (28%) 3 (12%) 25
B 2 ( 8%) 5 (20%) 11 (44%) 7 (28%) 25

These two tests are inappropriate in this example because they fail to take
advantage of the ordinal nature of the outcome factor (pain relief) and thus lack
statistical power. That is, for these data, the usual chi-square test and the Fisher
Exact test (FET) are more prone to fail to see a significant difference between
the two drugs when such a difference actually exists; stated differently, these two
tests have higher probabilities of type II error rates for ordinal data. We may
draw some comfort from typical software output (such as in Appendix 1a) in that
the generic chi-square test is highlighted as dubious for these data due to the low
expected cell count in 25% of the cells (leading novice data analysts to use the
FET instead), but unfortunately there is no warning of the lack of power for the
FET. Further details regarding these two tests are given in Chapter 2 of Agresti
(2007).

1See: http://www.math.luc.edu/˜tobrien/research/Appendices.pdf
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Because the response variable here is indeed ordinal (in that ’complete’ ex-
ceeds ’substantial’ in terms of pain relief and so on), a more powerful and appro-
priate modelling approach and test is the Mantel-Haenszel (MH) chi-square test
for a linear association; see Agresti (2007:41). For these data, the MH test yields
a p-value of 0.0389, indicating a significant difference between the two drugs in
terms of pain relief. Note that whereas the generic chi-square test is associated
with three degrees of freedom, the MH test is associated with just one degree of
freedom. The analogy to consider is that the first chi-square test is similar to
comparing four treatments and the MH test is just looking at a linear contrast,
which often is appropriate when the treatment is a quantitative factor. This
highlights the fact that the MH test is more powerful to detect a linear trend
in the ‘pain relief’ factor, but is predicated on the assumption that the trend is
linear and not quadratic or cubic. Note that this linear trend is masked when
using the generic chi-square test, which in a sense averages the linear, quadratic
and cubic effects over the three degrees of freedom.

Another approach to analyzing these data is the use of the proportional odds
(PO) model, and is one of the more preferred models for data of this sort, as
proposed in categorical data analysis books such as Dobson (2002), Agresti (2002)
and Agresti (2007). For these data, the PO model takes the form of the following
three-equation expressions:

log
(

π1

π2 + π3 + π4

)
= α1 + βx (2.1)

log
(

π1 + π2

π3 + π4

)
= α2 + βx (2.2)

log
(

π1 + π2 + π3

π4

)
= α3 + βx (2.3)

In these expressions, π1 corresponds to the probability of a “Complete” pain
relief response, π2 corresponds to the probability of a “Substantial” pain relief
response, and so on. The chosen numbering is shown at the top of Table 1 (and
in the computer program given in Appendix 1a). Also, ‘x’ in this expression is an
indicator variable that is chosen to equal one for drug A and zero for drug B. As
shown in the output given in Appendix 1b, the PO model indicates a significant
difference between the two drugs (p-value = 0.0241). The output of the PO
model goes one step beyond the above chi-square tests by providing the following
important interpretation: since the β parameter in the model is estimated to be
1.2205, the odds ratio is estimated to be e1.2205 = 3.389. This indicates that
as an individual shifts from drug B to drug A, the odds of a response in the
more complete pain relief direction increases by a factor of approximately 3.389;
further details can be found in Agresti (2007, chap.6). The SAS output given in
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Appendix 1b also confirms that this model is a good fit to these data indicating
that the proportionality assumption is met (p = 0.8745). Had this condition not
been met for our data, we would have chosen a richer model from those given in
Agresti (2002, 2007).

This example demonstrates the range of choices of models and analyses that
can be associated with a set of count data — each predicated upon different
underlying assumptions which may or may not fit a specific case. This challenges
researchers to think clearly about the appropriate assumptions which best match
ones data. The MH chi-square and the PO models are preferred here because
the response variable is ordinal, and both these methods suggest a significant
difference between the drugs. As indicated, the PO model may well be preferred
for these data because (1) it may not be straightforward to verify the linearity
requirement for the MH method, (2) the proportionality requirement of the PO
model is met for these data, and (3) the PO model is easier to interpret. More
importantly, in either of these cases, a significant difference is suggested between
these two drugs based on this study.

Although the above example comes from a biostatistical application involving
the comparison of two drugs, these methods are equally important for other bio-
logical and ecological applications as well. The models used here are appropriate
for ordinal count data, and analogous methods to the PO model for nominal
count data have been developed as well and are discussed in Agresti (2007). The
next example comes from the biological anthropology literature and highlights
other important caveats.

Example 2. Collapsing data; testing for goodness of fit in Logistic regression.

Data are reported in Grauer (1993) based on recovered skeletal remains from
York, England. These data, given in Table 2a, include the estimated age at death
and the percentage of the individuals that showed evidence of porotic hyperostosis
(PH), which has been shown to be associated with anemia.

Table 2a: Average age of individuals and percentage exhibiting evidence of
porotic hyperostosis at death in recovered skulls in York, England.

Age 0.5 1.5 2.5 3.5 4.5 7.5 12.5 17.5 22.5 30 40 50 60

Percent 8 43 17 33 50 41 59 53 75 66 68 72 59

In Grauer (1993), these count data are subsequently reduced to Table 2b
and a significant association is declared between age and presence of PH (χ2

1 =
27.6, p < 0.0001).
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Table 2b: Collapsed data derived from original count data leading to percent-
ages in Table 2a.

Porotic Hyperostosis Total

Age Present (%) Absent (%)

0 - 20 79 (43.2%) 104 (56.8%) 183
20 - 65 188 (67.9%) 89 (32.1%) 277

While this conclusion is indeed correct, collapsing the original count data and
ignoring the quantitative nature of the ‘age’ variable yields an important loss of
information and statistical power. A more informative approach would be to fit
the binary logistic model. This model holds that of the skulls recovered and for
the individuals of the given age ‘x’, the probability (π) that the skull exhibits
evidence of PH is given by the equation:

π =
eθ3(x−θ2)

1 + eθ3(x−θ2)
(2.4)

This expression - which entails the estimation of two model parameters (θ2 and
θ3) — is equivalently written in the following manner found in most textbooks,

log
(

π

1 − π

)
= θ3(x − θ2) (2.5)

A comparison of the PO model in Equations (2.1) – (2.3) and the Logistic
model in Equation (2.5) underscores the fact that the latter model is just a special
case of the former one where the outcome variable - incidence of PH - has only
two values (presence or absence). Unfortunately, the Logistic model does not fit
these data as indicated in the following Minitab partial output:

Goodness-of-Fit Tests
Method Chi-Square DF P
Pearson 19.2194 11 0.057
Deviance 20.4138 11 0.040
Hosmer-Lemeshow 12.6478 5 0.027

Specifically, the hypothesis being tested in each of these “goodness-of-fit”
tests is that the logistic model in Equation (2.5) fits the data, and since two of
these tests indicate lack-of-fit (p-values below 0.05), the logistic model provides
a dubious fit.

It turns out that the problem here is that we should have chosen the log-scale
- so we should use log(age) - instead of the original scale; this is indicated in the
output given in Appendix 2a. Indeed the log-scale is indicated in this output since
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the 95% confidence interval for the ‘gamma’ scale parameter contains zero (which
corresponds to the log-scale) and not one (which corresponds to the original scale).
Additional details related to this three-parameter ‘scaled logistic model’ are given
in O’Brien et al. (2009a).

In this log-age case (again with x = age), the counterpart of Equation (2.4)
is

π =
(x/θ2)θ3

1 + (x/θ2)θ3
(2.6)

In the expression, θ3 is the slope parameter and θ2 (loosely called the LD50

here) is the parameter with the key interpretation: it is the value of x (age)
for which π = 1/2. For these data, θ2 is estimated to be 10.97 (and with a
95% confidence interval from 6.3 to 15.6). Therefore, this model predicts that
for a (similar) individual who died at greater than approximately 11 years old,
the probability that this individual died with PH exceeds 50%. Thus, this ex-
ample points out that since the interpretation of the LD50 parameter is indeed
paramount for these data, the author’s decision to collapse the data resulted in
the inability to estimate this key parameter.

This and other benefits associated with logistic regression notwithstanding,
we hasten to add that the analysis performed here does not take into account
the fact that the ages of the individuals at death were estimated for these data.
It is very likely that if the actual ages at death were known and used here,
then the estimated value of θ2 would not change appreciably but that the 95%
confidence interval would be wider; additional details of so-called measurement
error — where an independent variable is estimated in addition to the dependent
variable - are given and illustrated in Section 3.4 of Draper & Smith (1998) and
in Stefanski (2002).

Many introductory texts and courses in applied statistics demonstrate the
importance of taking account of pairing (or blocking) when data are so related.
For example, Samuels and Witmer (2003: 351) provides an example in which the
correct paired t-test shows a significant results but the incorrect two-sample t-test
shows no such significant effect. Similarly, the following example demonstrates
that the same can be said for paired count data as well.

Example 3. Accounting for the correlations inherent in paired count data.

Kaitz (1992) examines the results of a study measuring recognition by touch
of a person familiar to oneself. In this study, 36 male-female couples were as-
sessed in turn as to whether each blindfolded individual could correctly choose
the respective partner out of a group of three similar individuals based on touch-
ing either (a) the person’s face (forehead) or (b) the person’s hand. The data
presented and analyzed in the paper are given in Tables 3a and 3b below.
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Table 3a: Face recognition data as given and examined in Kaitz (1992).

FACE Correct Incorrect Total

Male 18 (50.0%) 18 36
Female 24 (66.7%) 12 36

Total 42 30 72

Table 3b: Hand recognition data as given and examined in Kaitz (1992).

HAND Correct Incorrect Total

Male 16 (44.4%) 20 36
Female 25 (69.4%) 11 36

Total 41 31 72

The goal of this research was to see if there is a statistically significant dif-
ference between the two genders in terms of recognition of one’s partner, so two
chi-square tests were performed. For these data, the results are χ2

1 = 2.057(p =
0.1515) for face data and χ2

1 = 4.589(p = 0.0322) for hand data. Thus, Kaitz
(1992) concludes that although no significant difference is observed for face recog-
nition, the female participants fared significantly better than their male counter-
parts in terms of hand recognition.

As highlighted above, however, these data are inherently paired (dependent)
- with a pair or so-called ‘block’ corresponding to a couple - and this pairing has
been ignored in the above analysis (which assumes independence). Although the
full datasets needed to do the paired analysis are unavailable, these data can be
envisaged by examining the following two tables.

Table 3c: Desired count data for face recognition for ‘a’ an integer between 6 and 18.

FACE Female Total

Correct Incorrect

Male Correct a 18 − a 18
Incorrect 24 − a a − 6 18

Total 24 12 36



544 Timothy E. O’Brien and Martin B. Berg

Table 3d: Desired count data for hand recognition for ’b’ an integer between 5 and 16.

HAND Female Total

Correct Incorrect

Male Correct b 16 − b 16
Incorrect 25 − b b − 5 20

Total 25 11 36

In these tables, each entry (count) corresponds to a couple; thus in Table 3c,
the ’a’ corresponds to the number of couples where both the male and female
members of the couple correctly identified the corresponding partner by touching
the face. The marginal totals in Tables 3c and 3d correspond to the data given
in Tables 3a and 3b and examined above. Although the integers ‘a’ in Table 3c
and ‘b’ in Table 3d are unknown (i.e., not provided in the original manuscript),
constraints on the marginal totals necessitate that ‘a’ must lie somewhere between
6 and 18 and that ‘b’ lies somewhere between 5 and 16.

Because the data in Tables 3c and 3d are paired count data, treating and
analyzing them as paired data will provide more powerful results than the analysis
in Kaitz (1992). Further, as paired count data, they can best be analyzed using
McNemar’s (chi-square) test. This test compares the off-diagonal counts in Tables
3c and 3d, and is discussed in Agresti (2007:245). Interestingly, depending on the
values of ‘a’ and ‘b’, the data can yield results either supporting or refuting the
original analyses. For example, for the face variable, although non-significance
was declared above, McNemar’s test gives the test statistic χ2

1 = 18/(21−a), and
so a significant difference is indicated for the values a = 17(p = 0.0339) and for
a = 18(p = 0.0143). Similarly, although significance was declared in Kaitz (1992)
for the hand data, in this case McNemar’s test gives the test statistic

χ2
1 = 81/(41 − 2b) and a non-significant difference for b = 5 through 9. To

illustrate, the results of this test are provided in Appendix 3 for the case b = 6.
As is often the case, we also could go one step further in our analysis of these

paired count data: because the face and hand measurements for a couple are
correlated, we might be wise to perform a multivariate test which takes account
of this potential correlation. Indeed, a multivariate extension of McNemar’s test is
given in Klingenberg & Agresti (2006). Thus, as with the previous examples, this
illustration underscores the fact that more appropriate and powerful statistical
analysis can provide conclusions that disagree from those given by inappropriate
or less-powerful analyses.

Researchers are often reminded to check underlying assumptions before per-
forming any statistical test, and the following example highlights why this is
important. It also provides a useful method for testing when certain key as-



Getting the Most from Data 545

sumptions may not be met and when nonparametric methods may be inappro-
priate or lack sufficient power. As mentioned above, before widespread access to
personal computers and sophisticated statistical software packages, practitioners
and applied statisticians were encouraged to transform data so as to meet key
assumptions and requirements. For example, it was often suggested that count
data be transformed using the log-transformation and that proportion data be
transformed using the arcsine-square-root-transformation. Nowadays, PCs and
software can handle the original data and perform the more-appropriate analysis
as is demonstrated here.

Example 4. Analyzing ANOVA data with unequal variances using the ‘LR χ2

test’.

The environmental data used here correspond to effluent yield data for three
types of wastewater treatment; these data are summarized in the Minitab output
given in Appendix 4a and graphed in Figure 1.
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Figure 1: Effluent yield data for three wastewater treatments.

Environmental researchers, interested in deciding whether there is a signif-
icant difference in the average effluent yields for the three treatments, might
be tempted to use the one-way ANOVA test performed in Appendix 4a. Be-
cause the reported p-value of 0.061 exceeds the 5% cut-off, some such researchers
would declare no significant difference between these means. Although no warn-
ing is given in the Minitab computer output, Figure 1 clearly indicates that the
constant-variance requirement is not met for these data.

Understandably, a more appropriate approach for testing is the likelihood
ratio (LR) test; preference for likelihood methods over other tests is underscored
in Pawitan (2001) and Agresti (2002, 2007). Because the normality assumption
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appears met for these data (Figure 1), this LR χ2 test is performed in Appendix
4b, and yields a strongly significant result (χ2

2 = 16.7, p = 0.0002). Briefly, this
test is based on the logarithm of the likelihood under the null hypothesis over the
likelihood under the alternative hypothesis and has a χ2 distribution (Agresti,
2007, p.89). Thus, this more appropriate analysis here indicates that the average
effluent yields are not the same, and the next step would be to determine which
treatments differ using the likelihood analogue of a multiple comparison test. As
for the original ANOVA analysis, this conclusion is based on the assumption of
normality although here allowing for possibly unequal variances.

The LR program given in Appendix 4b can be easily adapted to distributions
other than the normal distribution. For example, if the original data were count
data, we might want to perform a LR test of means assuming a Poisson distribu-
tion. In this manner, we see that the heavy reliance on transformations performed
in the past is largely unnecessary, especially since one is never sure of which trans-
formation to use to render the data to be ‘nearly normal’; an additional example
illustrating the shortcomings of transformations is given in Samuels & Witmer
(2003, p.289).

For these data, we could have done a Kruskal-Wallis nonparametric test, but
in general nonparametric tests may lack power. Also, the term ’nonparametric’
is really a misnomer since power calculations for nonparametric tests such as the
Sign test, the Wilcoxon Signed-Rank test, and so on, are actually based upon
the assumptions of symmetry, normality and constant variances. In addition,
note that randomization methods would fail for analyzing these data since these
methods inherently assume equal variances and this is clearly not the case.

Example 5. Modifying Logistic Regression for Interval-Censored Bioassay
Data.

This illustration was originally motivated from work with a genetics graduate
student interested in comparing several treatments in terms of survival profiles
and is modified from the original project here. Similar examples can be found
from the field of ecology in Muenchow (1986) and from the field of biomedicine
in Collett (2003b).

We are interested here in comparing two treatments in terms of prolonging
cancer survival rates. Twenty cancer patients are randomized to each treatment,
and the number surviving at weeks 2, 4, 6 and 8 are recorded. These data and
survival percentages are given in the following table. In addition, the data and
fitted logistic curves are plotted in Figure 2, and the goal here is to quantify
and test the degree of rightward shift in the treatment B curve relative to the
treatment A one. This is very similar to the assessment of relative potency as
discussed in Finney (1978) and Collett (2003a).
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Table 4: Survival counts and probabilities of original 20 for each treatment at
weeks 2, 4, 6, and 8.

Number (and Percent) of Original 20 Surviving at Week

Treatment 2 4 6 8

A 16 (80%) 10 (50%) 6 (30%) 2 (10%)
B 18 (90%) 12 (60%) 10 (50%) 6 (30%)
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Figure 2. Plot of survival probabilities over time (in weeks) for treatment A
(solid curve and squares) and treatment B (dashed curve and diamonds).

An incorrect analysis of these data would be to fit a logistic regression curve
(of Example 2 above) to each of the two treatments since a requirement of lo-
gistic regression is that independent subjects be observed at each time point.
Instead, for these data one observes the cohorts of twenty patients over time,
and the measurements are therefore correlated. Nonetheless, we provide this in-
correct analysis here to underscore the importance of this independent-subjects
requirement and because this was the initial means of analysis performed by the
graduate student; the student was in turn following the approach used in Legal
et al. (1994).

The logistic curve in Equation (2.6) is incorrectly fit to each of the two treat-
ments in Appendix 5a, and this output demonstrates - using the LR χ2 test
discussed in the previous example — that (from the results of the first and sec-
ond runs of the NLMIXED procedure) parallelism of the curves (θ3A = θ3B) is
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retained (χ2
1 = 26.4 − 26.3 = 0.1, p = 0.7518). Using the third NLMIXED pro-

cedure, the relative potency parameter, ρ = θ2B/θ2A, is estimated to be 1.4284,
and the LR χ2 test of equal potency of the two treatments (H0 : ρ = 1) is re-
jected (χ2

1 = 31.1 − 26.4 = 4.7, p = 0.0302). As a side note, we point out that
the 95% so-called Wald confidence interval for the relative potency parameter
(ρ) provided in the third NLMIXED run, (0.8710 , 1.9857), does contain one
thereby implying equal potency of these treatments. This apparent contradiction
highlights the superiority of likelihood methods over Wald methods. To sum up:
this incorrect logistic analysis implies a significant increase in survival rates when
using treatment B because the hypothesis of equal potencies is rejected.

As indicated above, the logistic analysis in this example is erroneous be-
cause the same twenty individuals were observed over time. In truth, what is
known is that four patients in the treatment A group died between time-points 0
and 2 weeks, six treatment A patients died between time-points 2 and 4 weeks,
and so on. Thus, a more appropriate approach is to consider interval-censored
analysis methods. The interval-censored methodology given in Chapter 9 of Col-
lett (2003b) has been modified in Appendix 5b to use the log-logistic expres-
sion from Equation (2.6). These data again exhibit parallelism of the curves
(χ2

1 = 126.7 − 126.5 = 0.2, p = 0.6547), but the test of equal potency is retained
here (χ2

1 = 128.4− 126.7 = 1.7, p = 0.1923). Our final conclusion regarding these
data is that no significant difference is detected between the two treatments in
terms of prolonging survival times in cancer patients — i.e., the opposite conclu-
sion as that reached using the näıve logistic method.

In the above example, although we used the parametric approach of assuming
the logistic curve fits these interval-censored data, we can draw comfort from the
fact that the same conclusion is reached (χ2

1 = 2.5, p = 0.1138) using the non-
parametric proportional hazards approach as discussed in Collett (2003b:282).

3. Discussion

In introductory statistics textbooks and courses, we are reminded to check
the underlying assumptions before performing a statistical test, and the above
examples illustrate what can go wrong when inappropriate techniques are used
to analyze our data. Most notably, we sometimes reach the wrong conclusion
or cannot answer our important research questions. Equally important is the
issue of choosing an informative and useful experimental design; these design
concerns are addressed for example in Kuehl (2000) for general problems and in
O’Brien et al. (2009b) for dose-response bioassay models. Experiments are often
too expensive and time consuming to squander by fitting dubious or incorrect
statistical analyses.

It is often disconcerting to the practitioner and student that several statis-
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tical analyses may be used to analyze the same dataset — depending on the
assumptions that are made. This is demonstrated in Examples 1 and 5 above,
and thankfully in these cases they produce the same conclusion. When they do
not, one needs to better examine (and perhaps test) the underlying assumptions
or conditions until we are convinced which analysis to use. Indeed, Box (1979)
reminds us that “all models are wrong some models are useful”, and this encour-
ages us to be mindful of our need to test and validate our models and methods.
Thus, the above illustrations underscore that applied statistical analysis is a field
that is in a continuous state of change and improvement — due largely to better
understanding, increased computing power and better statistical packages. We
look forward to the subsequent developments yet to come.
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