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Abstract: For binary regression model with observed responses (Y s), spec-
ified predictor vectors (Xs), assumed model parameter vector (β) and case
probability function (Pr(Y = 1|X,β)), we propose a simple screening method
to test goodness-of-fit when the number of observations (n) is large and Xs
are continuous variables. Given any threshold τ ∈ [0, 1], we consider classi-
fying each subject with predictor X into Y ∗=1 or 0 (a deterministic binary
variable other than the observed random binary variable Y ) according to
whether the calculated case probability (Pr(Y = 1|X,β)) under hypothe-
sized true model ≥ or < τ . For each τ , we check the difference between the
expected marginal classification error rate (false positives [Y ∗=1, Y =0] or
false negatives [Y ∗=0, Y =1]) under hypothesized true model with the ob-
served marginal error rate which is directly observed due to this classification
rule. The screening profile is created by plotting τ -specific marginal error
rates (expected and observed) versus τ ∈ [0, 1]. Inconsistency indicates lack-
of-fit and consistence indicates good model fit. We note that, the variation
of the difference between the expected marginal classification error rate and
the observed one is constant (O(n−1/2)) and free of τ . The smallest homo-
geneous variation at each τ potentially detects flexible model discrepancies
with high power. Simulation study shows that, this profile approach named
as CERC (classification-error-rate-calibration) is useful for checking wrong
parameter value, incorrect predictor vector component subset and link func-
tion misspecification. We also provide some theoretical results as well as
numerical examples to show that, ROC (receiver operating characteristics)
curve is not suitable for binary model goodness-of-fit test.

Key words: Binary model, classification error rate, goodness-of-fit, receiver
operating characteristics (ROC).
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1. Introduction

For (generalized) linear regression models with parameter vector (β), k-dimen
sional predictor vectors (Xi, i = 1, . . . , n) and responses (Yi, i = 1, . . . , n), hy-
pothesis test often involves a null (H0) and an alternative (Ha) assumption. The
Neyman-Pearson lemma based test rule usually leads to deriving a distribution
of estimated parameters/statistics under H0 (hypothesized true parameter values
and model) and p-value is calculated to determine whether we would be in favor
of H0 or Ha. On the other hand, goodness-of-fit test does not necessarily involve
an alternative hypothesis and criteria are mainly proposed to evaluate the consis-
tence between a hypothesized true model and observations without the need for
a competing model. Binary regression model goodness-of-fit test deserves special
attention due to simple structure of responses. McCullagh and Nelder (1989,
Ch.4.4.5) demonstrated that, two commonly applied criteria for generalized lin-
ear model goodness-of-fit test, the residual deviance function and Pearson’s χ2

statistic, are not very suitable for binary model goodness-of-fit test. The present
work proposes an efficient simple method to evaluate any hypothesized binary
model when the sample size (n) is large and predictors (Xs) are continuous vari-
ables. The motivation comes from subject classification by case (Y =1) probability
Pr(Y = 1|X,β), where Y (subject-specific) is the random binary response for any
subject with predictor vector X (subject-specific) and parameter vector β (model-
specific), and the probability function Pr (model-specific) for Bernoulli trial could
be of any form with range [0,1]. As an example, clinicians may use probability
threshold 1/2 to make disease diagnosis based on trained binary regression model
from historical data including patient disease (case positive: Y =1 and case neg-
ative: Y =0) status as well as multiple medical and/or biological characteristics
(X). A new patient will then be diagnosed as disease positive (Y ∗ = 1) if the
calculated disease (case) probability ≥1/2 or disease negative (Y ∗ = 0) if the
disease (case) probability <1/2. Note that, Y ∗ is not necessarily equal to Y and
thus we may expect false positives (Y ∗=1, Y =0) and/or false negatives (Y ∗=0,
Y =1). We consider arbitrary probability threshold and classification error rate
after comparing case probability with threshold τ ∈ [0, 1]. Pr(Y = 1) ≥ τ re-
sults in classifying subject as case positive (Y ∗ = 1) and Pr(Y = 1) < τ leads
to classifying subject as case negative (Y ∗ = 0). Given observed responses (Y s),
predictors (Xs), assumed true model parameter (β) and case probability function
(Pr), we will obtain two important values: 1) The expected marginal classification
error rate (EMCER), i.e., the probability that a randomly selected subject out
of the n individuals would be “expected” to be misclassified under the assumed
true model; and 2) The observed marginal classification error rate (OMCER),
i.e., the probability that a randomly selected subject out of n individuals is “ob-
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served” to be misclassified based on the classification rule. The goodness-of-fit
test is done by comparing EMCER with OMCER across τ ∈ [0, 1]. Any pair-wise
τ -specific error rate difference beyond 95% error bound (significant difference)
pinpoints model discrepancy between the assumed true model and the observed
binary responses. Among these τs, a large portion of significant difference indi-
cates bad model fit, otherwise a good model fit is very likely obtained. We name
the present method as “classification-error-rate-calibration (CERC)”. CERC en-
joys minimal-variation homogeneity across thresholds (τs) and applies well to
binary regression model goodness-of-fit test under large sample size (n) and con-
tinuous predictor variables (Xs). When the true parameters (β) are unknown,
numerical results demonstrate that, CERC works well after replacing the true
parameters (β) by estimated parameters (β̂) from fitting the true model (case
probability function Pr and predictor X). Interestingly, we show that, another
profile approach ROC (receiver operating characteristics) curve is not suitable
for goodness-of-fit test for binary regression models in this scenario.

The rest of this article is organized as follows: Section 2 introduces subject
classification by case probability for binary regression model; Section 3 develops
a classification-based criterion for binary model goodness-of-fit test; Section 4
demonstrates the usefulness of this simple approach by simulations; Section 5
develops some theoretical results along with numerical examples to show that
ROC curve can not be used for binary regression model goodness-of-fit test; and
Section 6 concludes with discussion.

2. Subject Classification by Case Probability

We follow the notations in Section 1. For any binary regression model with
response Y , k-dimensional predictor vector X, parameter vector β and a specified
case (Y =1) probability, Pr(Y = 1|X,β), the case probability population is cre-
ated as pi = Pr(Yi = 1|Xi, β) = f(Xi, β), i = 1, 2, . . . , n, a function of predictor
vector (Xi) and parameter vector (β). Note that, this case probability population
is fixed once we record the predictor vectors, specify the model (case probability
function) and the parameter vector. As described in Section 1, each subject is
classified using the following rule

If pi ≥ τ, we classify subject with predictor Xi as Y ∗
i = 1, (2.1)

if pi < τ, we classify subject with predictor Xi as Y ∗
i = 0. (2.2)

In the sequel, we take the hypothesized true model (case probability function
Pr) as well as parameter vector (β) as fixed and no model fitting (parameter
estimation) is considered, unless parameter (β) estimation is actually applied
(details later, Sections 4.1 and 4.2).
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2.1 Expected marginal classification error rate (EMCER)

Result 1 If the assumed model (case probability function Pr and parameter
vector β) is correct, the sample size is n and the probability threshold is τ , we
have the following result for EMCER given τ , which is denoted as αT (τ).

αT (τ) =
1
n

∑
{pi<τ,1≤i≤n}

pi +
1
n

∑
{pi≥τ,1≤i≤n}

(1 − pi) = EFPR + EFNR,

where, EFPR and EFNR are the expected marginal false positive and false neg-
ative rates respectively.
Proof. False positive case and false negative case are disjoint events based on
aforementioned classification rule. Given the assumed true model with param-
eter β and predictor population X = {X1, X2, . . . , Xn}, we have pi = Pr(Yi =
1|Xi, β) = f(Xi, β) for i = 1, 2, . . . , n. We denote the probability population P as
{p1, p2, . . . , pn} and the observed binary response population Y as {Y1, Y2, . . . , Yn}
to derive EMCER (αT (τ)) given τ . Since EMCER (Section 1) simply repre-
sents the overall misclassification probability based on foregoing classification
rule ((2.1) and (2.2)), we have

Pr(Misclassification)
= Pr(False Positive or False Negative)
= Pr(False Positive) + Pr(False Negative)
= Pr(Y ∗ = 1, Y = 0) + Pr(Y ∗ = 0, Y = 1)
= Pr(P ≥ τ, Y = 0) + Pr(P < τ, Y = 1)
= Pr(P ≥ τ) × Pr(Y = 0|P ≥ τ) + Pr(P < τ) × Pr(Y = 1|P < τ)

= Pr(P ≥ τ) ×
∫

P≥τ
(1 − P )dFP + Pr(P < τ) ×

∫
P<τ

PdFP

= (
∫

P≥τ
dFP ) ×

∫
P≥τ

(1 − P )dFP + (
∫

P<τ
dFP ) ×

∫
P<τ

PdFP .

Since case probability population (P ) of size n is fixed given predictors (Xs),
the hypothesized model (case probability function Pr) and parameter (β), by the
definition of EMCER (Section 1) each subject-specific case probability (pi) has
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equal chance of being selected from any specified subspace. So we have

(
∫

P≥τ
dFP ) ×

∫
P≥τ

(1 − P )dFP

=

∑
{pi≥τ,1≤i≤n} 1

n
×

∑
{pi≥τ,1≤i≤n}(1 − pi)∑

{pi≥τ,1≤i≤n} 1

=

∑
{pi≥τ,1≤i≤n}(1 − pi)

n

and

(
∫

P<τ
dFP ) ×

∫
P<τ

PdFP =

∑
{pi<τ,1≤i≤n} 1

n
×

∑
{pi<τ,1≤i≤n} pi∑
{pi<τ,1≤i≤n} 1

=

∑
{pi<τ,1≤i≤n} pi

n
.

The proof ends.

Remark We consider the clinical example in Section 1. For any true binary
regression model, 1/2 threshold always gives minimal EMCER.

Illustration. For any threshold τ 6= 1/2, we assume τ > 1/2 without loss of
generality and show that EMCER (αT (τ)) is no less than that under τ = 1/2.

αT (τ)

=
1
n

[
∑

{pi<τ,1≤i≤n}

pi +
∑

{pi≥τ,1≤i≤n}

(1 − pi)]

=
1
n

[
∑

{pi<1/2,1≤i≤n}

pi +
∑

{1/2≤pi<τ,1≤i≤n}

pi +
∑

{pi≥τ,1≤i≤n}

(1 − pi)]

≥ 1
n

[
∑

{pi<1/2,1≤i≤n}

pi +
∑

{1/2≤pi<τ,1≤i≤n}

(1 − pi) +
∑

{pi≥τ,1≤i≤n}

(1 − pi)]

=
1
n

[
∑

{pi<1/2,1≤i≤n}

pi +
∑

{pi≥1/2,1≤i≤n}

(1 − pi)]

= αT (1/2). (2.3)

Similar procedure applies to τ < 1/2 case.

2.2 Observed marginal classification error rate (OMCER)

OMCER is calculated as follows.
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1) If pi ≥ τ , then we classify subject with predictor Xi as Y ∗
i = 1. The

misclassified (false positive) count increases by 1 if the observed Yi=0.

2) If pi < τ , then we classify subject with predictor Xi as Y ∗
i = 0. The

misclassified (false negative) count increases by 1 if the observed Yi=1.

OMCER given τ , denoted by αE(τ), is simply the total misclassified count divided
by sample size n, i.e.,

αE(τ) =
1
n

∑
{pi<τ,1≤i≤n}

1{yi=1} +
1
n

∑
{pi≥τ,1≤i≤n}

1{yi=0} = OFPR+OFNR, (2.4)

where, 1{Y =1} and 1{Y =0} are the indicator functions for case Y = 1 and Y = 0,
OFPR and OFNR are the observed marginal false positive and false negative
rates respectively.

Result 2 For any threshold τ ∈ [0, 1], the variance of OMCER (αE(τ)) is

VαE(τ) =
1
n2

n∑
i=1

pi(1 − pi) = O(n−1),

which is free of τ and less than 1/(4n).

Proof. From the definition of OMCER ((2.4)), each subject-specific indicator
function 1{Yi=1} or 1{Yi=0} has variance pi(1−pi) ≤ 1/4. All Y s are independently
distributed and all subjects are independently classified, the proof ends.

3. Application to Screening Binary Models

We describe why CERC may help to test goodness-of-fit for binary regression
models. In Diagram 1, the x-axis represents the subject indices (1 to n) and
the y-axis represents the values of ordered case probabilities ({p(1),p(2),. . .,p(n)}).
Specifically, under the assumed true model, the vertical lines in the lower-left
shaded region are case probabilities (subject-specific classification false positive
rates) which are less than threshold τ , the vertical lines in the upper-right shaded
region are no-case probabilities (subject-specific classification false negative rate)
with case probabilities no less than threshold τ . Thus the curved boundary
of two shaded regions represents ordered case probabilities under true model.
EMCER×n due to threshold τ is represented by the two shaded regions (Result
1). We are interested in studying the concordance between piecewise true case
probabilities and observed case probabilities. In Diagram 1, we use an “abstract”
dotted curve to represent the ordered observed case probabilities (like “smoothed”
Y s) only for illustration purpose. If the true case probability curve stay close to



Screening Binary Models with Continuous Predictor Variables 519

observed case probability curve, then the model is likely correct, otherwise the
model is to be improved. For the probability curve from true model, we assume
probability interval [τ , τ + δ] matches subject subset (Sτ,δ) of size nrτ,δ (with
subject index from mτ to mτ+δ, Diagram 1), where mτ+δ − mτ ≈ nrτ,δ and rτ,δ

is a proportion likely associated with τ and δ other than sample size n. We
now increase the threshold from τ to τ + δ and the change in EMCER is around
rτ,δ|(1− (τ + δ/2))− (τ + δ/2)| = rτ,δ|1− 2τ − δ| (Result 1), which is associated
with |(region I) − region(II+III)|, since no change takes place outside [τ , τ + δ].
Here, we use the middle point (τ + δ/2) between τ and τ + δ as probability
average within [τ ,τ + δ] for illustration purpose. If the hypothesized true model
(Pr and β) describes the responses (Y s) correctly, within subject subset Sτ,δ,
the misclassified responses should also follow this change pattern when threshold
increases from τ to τ + δ: from around nrτ,δ(1− (τ + δ/2)) misclassified subjects
(Y = 0) to around nrτ,δ(τ + δ/2) misclassified subjects (Y = 1). The change
in OMCER is the difference between these two counts divided by sample size n,
which is expected to be close to the aforementioned change in EMCER. However,
because of possible local discrepancy between true case probabilities and observed
case probabilities (curved boundary of shaded areas and “abstract” dotted curve)
represented by region III in Diagram 1, the local change in OMCER would be
associated with |(region I+II)−region(III)| in Diagram 1. Consequently, possible
discrepancy between EMCER and OMCER changes may occur due to threshold
increment from τ to τ + δ, which can be seen to be associated with region II in
Diagram 1. Again, rτ,δ is not inherently associated with sample size n, we expect
sufficient power to detect minor inconsistency between αT (τ) curve and αE(τ)
curve under large n (Result 2) if the hypothesized true model is actually untrue.
On the other hand, cumulative inconsistency over moderate-sized probability
interval may lead to appreciable difference between EMCER change and OMCER
change. Now we define the misclassification rate difference as

αTE(τ) = αE(τ) − αT (τ), τ ∈ [0, 1].

Its variance VαTE(τ) equals VαE(τ) (Result 2) and is free of τ since αT (τ) is an
expected value without random error. For αTE(τ), we propose a prescribed
95% error bound which is denoted by “Critical αTE” = 1.96

√
VαTE , where the

constant VαTE is the variance of αTE(τ) under hypothesized model and 1.96 is
the two-sided 2.5% quantile for standard normal distribution. The normality
assumption is reasonable under large sample size n. Note that, a conservative
distribution (case probability)-free Critical αTE could be taken as 0.98/

√
n. See

Result 2 and Table 2.
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Diagram 1: Shaded area is EMCER×n given τ under the hypothesized true
model, the curved shade boundary represents ordered case probabilities from
the true model and the dotted curve represents the corresponding “smoothed”
observations (Y s).

One option for model checking is to compare the maximal misclassification
rate difference (Supτ∈[0,1]|αTE(τ)|) with Critical αTE and lack-of-fit is to be re-
ported if the former one is greater than the latter one. As a statistical concept,
marginal probability simply represents the overall population proportion with
certain property, i.e., the probability that a randomly chosen individual from
the population has certain property. So far, we applied marginal probability
to calculating EMCER (Result 1) and OMCER (Section 2.2) given τ ∈ [0, 1],
where “being misclassified” is our interested property among subject population
with size n (Sections 2.1 and 2.2). Now we still use marginal probability idea
to construct goodness-of-fit test criterion considering another interested property
“αTE(τ) exceeding 95% error bound” among threshold (τ ∈ [0, 1]) population.
Another option for model checking works on the following “exceeding proportion”

#{τ : τ ∈ [0, 1] and |αTE(τ)| ≥ Critical αTE}
#{τ : τ ∈ [0, 1]}

, (3.1)

where # represents the subset measure on [0,1]. Lack-of-fit is to be reported if
this proportion exceeds prescribed 5% (Critical αTE is 95% error bound). Note
that, αTE(τ)s across multiple τs are correlated among τs since they are from a
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Diagram 2: Case probability curves with a single bump as discrepancy. The
x-axis represents subject index and the y-axis represents ordered case proba-
bilities.

&%
'$

Threshold (τ ∈ [0, 1])

Error Rates

(EMCER)
(OMCER)

Diagram 3: CERC curves (EMCER and OMCER) due to single bump in prob-
ability curves (Diagram 2). The vertical bars represent discrepancy between
EMCER and OMCER given τ ∈ [0, 1].

single sample of (X,Y ). However, marginal probability does not require indepen-
dence among individuals in the population. Now we illustrate the power of CERC
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using a special example. Diagram 2 shows two ordered-case-probability curves
with a single bump representing discrepancy between two sets of binary model
case probabilities, each subject on the x-axis has two matching probabilities: one
is from the true model and the other is from the observed case (Y = 1) probability
after local smoothing for illustration purpose. The curve with bump is taken as
the probability set derived from observed responses. Diagram 3 shows EMCER
and OMCER curves across τ ∈ [0, 1] for Diagram 2, where the circle identifies mi-
nor discrepancy associated with those τs and out-of-circle region shows identical
nonignorable discrepancy across other τs.

4. Simulation Study

This section studies the usefulness of CERC for detecting binary model lack-
of-fit due to misspecified parameter value (β), predictor component subset (X) or
link function g, where subject-specific linear prediction xβ = g(subject-specific
case probability p). We consider the following popular link functions: logit link
g1(p) = log(p/(1 − p)), probit link g2(p) = Φ−1(p) and complementary log-log
link g3(p) = log(− log(1 − p)).

4.1 Distinction under same link functions

Identical parameter dimension

For k = 2 or 3, based on certain distribution, we simulate each component
of predictor vector Xi = (Xi,0, Xi,1, . . . , Xi,k−1), i = 1, 2, . . . , n (=10,000), while
the first component (Xi,0) is 1. No correlation structure within each predic-
tor vector is incorporated for simplicity. We use k-dimensional true parameter
(β0 = (β0,0, β1,0, . . . , βk−1,0)) to simulate n binary responses under link function
g(Pr(Y = 1))=XT β0. In practice, often we do not know the exact true param-
eter (β0) and instead use a hypothesized true model (with working parameter
β∗ = (β0,∗, β1,∗, . . . , βk−1,∗)) to describe the binary response mechanism, where
β∗ has the same dimension as β0 while different value. Given probability thresh-
old τ ∈ [0, 1], we can calculate EMCER (Section 2.1) using hypothesized true
parameter β∗ and calculate OMCER (Section 2.2) using β∗ as well as simulated
responses from β0. Since EMCER is produced from β∗ and OMCER is actually
produced from both β0 and β∗, we expect potential discrepancy between these
two misclassification rates because the difference between β0 and β∗ is not made
by model fitting (parameter estimation). Simulations involving model fitting (pa-
rameter estimation) will be discussed in Sections 4.1 and 4.2. We do this cross
m(=100) different τs (equal-partition on [0,1]) in order to form a goodness-of-fit
evaluation profile. We use logit link function as an example and similar results
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Table 1: Simulation results (g0 = true link function; (β0,0, β1,0, β2,0, β3,0) is
true parameter; g∗ = working link function; (β0,∗, β1,∗, β2,∗, β3,∗) is working
parameter.)

true link function working link function

No. g0 β0,0 β1,0 β2,0 β3,0 g∗ β0,∗ β1,∗ β2,∗ β3,∗
1 logit -1.00 2.00 logit -1.00 2.00
2 logit -1.00 2.00 logit -1.00 2.50
3 logit -1.00 2.50 logit -1.00 2.00
4 logit -1.00 2.00 logit -1.50 2.00
5 logit -1.00 2.00 logit -0.50 2.50
6 logit -1.00 2.00 3.00 logit -1.00 2.00 3.00
7 logit -1.00 2.00 3.00 logit -1.00 2.50 3.50
8 logit -1.00 2.00 3.50 logit -1.00 2.50 3.00
9 logit -1.00 2.00 3.00 logit -1.50 2.50 2.50
10 logit -1.00 2.00 3.00 logit -1.50 2.00 3.00
11 logit 0.00 4.00 4.00 -12.0 logit 7E-3 3.94 3.82 -11.7
12 logit 0.00 4.00 4.00 -12.0 logit 2.98 -2.01 -2.10 0.00
13 probit -1.00 2.00 probit -1.05 2.03
14 cloglog -1.00 2.00 cloglog -1.02 1.97
15 probit -1.00 2.00 logit -1.77 3.57
16 logit -1.00 2.00 probit -0.61 1.15
17 cloglog -1.00 2.00 logit -0.69 2.73
18 logit -1.00 2.00 cloglog -1.21 1.33

Table 2: Simulation results (Mean |αTE | = average of |αTE(τ)| across τ ∈ [0, 1],
0.98/

√
n is the conservative distribution-free 95% error bound for |αTE | under

the true model with sample size n.)

No. Mean |αTE | Sup1≤τ≤1|αTE(τ)| Critical αTE 0.98/
√

n Exceeding proportion

1 2.36E-3 5.59E-3 7.37E-3 1.00E-2 0.00
2 2.45E-2 4.12E-2 6.91E-3 1.00E-2 0.86
3 1.81E-2 3.27E-2 7.34E-3 1.00E-2 0.86
4 3.90E-2 6.13E-2 7.01E-3 1.00E-2 0.93
5 5.56E-2 9.15E-2 7.04E-3 1.00E-2 0.95
6 1.20E-3 2.76E-3 6.07E-3 1.00E-2 0.00
7 1.78E-2 2.90E-2 5.69E-3 1.00E-2 0.84
8 8.58E-3 1.58E-2 5.88E-3 1.00E-2 0.71
9 2.99E-2 5.18E-2 5.96E-3 1.00E-2 0.90
10 2.02E-2 3.85E-2 5.95E-3 1.00E-2 0.86
11 1.44E-3 6.31E-3 7.85E-3 1.00E-2 0.00
12 2.16E-2 5.44E-2 8.48E-3 1.00E-2 0.58
13 1.55E-3 4.61E-3 5.85E-3 1.00E-2 0.00
14 1.16E-3 4.91E-3 6.73E-3 1.00E-2 0.00
15 2.46E-3 6.16E-3 5.92E-3 1.00E-2 0.06
16 3.42E-3 7.91E-3 7.36E-3 1.00E-2 0.05
17 8.81E-3 1.69E-2 6.79E-3 1.00E-2 0.60
18 1.10E-2 2.72 E-2 7.52E-3 1.00E-2 0.52
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Figure 1: τ -wise comparison between EMCER and OMCER from simulations
1-10. (The solid line is EMCER curve, the dotted line is OMCER curve. τ
covers [0,1] on the x-axis.)

occur for other links. Ten simulations are considered in order to take into ac-
count diverse scenarios, the configurations as well as model checking results are
summarized in Table 1 (panel 1), Table 2 (panel 1) and Figure 1.

¦ (Simulation 1) k=2, X = (1, X1), β0 = (−1.00, 2.00) and β∗ = β0. We
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simulate X1 from uniform distribution U [0, 1]. Y s are generated using logit
link with linear prediction −1 + 2X1. This is a control simulation and no
discrepancy is detected between model assumption and responses (Y s).

¦ (Simulation 2) k=2, X = (1, X1), β0 = (−1.00, 2.00) and β∗ = (−1.00, 2.50).
We simulate X1 from uniform distribution U [0, 1]. Y s are generated using
logit link with linear prediction −1 + 2X1. We apply a working linear term
coefficient which is different from the true value and substantial discrepancy
is found.

¦ (Simulation 3) k=2, X = (1, X1), β0 = (−1.00, 2.50) and β∗ = (−1.00, 2.00).
We simulate X1 from uniform distribution U [0, 1]. Y s are generated using
logit link with linear prediction −1 + 2.5X1. We switch the values between
the true parameter and the working parameter in simulation 2 and similar
discrepancy is found with opposite directions (left panels in rows 2 and 3,
Figure 1.

¦ (Simulation 4) k=2, X = (1, X1), β0 = (−1.00, 2.00) and β∗ = (−1.50, 2.00).
We simulate X1 from uniform distribution U [0, 1]. Y s are generated using
logit link with linear prediction −1 + 2X1. We apply a working intercept
which is different from the true value and substantial discrepancy is found.

¦ (Simulation 5) k=2, X = (1, X1), β0 = (−1.00, 2.00) and β∗ = (−0.50, 2.50).
We simulate X1 from uniform distribution U [0, 1]. Y s are generated using
logit link with linear prediction −1 + 2X1. We apply a working parameter
with two components different from the true value and substantial discrep-
ancy is found.

¦ (Simulation 6) k=3, X = (1, X1, X2), β0 = (−1.00, 2.00, 3.00) and β∗ =
(−1.00, 2.00, 3.00). We simulate X1 and X2 from uniform distribution
U [0, 1]. Y s are generated using logit link with linear prediction −1+2X1 +
3X2. For 3-dimensional case, this is a control simulation and no discrepancy
is detected between model assumption and responses (Y s).

¦ (Simulation 7) k=3, X = (1, X1, X2), β0 = (−1.00, 2.00, 3.00) and β∗ =
(−1.00, 2.50, 3.50). We simulate X1 and X2 from uniform distribution
U [0, 1]. Y s are generated using logit link with linear prediction −1+2X1 +
3X2. We apply a working parameter with two linear term coefficients dif-
ferent from the true value and substantial discrepancy is found.

¦ (Simulation 8) k=3, X = (1, X1, X2), β0 = (−1.00, 2.00, 3.50) and β∗ =
(−1.00, 2.50, 3.00). We simulate X1 and X2 from uniform distribution
U [0, 1]. Y s are generated using logit link with linear prediction −1+2X1 +
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3.5X2. Compared with simulation 7, we still apply a working parameter
with two linear term coefficients different from the true value while with
identical sum 5.5. For such a case, substantial discrepancy is still found.

¦ (Simulation 9) k=3, X = (1, X1, X2), β0 = (−1.00, 2.00, 3.00) and β∗ =
(−1.50, 2.50, 2.50). We simulate X1 and X2 from uniform distribution
U [0, 1]. Y s are generated using logit link with linear prediction −1+2X1 +
3X2. We apply a working parameter with three components different from
the true value and substantial discrepancy is found.

¦ (Simulation 10) k=3, X = (1, X1, X2), β0 = (−1.00, 2.00, 3.00) and β∗ =
(−1.50, 2.00, 3.00). We simulate X1 and X2 from uniform distribution
U [0, 1]. Y s are generated using logit link with linear prediction −1+2X1 +
3X2. We apply a working parameter with only intercept different from the
true value and substantial discrepancy is found.

To sum up, if the working parameter (β∗) is identical to true parameter (β0), then
the two misclassification rate curves (EMCER and OMCER) overlap exactly; if
moderately nonidentical, then two misclassification rate curves divert and a sub-
stantial proportion of αTE(τ)s exceed Critical αTE . The models with parameter
dimension greater than 3 give similar results.

Before proceeding to the next section, we now introduce a result (Chap-
ter 4.4.2, McCullagh and Nelder 1989) with regard to parameter estimation. If
a generalized linear model is correctly specified, then parameter estimation by
maximizing likelihood can be implemented by iteration (Fisher scoring) and

E(β̂ − β) = O(n−1) and cov(β̂) = (XT WX)−1{1 + O(n−1)}, (4.1)

where β̂ is the estimated parameter, β is the true parameter, X is the design
matrix (predictor vector population), W is a component from Fisher information
matrix and n is the sample size. This proposition would be applied to the follow-
ing simulation studies where parameter estimation under the hypothesized true
model (predictor vector component subset, link function) is needed. Recall that,
model fitting (parameter estimation) is not needed for simulations 1-10.

Missing interaction terms

We use a numerical example used by Landwehr et al (1984).

¦ (Simulation 11) We simulate two independent variables (Z1, Z2) of size
n=10,000 from U [0, 1]. Y s are generated using logit link with linear pre-
diction 4Z1 + 4Z2 − 12Z1Z2, thus X =(X0,X1, X2,X3)=(1,Z1,Z2,Z1Z2),
(β0,0,β1,0,β2,0,β3,0)=(0,4,4,-12). S-Plus glm(family=binomial(logit)) with
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interaction term offers estimated working parameter (β0,∗,β1,∗,β2,∗,β3,∗)=(7E-
3,3.94,3.82, -11.7). After model fitting (parameter estimation) under the
correct model (with interaction) assumption, no |αTE(τ)| exceeds Critical
αTE although the estimated working parameter is slightly different from
the true parameter which produces the random responses (Y s). See Table
1 (panel 2), Table 2 (panel 2) and Figure 2 (left panel, row 1).

¦ (Simulation 12) We simulate two independent variables (Z1, Z2) of size
n=10,000 from U [0, 1]. Y s are generated using logit link with linear pre-
diction 4Z1 + 4Z2 − 12Z1Z2, thus X =(X0,X1,X2, X3)=(1,Z1,Z2,Z1Z2),
(β0,0,β1,0,β2,0,β3,0)=(0,4,4,-12). S-Plus glm(family=binomial(logit)) with-
out interaction term offers estimated working parameter (β0,∗,β1,∗,β2,∗,β3,∗) =
(2.98,
−2.01,−2.10, 0.00). After model fitting (parameter estimation) under the
incorrect model (without interaction), many |αTE(τ)|s exceed Critical αTE .
See Table 1 (panel 2), Table 2 (panel 2) and Figure 2 (right panel, row 1).
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Figure 2: τ -wise comparison between EMCER and OMCER from simulations
11-18. (The solid line is EMCER curve, the dotted line is OMCER curve. τ
covers [0,1] on the x-axis.)



528 Weichung Joe Shih and Junfeng Liu

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m2T$V3

m
2T

$V
2

ROC curves (simulation 2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m3T$V3

m
3T

$V
2

ROC curves (simulation 3)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m4T$V3

m
4T

$V
2

ROC curves (simulation 4)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m5T$V3

m
5T

$V
2

ROC curves (simulation 5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m
7T

$V
2

ROC curves (simulation 7)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

m
8T

$V
2

ROC curves (simulation 8)

Figure 3: ROC comparison (I). (The solid line is ROC curve under correct
model, the dash line is ROC under misspecified model. Both use same simu-
lated Y s from correct model.)

4.2 Distinction among different link functions

Control simulations

¦ (Simulation 13) We simulate predictor population X1 of size n=10,000 from
N(0,1) and Y s are generated by using probit link with linear prediction −1+
2X1, thus X =(1,X1) and β0=(β0,0, β1,0)=(-1,2). glm(family=binomial(probit))
in S-Plus offers estimated working parameter for probit link: β∗=(β0,∗,
β1,∗)=(-1.05, 2.03). After model fitting (parameter estimation) under cor-
rect links, no |αTE(τ)| exceeds Critical αTE . See Table 1 (panel 3), Table
2 (panel 3) and Figure 2 (left panel, row 2).

¦ (Simulation 14) We simulate predictor population X1 of size n=10,000 from
N(0,1) and Y s are generated by using complementary log-log link with
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linear prediction −1 + 2X1, thus X =(1,X1) and β0=(β0,0, β1,0)=(-1,2).
glm(family=binomial(cloglog)) in S-Plus offers estimated working param-
eter for complementary log-log link: β∗=(β0,∗, β1,∗)=(-1.02, 1.97). For
simulation 14, we observe similar result from simulation 13. See Table 1
(panel 3), Table 2 (panel 3) and Figure 2 (right panel, row 2).

Probit and Logit

¦ (Simulation 15) We simulate predictor population X1 of size n=10,000 from
N(0,1) and Y s are generated by using probit link with linear prediction −1+
2X1, thus X =(1,X1) and β0=(β0,0, β1,0)=(-1,2). glm(family=binomial(logit))
in S-Plus offers estimated working parameter for logit link: β∗=(β0,∗, β1,∗)=(-
1.77, 3.57). After model fitting (parameter estimation) under incorrect
links, EMCER and OMCER are not very easy to distinguish. Around 5%
of |αTE(τ)|s exceed Critical αTE , especially in the middle range of τ ∈ [0, 1].
See Table 1 (panel 4), Table 2 (panel 4) and Figure 2 (left panel, row 3).

¦ (Simulation 16) We simulate predictor population X1 of size n=10,000 from
N(0,1) and Y s are generated by using logit link with linear prediction −1+
2X1, thus X =(1,X1) and β0=(β0,0, β1,0)=(-1,2). glm(family=binomial(probit))
in S-Plus offers estimated working parameter for probit link: β∗=(β0,∗,
β1,∗)=(-0.61, 1.15). For simulation 16, we observe similar result from sim-
ulation 15. See Table 1 (panel 4), Table 2 (panel 4) and Figure 2 (right
panel, row 3).

Complementary log-log and logit

¦ (Simulation 17) We simulate predictor population X1 of size n=10,000 from
N(0,1) and Y s are generated by using complementary log-log link with
linear prediction −1 + 2X1, thus X =(1,X1) and β0=(β0,0, β1,0)=(-1,2).
glm(family=binomial(logit)) in S-plus offers estimated working parameter
for logit link: β∗=(β0,∗, β1,∗)=(-0.69, 2.73). After model fitting (parameter
estimation), EMCER and OMCER are clearly distinguished, a substantial
proportion of |αTE(τ)|s exceed Critical αTE . See Table 1 (panel 4), Table
2 (panel 4) and Figure 2 (left panel, row 4).

¦ (Simulation 18) We simulate predictor population X1 of size n=10,000 from
N(0,1) and Y s are generated by using logit link with linear prediction −1+
2X1, thus X =(1,X1) and β0=(β0,0, β1,0)=(-1,2). glm(family=binomial(
cloglog)) in S-plus offers estimated working parameter for complementary
log-log link: β∗=(β0,∗, β1,∗)=(-1.21, 1.33). For simulation 18, we observe
similar result from simulation 17. See Table 1 (panel 4), Table 2 (panel 4)
and Figure 2 (right panel, row 4).
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Remark In simulations from Section 4.1, we neither fit the model nor esti-
mate the parameter while only simply took working parameter as the hypoth-
esized true parameter for downstream goodness-of-fit test. However, we point
out that, in simulations from Sections 4.1 and 4.2, we did fit the model and
estimate the working parameter under the hypothesized true model assumption
other than simply assigning certain value to working parameter (Section 4.1) for
downstream goodness-of-fit test. In this case, we must say that, Results 1 and
2 would be approximate since the parameter vector β is estimated from random
responses (Y s) and is random other than fixed (simulations 1-10, Section 4..1).
However, proposition (4.1) shows that the random error for parameter estimation
is at the order of O(n−1/2), which is small under large sample size (n). On the
other hand, in terms of consistence between EMCER and OMCER, large sample
size (n) always makes the parameter estimation sufficiently good even if the es-
timated parameter vector components may be slightly different from the original
components used for simulation (simulations 11, 13 and 14). So our simulations
demonstrate that, under large sample size (n), the error evolved from working
parameter (β∗) estimation is ignorable and Results 1 and 2 still sufficiently hold
with the unknown true model parameter (β) replaced by the estimated parameter
(β̂ = β∗). In other words, the lack-of-fit is likely due to model misspecification
other than model fitting (parameter estimation). In the above simulations, we did
not try diverse combinations of wrong parameter value (Section 4.1), incorrect
predictor vector component subset (Section 4.1 and/or link function misspecifi-
cation (Section 4.2), while apply only one of them to each simulation study. The
combination case will lead to similar results.

5. A Note on Receiver Operating Characteristics (ROC)

Given assumed binary regression model and observed responses, the receiver
operating characteristics (ROC) plots pairs of (1-specificity, sensitivity) based on
threshold (τ)-specific classification rules ((2.1) and (2.2)) for all τ ∈ [0, 1] to form
a model-specific ROC curve (profile). That is,

sensitivity = Pr(Y ∗ = 1|Y = 1) and specificity = Pr(Y ∗ = 0|Y = 0),

which are simply the proportions of correct classifications given observed Y = 1 or
Y = 0 subsets. Note that, τ -specific (1-specificity, sensitivity) is in fact τ -specific
(false positive rate, true positive rate). The higher area under the curve (AUC)
represents better prediction (Chapter 6.2.6, Agresti 2002). However, we point out
that, ROC can not be used for testing goodness-of-fit. We follow the notations in
Section 4. Given continuous predictor variables Xs, we assume the true binary
regression model has case probability function Pr0(Y = 1|X,β0)=g−1

0 (XT β0),
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where β0 = (β0,0, β1,0, β2,0, . . . , βk−1,0) and g−1
0 (·) is a monotonically increas-

ing function with range [0,1]. The responses (Y s) are produced from the true
model. We also assume that, the incorrect model has case probability function
Pr∗(Y = 1|X,β∗)=g−1

∗ (XT β∗), where β∗ = (β0,∗, β1,∗, β2,∗, . . . , βk−1,∗) and g−1
∗ (·)

is another monotonically increasing function with range [0,1]. The responses (Y s)
are the same for both the true model and the incorrect model. We show that,
under certain circumstances, identical (1-specificity, sensitivity) may exist for the
true and the incorrect models with different thresholds (τs) and ROC curves may
overlap under two different model assumptions. We use subscript “0” for the true
model and “∗” for the incorrect model. We consider some special situations where
two intercepts (β0,0 and β0,∗) and/or (β1,0 and β1,∗) may have different values for
two models (true and incorrect). The j-th component of predictor vector X is
denoted by Xj for 0 ≤ j ≤ k− 1 and X0 = 1. We assume parameter components
βj,0 = βj,∗ for 2 ≤ j ≤ k−1 and use notations βj , 2 ≤ j ≤ k−1 for both the true
and incorrect models for notational simplicity. For generality, we first consider
the case where β0 and β∗ have dimension k > 2.
Under the true model,

1-specificity(τ0) = Pr(g−1
0 (β0,0 + X1β1,0 +

∑
2≤j≤k−1

Xjβj) ≥ τ0|Y = 0)

sensitivity(τ0) = Pr(g−1
0 (β0,0 + X1β1,0 +

∑
2≤j≤k−1

Xjβj) ≥ τ0|Y = 1).(5.1)

Under the incorrect model,

1-specificity(τ∗) = Pr(g−1
∗ (β0,∗ + X1β1,∗ +

∑
2≤j≤k−1

Xjβj) ≥ τ∗|Y = 0)

sensitivity(τ∗) = Pr(g−1
∗ (β0,∗ + X1β1,∗ +

∑
2≤j≤k−1

Xjβj) ≥ τ∗|Y = 1).(5.2)

Note that, predictor population (X0, . . . , Xk−1), true parameter β0 and incorrect
parameter β∗ are all known. For any τ0, if we can find a corresponding τ∗ which
induces the same true (false) positive rate under the incorrect model given Y = 1
(Y = 0) as τ0 does for the true model, then we will have two exactly overlapping
ROC curves although the identical (1-specificity, sensitivity) pairs may be induced
from different thresholds (τs). In order to find a pair of identical (1-specificity,
sensitivity) from (5.1) and (5.2), a sufficient condition is that, the predictor vector
subspaces induced from the following paired inequalities conditional on Y = 1
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and Y = 0 response subspaces are all identical, i.e.,

{X1,k−1 : g−1
0 (β0,0 + X1β1,0 +

∑
2≤j≤k−1

Xjβj) ≥ τ0, Y = 1}

= {X1,k−1 : g−1
∗ (β0,∗ + X1β1,∗ +

∑
2≤j≤k−1

Xjβj) ≥ τ∗, Y = 1} (5.3)

where Xi,j is a short notation for the vector (Xi, . . . , Xj) and

{X1,k−1 : g−1
0 (β0,0 + X1β1,0 +

∑
2≤j≤k−1

Xjβj) ≥ τ0, Y = 0}

= {X1,k−1 : g−1
∗ (β0,∗ + X1β1,∗ +

∑
2≤j≤k−1

Xjβj) ≥ τ∗, Y = 0} (5.4)

Note that, the restricted predictor subspaces (on Y = 1 or Y = 0) are por-
tions of arbitrarily collected predictor population X other than product space∏k−1

j=1 [−∞,+∞] for (X1,X2,. . . ,Xk−1) random predictor variable. Moreover, the
distributions of X on subspaces restricted by Y = 1 or Y = 0 is not easy to study.
Thus it is desirable that, τ0 induces τ∗ which is free of X. From (5.3) and (5.4),
we have

{X1,k−1 :
∑

2≤j≤k−1

Xjβj ≥ g0(τ0) − (β0,0 + X1β1,0), Y = 1}

= {X1,k−1 :
∑

2≤j≤k−1

Xjβj ≥ g∗(τ∗) − (β0,∗ + X1β1,∗), Y = 1} (5.5)

and

{X1,k−1 :
∑

2≤j≤k−1

Xjβj ≥ g0(τ0) − (β0,0 + X1β1,0), Y = 0}

= {X1,k−1 :
∑

2≤j≤k−1

Xjβj ≥ g∗(τ∗) − (β0,∗ + X1β1,∗), Y = 0} (5.6)

We have two tracks to follow.

1) First, to make (5.5) and (5.6) free of (X2, X3, . . . , Xk−1), we simply have

g0(τ0) − (β0,0 + X1β1,0) = g∗(τ∗) − (β0,∗ + X1β1,∗)

i.e.,
X1(β1,0 − β1,∗) = g0(τ0) − g∗(τ∗) − (β0,0 − β0,∗).
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Figure 4: ROC comparison (II). (The solid line is ROC curve under correct
model, the dash line is ROC under misspecified model. Both use same simu-
lated Y s from correct model.)

Second, to make it free of X1, we only require β1,0 = β1,∗ to obtain the
following one-to-one correspondence between τ0 and τ∗

τ∗ = g−1
∗ (g0(τ0) − (β0,0 − β0,∗)). (5.7)

2) First, to make (5.5) and (5.6) free of X1, we simply have∑
2≤j≤k−1 Xjβj − g0(τ0) + β0,0

β1,0
=

∑
2≤j≤k−1 Xjβj − g∗(τ∗) + β0,∗

β1,∗
.

i.e.,

(
∑

2≤j≤k−1

Xjβj)(β1,0 − β1,∗) = g0(τ0)β1,∗ − g∗(τ∗)β1,0 + β0,0β1,∗ − β1,0β0,∗.

Second, to make it free of (X2, X3, . . . , Xk−1), we only require β1,0 = β1,∗.
Either track leads to the same correspondence between τ0 and τ∗ (5.7).
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Result 3 The predictor and parameter are k-dimensional (k > 2) for the true
and incorrect models, no matter the case probability functions are identical or
not, if only the intercept parameter in the linear prediction may be different be-
tween the true model and the incorrect model, i.e., β0,0 6= β0,∗, then ROC curves
from two models overlap exactly.

The numerical example is specified in simulation 10, see Table 1 and Figure 4.

When parameter is 2-dimensional, from (5.3) and (5.4), we may require

{(X0 = 1, X1) : β0,0 + X1β1,0 ≥ g0(τ0)}
= {(X0 = 1, X1) : β0,∗ + X1β1,∗ ≥ g∗(τ∗)}.

To make it free of X1, we may require β1,0 × β1,∗ > 0 (identical signs) and

g0(τ0) − β0,0

β1,0
=

g∗(τ∗) − β0,∗
β1,∗

.

We have one-to-one correspondence

τ∗ = g−1
∗ (

β1,∗
β1,0

(g0(τ0) − β0,0) + β0,∗). (5.8)

Result 4 If the predictor and parameter are 2-dimensional and the linear
effects have equal signs between the true model and the incorrect model, then
no matter the parameters and/or case probability functions are identical or not,
ROC curves from two models overlap exactly.

The numerical examples are specified in simulations 2, 3, 4, 5, 15, 16 and 17
(Table 1, Figures 3 and 4. We also observe that, ROC may be useful for checking
mistakenly dropping necessary effects from true model (simulation 12). See Table
1 and Figure 4.

6. Discussion

In this paper, a simple classification-error-rate-calibration (CERC) method is
proposed for binary model screening (goodness-of-fit test) under large sample size
and continuous predictor variables. The uniform convergence rate (O(n−1/2)) of
the deviation test statistic tends to identify minor departure from the true model
with appreciable power. On the other hand, when the predictor population re-
alistically follows a well-shaped distribution, the discrepancy pattern between
EMCER and OMCER is not inherently associated with sample size and CERC
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screens threshold (τ)-specific pattern difference with homogeneous minimal vari-
ation (maximal power). As an alternative, for pis less than τ , we may calculate
the expected marginal case probability

∑
{pi<τ,1≤i≤n} pi/

∑
{pi<τ,1≤i≤n} 1 and the

observed marginal case probability
∑

{pi<τ,1≤i≤n} 1{Y =1}/
∑

{pi<τ,1≤i≤n} 1 for τ -
profiling comparison. However, the variance for the latter is

∑
{pi<τ,1≤i≤n} pi(1−

pi)/(
∑

{pi<τ,1≤i≤n} 1)2, which may suffer from testing power heterogeneity across
different thresholds (τs). Note that this can be taken as τ -based classification-
false-positive-rate profile (the lower-left shaded area in Diagram 1), while CERC
considers both false positive and negative rates. Finally, we show that, ROC
curve is not capable of goodness-of-fit test for binary regression models in the
scenario discussed in the present work.
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