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Abstract: In this article, a Bayesian model averaging approach for hier-
archical log-linear models is considered. Posterior model probabilities are
approximately calculated for hierarchical log-linear models. Dimension of
interested model space is reduced by using Occam’s window and Occam’s
razor approaches. 2002 road traffic accident data of Turkey is analyzed by
using the considered approach.
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1. Introduction

Many fields of scientific investigation include analysis of qualitative data. It
is important to discover association structure of the interested categorical vari-
ables. On this point, log-linear models are widely used and very flexible. Bayesian
methods give the opportunity of combining sample information with expert in-
formation. By this way, all available information is included in the conducted
analysis. The association structure can be displayed by a Bayesian approach
of log-linear modelling. The Bayesian approach is more advantageous than the
classical setting because the inference is exact rather than asymptotic. Bayesian
setting gives an entire posterior distribution for each element of the model; how-
ever the classical setting yields a point estimate and a precision estimated via an
asymptotic method. In addition, the Bayesian approach would give better esti-
mates of variability than the likelihood analysis (Gelfand and Mallick, 1995). All
of these advantages are also valid for the Bayesian approaches to the log-linear
modelling.

Estimation of the model parameters does not complete the analysis process.
Model selection should be considered to obtain the most parsimonious model.
When the Bayesian approach is used along with the log-linear modelling, Bayesian
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model selection procedures take place instead of the classical ones. General ad-
vantages of the Bayesian approach are also valid here.

In this sense, prior information can be induced on the log-linear parameters,
expected cell counts or cell probabilities. In each case, induced prior information
should be consistent with the other two cases. Posterior inferences are also drawn
by using different algorithms for each case. In this article, we will put the prior
information on log-linear parameters.

There is a huge literature on the model selection. Most of the methods can be
used for large class of models, including log-linear models. Some of the methods
are based on a series of significance tests and some include prior information, use
Markov chain Monte Carlo (MCMC) methods and some are based on the Bayes
factors. Almost each method has its own problems. Most important problem is
on the model uncertainty. When a single model is selected and inferences are
conditionally based on the selected model, model uncertainty is ignored (Raftery,
1996). This case is especially seen in the classical setting.

This difficulty can be overcome by including the information provided by all
suitable models into the analysis process. The most common way of including
the information, provided by different sources, is to use the average. From the
Bayesian point of view, this averaging is applied such that posterior distribution
of considered quantity is obtained over the set of suitable models, then they are
weighted by their posterior model probabilities (Leamer, 1978; Raftery, 1996).
Leamer (1978) extended the model averaging idea of Roberts (1965). However,
computational difficulties were handicapped for progress of model averaging idea.
Draper (1995) and Raftery (1995) reviewed the Bayesian model averaging (BMA)
and the cost of ignoring model uncertainty. Madigan and Raftery (1994) are
also considered the BMA that they give Occam’s razor and Occam’s window
approaches to reduce the number of candidate models. Work of Hoeting et al.
(1999) is a good tutorial for BMA. They discuss implementation of BMA for
graphical, regression and generalized linear models, survival analysis, software
for BMA, prior model probabilities and predictive performance of BMA, and
give several examples.

In this article, we aim to present a BMA approach for model selection in
hierarchical log-linear (HLL) models and analyze the road traffic accidents data
by using the BMA approach. We use the normal likelihood, which is used by
Leighty and Johnson (1990), and normal prior distribution, following to the ap-
proach given in Leighty and Johnson (1990) and Demirhan and Hamurkaroglu
(2006). We calculate a required integral, which is mentioned in detail in Section
4, to develop a BMA approach for HLL models. Calculation of the integral is
one of main difficulties of general BMA approach.

Our approach is useful and more advantageous than classical setting. In
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the classical setting, the model that gives the best fit to the data is determined
by using a criterion or a model selection procedure, and classical estimates of
model parameters are obtained conditionally on the predetermined model. In
addition, estimation of another quantity such as quartiles of parameters is not
possible in the classical setting. However, one can estimate other quantities and
model parameters simultaneously, obtain entire posterior distributions of them
in the Bayesian setting. Moreover, model uncertainty is also included in the
resulting estimates at the same time. Because of this, standard error estimates of
the parameters and the considered quantities will be smaller, and one can draw
inferences on the distribution of model parameters. These are significant gains of
the BMA approach in general. Specifically, for the road traffic accidents data, we
are able to determine the best fitting model more confidentially in the Bayesian
setting. We obtain estimates of model parameters with smaller standard errors.
This is important, because our inferences are mainly based on these estimates.
In addition, we are able to see the posterior distributions of model parameters.
Details of the analysis of the data set are given in Section 5.

Section 2 mentions used log-linear model notations and hierarchy principle.
BMA approach is outlined in Section 3. Section 4 is on the BMA for HLL models.
In Section 5, 2002 road traffic data of Turkey is analyzed by using the given BMA
approach.

2. Hierarchical Log-linear Models and Notation

Number of terms of a log-linear model increases by the increase in the number
of categorical variables. Then standard notations become cumbersome. Instead,
King and Brooks (2001a) give very flexible and practical notations, which are
also used in this work.

Set of sources, where the data come from, is denoted by S. Number of ele-
ments of a set is denoted by | · |, so each source is labelled such that S = {Sζ : ζ =
1, ..., |S|}. Set of levels for source Sζ is Kζ , for ζ = 1, ..., |S|. Cells of a contingency
table can be represented by the set K = K1 × · · · ×K|S|, so the cells are indexed
by k ∈K. Expected and observed cell counts are denoted by nk and yk for k ∈K,
respectively. The set of subsets of S is defined by ℘(S) = {s : s ⊆ S}. Then
m ⊆ ℘(S) is used to represent a log-linear model, where m lists the log-linear
terms presented in the model. Each element of the model, m is included in a set
c such that c ∈ m ⊆ ℘(S). Constant term of the log-linear model is represented
by ∅ ∈ ℘(S). M c contains all possible combinations of the levels of sources in-
cluded in c. In general, the highest level is not included by the elements of M c.
Thus the set M c is {mc

1, . . . , m
c
|Mc|}. Then the log-linear model vector for each

c ∈ m ⊆ ℘(S) is (βc)T = {βc
m1

, βc
m2

, . . . , βc
m|M c|

}. Thus the log-linear parameter



500 Haydar Demirhan and Canan Hamurkaroglu

vector for the model m is βm = {(βc1)T , (βc2)T , . . . , (βc|m|)T }. Design matrix or
model matrix corresponding to the model m ⊆ ℘(S) is denoted by Xm. Using
the design matrix and the parameter vector, the log-linear model is represented
as follows:

log n = Xmβm.

More detailed notations for the elements of design matrix, order of parameters
and cells, and examples are given in King and Brooks (2001a, 2001b).

The family of hierarchical models is such that if any βc term is not included
in the model, then all of its higher relatives must not be included in, and all of
its lower order relatives must be in the model at the same time (Bishop, Fienberg
and Holland, 1975, chap. 2). Hierarchy principle helps us to decrease the number
of models of interest in model selection.

3. Bayesian Model Averaging

Underestimation due to the model uncertainty can lead very risky false de-
cisions (Hodges, 1987). BMA provides a way to deal with model uncertainty.
Because, all elements of the model space ℘(S) is considered for the estimation of
a quantity of interest. Here, quantity of interest can be a group of parameters,
effect size, odds ratio, etc. Let the quantity of interest be ∆, and D be data then

P (∆|D) =
∑

m∈℘(S)

P (∆|m,D)P (m|D). (3.1)

In (3.1), posterior distribution of the quantity of interest, under each model in
℘(S), is weighted by the posterior model probability of corresponding model.
Posterior model probability of m is obtained as follows:

P (m|D) =
P (D|m)P (m)∑

m′∈℘(S) P (D|m′)P (m′)
,

where P (m) is the prior model probability, and P (D|m) is the likelihood under
model m and obtained as follows:

P (D|m) =
∫

P (D|βm,m)P (βm|m)dβm. (3.2)

Posterior mean and variance of ∆ are obtained by averaging as follows:

E(∆|D) =
∑

m∈℘(S)

∆̂mP (m|D), (3.3)

V (∆|D) =
∑

m∈℘(S)

(V (∆|D,m) + ∆̂2
m)P (m|D) − E(∆|D)2, (3.4)
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where ∆̂m = E(∆|D,m) (Hoeting et al., 1999).
Although BMA is seen as a solution to the model uncertainty problem, it is

not used as a standard analysis toolkit. Because it has some difficulties:

1. The integral in (3.2) is in general hard to compute.

2. Dimension of the model space can be enormous, which prevents considering
whole model space.

3. Specification of P (m) is not clear, especially if there is prior information on
some of the models of ℘(S).

4. Let =(S) ⊆ ℘(S) be the model class over which to average, then choos-
ing =(S) is also problematic (Madigan and Raftery, 1994; Draper, 1995;
Hoeting et al., 1999).

To relax the effect of the difficulty mentioned in 1, dimension of the considered
model space can be reduced. Madigan and Raftery (1994) proposed an approach
that is working on a subset of the whole model space, namely =(S) ⊆ ℘(S).
=(S) includes models that do not predict data far less well than the best model
(Madigan and Raftery, 1994). We should find a subset of ℘(S), over which to
apply (3.1). Let =′(S) be the mentioned subset of ℘(S), and it is defined as
follows:

=′(S) =
{

m :
max[P (m′|D)]

P (m|D)
≤ C

}
,

where m ∈ ℘(S), m′ is the model that has the maximum posterior model proba-
bility and C is an arbitrary constant. Models not belonging to =′(S) are excluded
from ℘(S). This is the first principle of Madigan and Raftery (1994), called Oc-
cam’s window. According to their second principle, which is called as Occam’s
Razor, complex models receiving less support from the data than their counter-
parts are excluded from =′(S) by the following equation:

<(S) =
{

m : m′ ∈ =′(S),m′ ⊂ m,
P (m′|D)
P (m|D)

> 1
}

. (3.5)

If a model m has a simpler sub-model m′ and the posterior model probability
of the sub-model is higher then the considered model is excluded from =′(S) by
the equation (3.5). Finally, ℘(S)s seen in (3.1), (3.3) and (3.4) are replaced by
=(S) = =′(S) \ <(S).
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4. BMA for HLL Models

One of the difficulties of the BMA, which is also valid for HLL models, is the
computation of the integral (3.2). We calculated the required integral.

When (3.2) is rewritten as follows

P (D|m) =
∫

Rβm

P (D, βm|m)dβm =
∫

Rβm

P (D|βm, m)P (βm|m)dβm, (4.1)

computation of the integral becomes simpler. In (4.1), P (D|βm,m) is the like-
lihood of data, and P (βm|m) is the prior distribution of log-linear parameter
vector under the model m.

Leighty and Johnson (1990) used

P (D|βm, m) ≈ P (bm|βm,m) ∝ exp
{
−1

2
(bm − βm)T V −1

bm
(bm − βm)

}
to approximate the likelihood of data. Here bm is maximum likelihood estimate
(MLE) of βm and V bm is the corresponding covariance matrix. Approach of
Leighty and Johnson (1990) is followed for the specification of P (βm|m). (4.1) is
rewritten as follows:

P (D|m)=
∫

Rβm

P (bm|βm,m)P (βm|m)dβm

=
∫

Rβm

1
(2π)p/2det(V bm)1/2

exp
{
−1

2
(bm − βm)T V −1

bm
(bm − βm)

}
× 1

(2π)p/2det(Σm)1/2
exp

{
−1

2
(βm − µm)TΣ−1

m (βm − µm)
}

dβm,

where det(·) denotes the determinant of inner matrix, p is the dimension of βm,
V −1

bm
is the inverse of covariance matrix of MLEs, µm and Σ−1

m are prior mean
vector and the inverse of prior covariance matrix of βm, respectively. After some
algebra, it is obtained that

P (D|m)=
∫

Rβm

det(Σm)−1/2

(2π)pdet(V bm)1/2
exp

{
−1

2
[
βT

m(V −1
bm

+ Σ−1
m )βm

−2βT
m(V −1

bm
bm + Σ−1

m µm)
]}

× exp
{
−1

2

[
bT

mV −1
bm

bm + µT
mΣ−1

m µm

]}
dβm.

(4.2)

Let A = [V −1
bm

+ Σ−1
m ] and Az = [V −1

bm
bm + Σ−1

m µm], then it is obtained from
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(4.2) that

P (D|m) =
det(A−1)1/2(2π)−p/2

det(V bm)1/2det(Σm)1/2
exp

{
−1

2
[
bT

mV −1
bm

bm + µT
mΣ−1

m µm − zT Az
]}

×
∫

Rβm

1
(2π)p/2det(A−1)1/2

exp
{
−1

2
[
βT

mAβm − 2βT
mAz + zT Az

]}
dβm.

(4.3)
Integral part of (4.3) is the integral of multivariate normally distributed random
vector βm with mean vector z and covariance matrix A and equals to 1. Thus,
P (D|m) is obtained as follows:

P (D|m) =h · exp
{
−1

2

[
bT

mV −1
bm

bm + µT
mΣ−1

m µm − zT Az
]}

, (4.4)

where z = [V −1
bm

+ Σ−1
m ]−1[V −1

bm
bm + Σ−1

m µm] and

h =
det(A−1)1/2(2π)−p/2

det(V bm)1/2det(Σm)1/2
.

The approach of Leighty and Johnson (1990) is used to represent degree of
belief in the prior information. In the approach, a prior distribution for Σm is
specified in two stages. In the first stage, covariance matrix of the prior distribu-
tion is taken as, Σm = αCm = αcIm, where Im is the identity matrix dimension
of p, and c = p/tr(V −1

bm
) (Leighty and Johnson, 1990). Distribution of the gen-

eral precision parameter α is given by the second stage prior. It is taken that
τ = 1/(1 + α) and τ ∼ uniform(0, 1) to make calculations easier. Values of τ
represent the degree of our belief in prior. Leonard (1975) and Leighty and John-
son (1990) state that close to zero values of this precision parameter represent
disbelief. When these definitions are applied to h, the following is obtained:

h =
det

([
V −1

bm
+ (αc)−1Im

]−1)1/2(2π)−p/2

det(V bm)1/2det(αcIm)1/2
.

If a noninformative prior distribution is defined, τ → 0. This implies that α → ∞,
and hence limα→∞ h = 0, then P (D|m, τ) ' 0,∀m ∈ =(S). When equation (4.4)
is used to find P (D|m, τ), models that have greater dimensions are penalized by
the term (2π)p/2. As the result of this penalization, simpler models have greater
model probability than complex models, even if they fit the data better. For these
reasons, it is more appropriate using the result of (4.4) up to a proportionality
constant such that

P (D|m, τ) ∝ exp
{
−1

2
[
bT

mV −1
bm

bm + µT
m[(1 − τ)/τ ]C−1

m µm − zT Az
]}

. (4.5)
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After the integration problem, we deal with the huge number of HLL models.
Number of log-linear models grows rapidly by the increase in the number of
considered categorical variables. Although this is slower for HLL models, the
problem still remains.

Occam’s Window approach of Madigan and Raftery (1994) provides a solution
to this problem. We adapted the approach for HLL models. Let Ω(S) and Υ(S)
be subsets of ℘(S), set Ω(S) = ∅ and Υ(S) is the set of starting models. Then
following down algorithm and up algorithm are applied successively.
Down Algorithm
1. Select a model m from Υ(S).
2. Υ(S) ← Υ(S) \ {m} and Ω(S) ← Ω(S) ∪ {m}.
3. Select a hierarchical submodel m0 of m such that dim(βm0

) = dim(βm) − 1,
where dim(·) denotes the dimension of the inner vector.
4. Compute B = log[P (m0|D)/P (m|D)].
5. If B > OR, then Ω(S) ← Ω(S) \ {m} and if m0 /∈ Υ(S), then Υ(S) ←
Υ(S) ∪ {m0}.
6. If OL ≤ B ≤ OR, then if m0 /∈ Υ(S), Υ(S) ← Υ(S) ∪ {m0}.
7. If there are more submodels of m then go to 3.
8. If Υ(S) = ∅ then go to 1.

Up Algorithm
1. Select a model m from Υ(S).
2. Υ(S) ← Υ(S) \ {m} and Ω(S) ← Ω(S) ∪ {m}.
3. Select a hierarchical supermodel m1 of m such that dim(βm1

) = dim(βm)+1.
4. Compute B = log[P (m|D)/P (m1|D)].
5. If B < OL, then Ω(S) ← Ω(S)\{m}; if m1 /∈ Υ(S), then Υ(S) ← Υ(S)∪{m1}.
6. If OL ≤ B ≤ OR, then if m1 /∈ Υ(S), Υ(S) ← Υ(S) ∪ {m1}.
7. If there are more supermodels of m then go to 3.
8. If Υ(S) = ∅ then go to 1.

Here, choice of OL and OR is based on the considered data set. Raftery, Madi-
gan and Volinsky (1994) suggest taking 1/20 and 20 for OL and OR, respectively.

After the application of above algorithms, (3.5) is applied by replacing 1 with
exp(OR). In addition, models satisfying

max{P (m′|D)}
P (m|D)

> exp(−OL), (4.6)

are excluded (Madigan and Raftery, 1994). After all, Ω(S) contains acceptable
models, and number of the possible models is noticeably reduced. Then the set
of models, over which to average, is =(S) = Ω(S).



Bayesian Model Averaging for Log-Linear Models 505

P (βm|m, D, τ) and posterior estimates of the log-linear parameters, given the
data and model, should be obtained to complete the BMA procedure for HLL
models. Gibbs sampling is employed for this purpose. Implementation of Gibbs
sampling with these prior and likelihood settings requires finding full conditional
distribution of each log-linear parameter given the other parameters, model, the
data and τ . These full conditionals are derived in Demirhan and Hamurkaroglu
(2006) and will also be used here.

5. Analysis of Road Traffic Accidents Data

Road traffic accidents of Turkey in 2002 are taken into consideration. Con-
sidered factors are overlay type of the road (OT), place of the accident (AP),
state of the included people (SP), and the result of the accident (RA). Consid-
ered overlay types are concrete, asphalt, parquet, stabilized and dirt. Considered
places of accident are city and inter-city roads. Included people are classified as
driver, passenger and pedestrian; and results of an accident are taken as killed
or injured. The data set is recorded by The Department of Traffic Training and
Research of the General Directorate of Security Affairs of Turkey in 2002 and
taken from Traffic Statistics Annual - 2002 1.

Following the notation given in Section 2, |S| = 4, S1 is OT, S2 is AP, S3 is
SP and S4 is RA, then K1 = {1, 2, 3, 4, 5}, K2 = K4 = {1, 2}, K3 = {1, 2, 3},

K = {(1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1), (4, 1, 1, 1), (5, 1, 1, 1), (1, 2, 1, 1), (2, 2, 1, 1),
(3, 2, 1, 1), (4, 2, 1, 1), (5, 2, 1, 1), (1, 1, 2, 1), (2, 1, 2, 1), (3, 1, 2, 1), (4, 1, 2, 1),
(5, 1, 2, 1), (1, 2, 2, 1), (2, 2, 2, 1), (3, 2, 2, 1), (4, 2, 2, 1), (5, 2, 2, 1), (1, 1, 3, 1),
(2, 1, 3, 1), (3, 1, 3, 1), (4, 1, 3, 1), (5, 1, 3, 1), (1, 2, 3, 1), (2, 2, 3, 1), (3, 2, 3, 1),
(4, 2, 3, 1), (5, 2, 3, 1), (1, 1, 1, 2), (2, 1, 1, 2), (3, 1, 1, 2), (4, 1, 1, 2), (5, 1, 1, 2),
(1, 2, 1, 2), (2, 2, 1, 2), (3, 2, 1, 2), (4, 2, 1, 2), (5, 2, 1, 2), (1, 1, 2, 2), (2, 1, 2, 2),
(3, 1, 2, 2), (4, 1, 2, 2), (5, 1, 2, 2), (1, 2, 2, 2), (2, 2, 2, 2), (3, 2, 2, 2), (4, 2, 2, 2),
(5, 2, 2, 2), (1, 1, 3, 2), (2, 1, 3, 2), (3, 1, 3, 2), (4, 1, 3, 2), (5, 1, 3, 2), (1, 2, 3, 2),
(2, 2, 3, 2), (3, 2, 3, 2), (4, 2, 3, 2), (5, 2, 3, 2)},

and

℘(S) = {∅, {S1}, {S2}, {S3}, {S4}, {S1, S2}, {S1, S3}, {S1, S4}, {S2, S3},
{S2, S4}, {S3, S4}, {S1, S2, S3}, {S1, S2, S4}, {S1, S3, S4}, {S2, S3, S4},
{S1, S2, S3, S4}}.

Log-linear parameter vector of the saturated model is βm =
(
∅, (βc1)T , . . . , (βc14)T

)T .
After these definitions, BMA is applied over the given down and up algo-

rithms. For these algorithms OR and OL are taken as 20 and 0.00001, respec-
tively. The Newton-Raphson algorithm is used to obtain V bm and bm. P (m|D, τ)
is obtained by using (4.5) and P (m).

1http://www.egm.gov.tr/teadb/02yillik/02fihrist.htm, p. 47.
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Dimension of model space is 168. Prior model probabilities were equal to
0.00479 for the models other than

m′ = {∅, {S1}, {S2}, {S3}, {S4}, {S1, S2}, {S1, S3}, {S1, S4}, {S2, S3},
{S2, S4}, {S3, S4}, {S1, S2, S4}, {S1, S3, S4}, {S2, S3, S4}},

and it was 0.2 for m′. The reason of this choice is the prior information that the
result of an accident should be related with OT, AP and SP; however state of the
person does not have an association with overlay type or place of accident. Prior
distribution of the log-linear parameter vector is defined by using the approach
of Leigthy and Johnson (1990), τ of which is taken as 10−7. This setting induces
a diffuse prior on the log-linear parameters. Gibbs sampling is employed to
obtain posterior estimate of each model parameter (β̃c

m) for a given model. Total
number of iterations were 30000, 10000 of which were discarded as burn-in. A
record has been made at the end of each 200 cycles to reduce the autocorrelation
of the Gibbs sequence. Full conditional distributions given in Demirhan and
Hamurkaroglu (2006) are used in the mentioned Gibbs sampling scheme.

At the end of the down and up algorithms, elements of =′(S) and correspond-
ing posterior model probabilities were obtained as given in Table 1.

Table 1: Elements of =′(S) and corresponding posterior model probabilities.

Posterior
Model model probability

m1 =
�
∅, {S1}, {S2}, {S3}, {S4}, {S1, S2}, {S1, S3}, {S1, S4}, {S2, S3},

{S2, S4}, {S3, S4}, {S1, S2, S3}, {S1, S2, S4}, {S1, S3, S4}, {S2, S3, S4}
	

0.02298
m2 =

�
∅, {S1}, {S2}, {S3}, {S4}, {S1, S2}, {S1, S3}, {S1, S4}, {S2, S3},

{S2, S4}, {S3, S4}, {S1, S2, S4}, {S1, S3, S4}, {S2, S3, S4}
	

0.95399
m3 =

�
∅, {S1}, {S2}, {S3}, {S4}, {S1, S2}, {S1, S3}, {S1, S4}, {S2, S3},

{S2, S4}, {S3, S4}, {S1, S2, S3}, {S1, S2, S4}, {S1, S3, S4}
	

0.02303

As seen in the Table 1, there are three models remained as possibly acceptable
models in =′(S). Therefore it is not necessary to go on with the application of
(3.5), and =(S) = =′(S).

After the determination of =(S), ∆ of (3.1) is taken as each element of βmi
,

i = 1, 2, 3; and β̃c
m, c ∈ mi, m ∈ M c, are obtained. Also, it is taken as 5,

25, 50, 75 and 95th percentiles of the distribution of each parameter of each mi.
Results, obtained over the Gibbs sampling, are combined to reach BMA estimates
by using (3.1), and presented in Table 2. MLEs of parameters of m2 (β̂m2

) and
their standard errors are also presented in the Table 2 to see what we gain over
the classical setting by using the presented approach.
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Table 2: Bayesian and classical parameter estimates

Percentiles St.Dev. St.Dev.

Par. 5% 25% 50% 75% 95% eβm
eβm

bβm2
bβm2

∅ 3.4973 3.4974 3.4974 3.4975 3.4980 3.4976 0.0002 -0.9463 0.3062
βc1
1 -0.2802 -0.2777 -0.2769 -0.2761 -0.2745 -0.2772 0.0018 2.8302 0.3177

βc1
2 4.1340 4.1345 4.1346 4.1346 4.1347 4.1344 0.0002 7.6170 0.3043

βc1
3 -1.3599 -1.3585 -1.3578 -1.3571 -1.3555 -1.3578 0.0012 1.1406 0.3601

βc1
4 -0.5068 -0.5049 -0.5040 -0.5029 -0.5008 -0.5038 0.0018 1.8216 0.3308

βc2
1 0.9187 0.9192 0.9193 0.9193 0.9194 0.9192 0.0002 3.8429 0.2036

βc3
1 0.2790 0.2791 0.2792 0.2792 0.2793 0.2791 0.0001 3.3685 0.2635

βc3
2 0.4029 0.4029 0.4030 0.4030 0.4033 0.4030 0.0001 3.9340 0.2641

βc4
1 -1.5349 -1.5348 -1.5347 -1.5347 -1.5342 -1.5346 0.0002 0.1214 0.9417

βc5
11 -0.1595 -0.1591 -0.1588 -0.1583 -0.1574 -0.1587 0.0007 -0.2612 0.2113

βc5
21 -0.6635 -0.6635 -0.6634 -0.6634 -0.6630 -0.6633 0.0002 -0.9886 0.2004

βc5
31 0.7173 0.7182 0.7187 0.7192 0.7200 0.7186 0.0008 2.2007 0.2748

βc5
41 -0.0839 -0.0832 -0.0827 -0.0823 -0.0812 -0.0829 0.0007 -0.2802 0.2141

βc6
11 -0.1744 -0.1725 -0.1715 -0.1707 -0.1689 -0.1717 0.0017 -0.6463 0.2723

βc6
12 0.2068 0.2076 0.2079 0.2085 0.2095 0.2079 0.0008 -0.5852 0.2728

βc6
21 0.0087 0.0087 0.0088 0.0088 0.0090 0.0088 0.0001 -0.8078 0.2611

βc6
22 0.0739 0.0742 0.0742 0.0743 0.0743 0.0742 0.0001 -0.6799 0.2618

βc6
31 0.1742 0.1760 0.1768 0.1774 0.1791 0.1766 0.0014 -0.9758 0.2673

βc6
32 -0.3719 -0.3708 -0.3700 -0.3692 -0.3682 -0.3701 0.0012 -1.4546 0.2698

βc6
41 -0.0927 -0.0909 -0.0901 -0.0891 -0.0878 -0.0903 0.0015 0.0259 0.2870

βc6
42 0.2290 0.2301 0.2307 0.2316 0.2331 0.2305 0.0013 0.2851 0.2867

βc7
11 -0.1459 -0.1435 -0.1426 -0.1416 -0.1400 -0.1429 0.0018 -1.7472 1.0467

βc7
21 -0.0656 -0.0651 -0.0650 -0.0649 -0.0649 -0.0651 0.0002 -1.5588 0.9403

βc7
31 -0.3627 -0.3613 -0.3607 -0.3598 -0.3581 -0.3607 0.0014 -1.8043 1.3481

βc7
41 0.1371 0.1391 0.1400 0.1409 0.1424 0.1397 0.0016 -0.5059 1.0447

βc8
11 -0.2032 -0.2031 -0.2031 -0.2031 -0.2030 -0.2031 0.0001 -2.1105 0.0383

βc8
12 -0.4582 -0.4581 -0.4581 -0.4581 -0.4581 -0.4581 0.0000 -2.7171 0.0376

βc9
11 -0.2640 -0.2635 -0.2635 -0.2635 -0.2634 -0.2636 0.0002 -0.6145 0.8970

βc10
11 -0.2440 -0.2438 -0.2438 -0.2437 -0.2436 -0.2438 0.0001 -3.0593 0.6286

βc10
21 -0.3785 -0.3784 -0.3784 -0.3784 -0.3781 -0.3783 0.0001 -3.8756 0.7633

βc11
111 0.0017 0.0018 0.0018 0.0018 0.0019 0.0018 0.0007

βc11
112 0.0045 0.0045 0.0045 0.0045 0.0046 0.0045 0.0002

βc11
211 -0.0022 -0.0022 -0.0022 -0.0022 -0.0022 -0.0022 0.0008

βc11
212 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 0.0007

βc11
311 0.0063 0.0063 0.0064 0.0064 0.0065 0.0064 0.0017

βc11
312 -0.0072 -0.0071 -0.0071 -0.0071 -0.0070 -0.0071 0.0008

βc11
411 -0.0052 -0.0051 -0.0051 -0.0050 -0.0049 -0.0051 0.0002

βc11
412 -0.0014 -0.0013 -0.0013 -0.0012 -0.0012 -0.0013 0.0002

βc12
111 0.0411 0.0416 0.0419 0.0424 0.0432 0.0420 0.0012 -0.8546 0.9784

βc12
211 -0.1030 -0.1029 -0.1029 -0.1028 -0.1024 -0.1028 0.0011 -1.4291 0.8948

βc12
311 -0.3175 -0.3168 -0.3162 -0.3156 -0.3148 -0.3162 0.0013 -2.2776 1.2704

βc12
411 0.1209 0.1214 0.1220 0.1224 0.1234 0.1219 0.0012 -0.5284 0.9870

βc13
111 -0.0949 -0.0932 -0.0923 -0.0914 -0.0892 -0.0925 0.0001 1.0136 0.7781

βc13
121 0.2212 0.2221 0.2226 0.2230 0.2243 0.2225 0.0001 2.0866 0.8614

βc13
211 0.1601 0.1601 0.1602 0.1602 0.1604 0.1602 0.0000 1.7722 0.6231

βc13
221 0.0937 0.0940 0.0940 0.0940 0.0941 0.0939 0.0000 2.0850 0.7592

βc13
311 0.1880 0.1896 0.1902 0.1908 0.1922 0.1900 0.0001 1.9065 0.8712

βc13
321 0.1018 0.1030 0.1037 0.1044 0.1057 0.1036 0.0001 2.1805 1.0850

βc13
411 -0.1774 -0.1758 -0.1752 -0.1741 -0.1732 -0.1754 0.0001 0.0073 0.7514

βc13
421 -0.1184 -0.1169 -0.1163 -0.1157 -0.1143 -0.1165 0.0000 0.5684 0.8546

βc14
111 0.0450 0.0450 0.0450 0.0451 0.0451 0.0450 0.0000 0.7595 0.1139

βc14
121 0.0954 0.0954 0.0954 0.0955 0.0955 0.0954 0.0000 0.9659 0.1149
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As seen in the Table 1, the model m2, which is a conditional association model,
has the greatest posterior model probability. Thus it is the most appropriate
model for the data. According to m2, two-way interactions between overlay type
and place of accident, overlay type and state of people, and place of accident
and state of people are independent given the result of accident. In addition,
associations between the levels of overlay type and place of accident, overlay type
and state of people, and place of accident and state of people are homogeneous
given the result of an accident. In the classical approach, m2 appears as the
best fitting model, but there are two more models (m1 and the model including
{S1, S2, S3}, {S1, S3, S4}, {S2, S3, S4} interactions) that fit well also. When our
approach is compared to the classical setting, we can more confidentially conclude
that m2 gives the best fit and there is no other candidate model, because of the
very high posterior model probability.

It is drawn from the Table 2 that all posterior distributions of the log-linear
parameters, reached using BMA, are narrow, and approximately symmetric. This
inference cannot be drawn from the classical setting. The gain of drawing it is
that if posterior distribution of one of the model parameters is skewed then we
may decide to use the median of the resulting Gibbs sequences as the posterior
estimate instead of the mean. Although {S1, S2, S3} is not included in the model
m2, associated parameters are given in the Table 2. Due to the low posterior
model probabilities of the models m1 and m3, estimates of the elements of βc11

are close to zero. Contrary to the classical setting, standard error estimates of the
model parameters are very smaller in the Bayesian setting. Because, inclusion
of the model uncertainty decreases the uncertainty on the model parameters and
hence the standard errors. Comparison of values of the parameter estimates of
the Bayesian and classical settings is not appropriate. But similar inferences
should be drawn in both settings when a diffuse prior distribution is used as in
our case. Inferences drawn from the Bayesian and classical estimates are different
from each other. The reason of this is also the inclusion of the model uncertainty
in the posterior estimates. Consequently, BMA approach to the road accidents
data set is more reliable and provide better estimates and inferences than its
classical counterparts.

Following inferences are drawn from the Bayesian estimates of the model
parameters. Weak negative association exists between asphalt roads and being
killed in an accident for all places and all levels of SP. There is positive association
between having an accident on inter-city roads and being killed in an accident for
all overlay types and all levels of SP. Association of being driver and being killed
in an accident for all overlay types and all places is negative. Positive association
exists between asphalt roads, inter-city roads and being killed in an accident for
all the levels of SP. Positive association exists between asphalt roads, being driver
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and being killed in an accident for both city and inter-city roads. There is weak
negative association between inter-city roads, being driver and being killed in an
accident for all of the overlay types.

All calculations, required for the application, were done on a computer pro-
gram that is written by the authors in the Delphi 6 application development
environment.

5. Disscussion

When HLL models are used to discover association structure of categorical
variables, Bayesian model averaging provides a suitable way. General difficulties
of it are also valid for HLL models. For HLL models, number of considered mod-
els are reduced by the algorithm given by Madigan and Raftery (1994), and the
integral used to find posterior model probabilities is obtained up to a propor-
tionality constant. Although, an approximation is used to find posterior model
probabilities, reasonable results were obtained in the application. Approach of
Leighty and Johnson (1990) is used to obtain likelihood function and to determine
the prior distribution of the log-linear parameters.

The algorithm of Madigan and Raftery (1994) works well for the HLL models,
for instance, number of possible models reduced to 3 from 168 in the road traffic
data application. In addition, the whole procedure is applied for various τ values.
It is seen that the results are not sensitive to choice of the τ . However, results
are sensitive to choice of OR and OL. For the choice of them, we suggest running
the whole procedure for several times and careful investigation of the B values of
the ”down” and ”up” algorithms. Because smaller values of the OR causes the
exclusion of appropriate complex models in the ”down” algorithm, and greater
values of the OL causes the exclusion parsimonious appropriate models in the
”up” algorithm. Application of equation (4.6) is optional. If the number of
possibly acceptable models is small enough, it may not be applied.

In conclusion, BMA is an effective way of including model uncertainty in
the analysis. As seen in the application, some parameters are not included in
the best model but they have positive effect on the estimation of expected cell
counts, even if they are small. In addition, it is not only used for the estimation
of log-linear parameters but also for the estimation of various percentiles of the
posterior distributions of them. As a future work, results of this work can be
extended to other likelihood-prior settings.
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