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Abstract: A survival model is derived from the exponential function using the
concept of fractional differentiation. The hazard function of the proposed
model generates various shapes of curves including increasing, increasing-
constant-increasing, increasing-decreasing-increasing, and so-called bathtub
hazard curve. The model also contains a parameter that is the maximum of
the survival time.
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1. Introduction

In survival analysis, some well known functions are applied to explain the haz-
ard curve of increasing (Weibull with shape parameter > 1), decreasing (Weibull
with shape parameter < 1) and increasing-decreasing (log-logistic and lognor-
mal) properties. Numerous articles have also proposed models with decreasing-
constant-increasing or so-called bathtub hazard curves. To name some them on
bathtub hazard curve, Xie and Lai (1995) proposed an additive Weibull model.
Chen (2000) proposed a two-parameter lifetime model. Wang (2000) proposed an
additive Burr XII distribution. A function with various shapes of hazard curves is
always desirable in survival analysis. In this paper, we proposed a four-parameter
survival function derived from the exponential function. The proposed model has
increasing, increasing-constant-increasing, increasing-decreasing-increasing, and
bathtub hazard curve. Moreover, the function includes a parameter that the
value of the random variable often known as the survival time cannot exceed. In
some special cases, the model can be reduced to a two-parameter function. For
applications, two real world data sets are fitted wit the proposed model.
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2. The Model

The one-parameter exponential distribution has been applied on many fields.
The common form of the probability density function (PDF) is f(t) = µe−µt,
where µ > 0 and t ≥. The cumulative density function (CDF) is Z(t) = 1− e−µt.
The mean and the variance of this distribution are, respectively, µ−1 and µ−2.
The hazard function is equal to the first derivative of the CDF that is PDF
divided by the survival function which is equal to 1 minus the CDF also known
as the mortality function in survival analysis. Therefore, the hazard function of
the one-parameter exponential distribution is µ, a constant. A constant hazard
rate does not describe all the observed phenomena in many fields. It is desirable
to have a model with a non-constant hazard function that has flexible shapes of
the hazard curve.

To begin with, let DZ(t) denote the first derivative of the CDF of the one-
parameter exponential function, then the hazard function is DZ(t)/(1−Z(t)) =
µ. Many works have been done to derive models with various hazard rates. In-
stead of varying the hazard rates, we here employ the idea of Stiassnie (1979) who
used a model with an arbitrary order of differentiation to explain the dynamics of
viscoelastic materials. Moreover, the arbitrary order is not necessarily an integer.
Therefore, we may choose to take the derivative to some arbitrary order of the
CDF to be given by Dλ

t Z(t) = µe−µt, where Dλ
t Z(t) denotes the differentiation

of the arbitrary order λ with respect to t. Using Cauchy formula for repeated
integration to solve for Z(t) (see Appendix A1), we have

Z(t) =
µtλ

Γ(λ + 1)1F1[1; λ + 1;−µt],

Where Γ(·) is the Gamma function and 1F1[a; b; c] is the confluent hypergeom4etric
function (Gurland, 1958; Muller, 2001) with 3 arguments. However, Z(t) is just
the incomplete Gamma distribution, a special case of the confluent hypergeomet-
ric function (Luke, 1959). To make the model more general, the first argument
of Z(t) is substituted by a. Then,

Z(t) =
µtλ

Γ(λ + 1)1F1[a; λ + 1;−µt].

In order for Z(t) to be interpreted as a PDF, it is necessary that, for t ≤ T ,
Z(T ) = 1. After the normalization (see Appendix A2), we obtain the fractional
mortality function

F (t) =
(

t

T

)
1F1[a; λ + 1;−µt]
1F1[a; λ + 1;−µT ]

(2.1)

The fractional survival function S(t) is, therefore, 1 − F (t). The negative



A Fractional Survival Model 489

sign in the third argument in equation (2.2) can be eliminated using Kummer’s
formula (Gurland, 1958) such that

F (t) = eµ(T−t)

(
t

T

)λ
1F1[a; λ + 1;−µt]
1F1[a; λ + 1;−µT ]

(2.2)

Taking the first derivative of F (t) in equation (2.1) and using the differential
formula of the confluent hypergeometric function (Abramowitz & Stegun, 1972),
the probability density function is

f(t) =
λ

T

(
t

T

)λ−1
1F1[a; λ;−µt]
1F1[a; λ;−µT ]

. (2.3)

Or, using Kummer’s formula, the PDF is

f(t) = eµ(T−t)

(
λ

T

)λ−1
1F1[λ − a; λ; µt]

1F1[λ − a + 1;λ + 1;µT ]
(2.4)

Due to some properties of the confluent hypergeometric function (Muller 2001),
when a = 1, Equation (2.3) becomes λtλ−1/T λ and when a = λ, Equation (2.3)
becomes µλtλ−1 exp(−µt)/γ(µT ; λ) where γ is the incomplete Gamma function.

The confluent hypergeometric function can be represented by a series or an
integral expression (Gurlan, 1958; Muller 2001). Either expression has its own
restrictions on the values of the first and the second arguments. In this article, the
confluent hypergeometric function is numerically evaluated by Muller’s (20001)
algorithm based on the series expression in which the second argument cannot
be zero or a negative integer. Applying the restrictions to our fractional survival
model, λ cannot be zero or a negative integer, and 0 ≤ t ≤ T .

The hazard function for this fractional survival model provides various shapes
of curves (Figure 1) including increasing-constant-increasing (hazard 1 with α =
3, λ = 3, µ = 1.5, T = 20), decreasing-constant-increasing or so-called bathtub
hazard curve (hazard 2 with α = 0.01, λ = 0.01, µ = 0.7, T = 20), increasing-
decreasing-increasing (hazard 3 with α = 3.4, λ = 3.5, µ = 2, T = 20) and in-
creasing (hazard 4 with α = −1, λ = 11, µ = 2, T = 20) hazard rates. However,
the mean and the variance of the model do not exist (see Appendix A3).

3. Application

Case 1

We use the data of Marriage History File 1985 – 2003 of the Panel Study of
Income Dynamics (PSID) to fit the model on time to the first marriage. The
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sample was censored in 2003 with 17338 married individuals and 6029 unmar-
ried. The average year to the first marriage was 24.01. The data is available
at http://simba.isr.umich.edu. The maximum likelihood estimates and the stan-
dard errors based on the second derivatives valued at the maximized log-likelihood
function are in Table 1.

Table 1: Parameter Estimates of Time to First Marriage

Parameter Estimate Standard Error

α 34.025 0.551
λ 34.094 0.026
µ 1.483 0.552
T 94.512 0.487

The increasing-decreasing-increasing hazard curve of the fitted model is in
figure 2 in which the peak of the hazard rates occurs around age 28.

Case 2

The data in this application contains survival times in month from 5880 pa-
tients after they received coronary artery bypass grafting (CABG). Among these
patients, 545 died during the study. The average survival time to death after re-
ceiving the procedure was 47 months. The data is available at www.clevelandclinic.
org/heartcenter/hazard/default.htm. The maximum likelihood estimates and the
standard errors based on the second derivatives valued at the maximized log-
likelihood function are in Table 2.

Table 2: Parameter Estimates of Time to Death after Receiving CABG

Parameter Estimate Standard Error
Parameter Estimate Standard Error

α 0.396 0.129
λ 0.302 0.023
µ -0.021 0.003
T 225.265 8.639

The decreasing-constant-increasing hazard curve of the fitted model is in fig-
ure 3. The hazard is known as the bathtub curve which is also the three phase
hazard function described by Sergeant, Blackstone and Meyns (1997) who ana-
lyzed CABG data as well.
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Figure 1: Hazard curves with various sets of parameters
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Figure 2: Hazard rate of the proposed model on time to first marriage
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Figure 3: Hazard rate of the proposed model on survival time after CABG

Discussion

In this study, we proposed a survival function with flexible hazard curves with
the parameter T that can be regarded as the maximum survival time. In case
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1, the estimated T is 94.512 which suggests that the maximum age to the first
marriage be 94.512. In case 2, the estimated T suggests that the maximum sur-
vival month after CABG be 225.265. In both cases, no covariates are considered.
For future studies, we suggest that T can be a function of covariates so that each
individual would have its own maximum survival time.
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Appendix A1

Solving for Z(t) in Equation (2.1)

Z(t)
= Dt−λ{Dλ

t Z(t)} = D−λ
t µe−µt = µD−λ

t e−µt

=
µ

Γ(λ)

∫ 1

0
(t − y)λ−1Eµydy, using Cauchy formula for repeated integration

=
µ

Γ(λ
)
∫ 1

0
(t − ts)λ−1e−µts(tds), let s = y/t

=
µtλ

Γ(λ)

∫ 1

0
(1 − s)λ−1e−µsds

The confluent hypergeometric (Gurland, 1958) is defined by series as

1F1(a; c, z) =
∞∑

k=0

(a)kz
k

(c)kk!
, where (a)k =

Γ(a + k)
Γ(a)

.

It converges for all real values of a, c and z, and c cannot be a negative
integer or zero. The confluent hypergeoemtric function can also be presented as
an integral form (Gurland, 1958)

1F1(a; c; z) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0
eztta−1(1 − t)c−a−adt, (c > a > 0).

Then, ∫ 1

0
(1 − s)λ−1e−µsds = 1F1[1;λ + 1;−µt]

Γ(λ+1)
Γ(1)Γ(λ)

= 1F1[1;λ + 1;−µt]
λ

.
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Thus,

D−λ
t µe−µt =

µtλ

Γ(λ)1F1[1; λ + 1;−µt]

Therefore, Z(t) = µtλ1F1[1;λ + 1;−µt]/Γ(λ + 1).

Appendix A2. Normalization of Z(t)

Let Z(t) = g(a, µ, λ, t)tλ1F1[a; λ+1;−µT ], where g(a, µ, λ, T ) is a function of
a, µ, λ, and t. The argument t is the normalizing constant. Then, for a constant
T (t ≤ T ),

Z(t) = g(a, µ, λ, T )T λ
1F1[a; λ + 1;−µT ].

To normalize, for all T ,

Z(T ) = 1 = g(a, µ, λ, T )T λ
1F1[a; λ + 1;−µT ].

Then,
g(a, µ, λ, T ) = {T λ

1F1[a; λ + 1;−µT ]}−1.

Substituting into Z(t), we obtain

Z(t) =
(

t

T

)λ
1F1[a; λ + 1;−µt]
1F1[a; λ + 1;−µT ]

.

Appendix A3. Moment Generating Function

The moment generating function using the PDF in equation (2.3) is

Mt(s) =
∫ ∞

0
est λ

T

(
t

T

)λ−1
1F1[a; λ;−µt]
1F1[a; λ;−µT ]

=
Γ(λ + 1)(−s)a−λ(µ − s)−a

T λ
1F1[a; λ;−µT ]

The first derivative of the moment generating function with respect to s is

M ′
t(s) =

Γ(λ + 1)(−s)a−λ−1(µ − s)−a−1(µλ − µa − λs)
T λ

1F1[a; λ;−µT ]
.

The second derivative of the moment generating function with respect to s is

M ′′
t (s) =

Γ(λ + 1)(−s)a−λ−2(µ − s)−a−2A

T λ
1F1[a;λ + 1;−µT ]

,

where A = (s2λ(λ + 1) + 2sµ(λ + 1)(a − λ) + (a − λ)(a − λ − 1)µ2).
When the confluent hypergeometric is evaluated under the integral expression,

the value of the second argument subtracting the first argument must be positive



494 Cheng K. Lee and Jenq-Daw Lee

(Gurland, 1958). It implies that a − λ must be less than 1 in our proposed
model. Therefore, the first and the second derivative of the moment generating
function are undefined due to raising zero to a negative power. The confluent
hypergeometric can also be evaluated under the series expression and, in this
case, both derivatives of the moment generating function are 0. It means that
the expectation and the variance are both 0 which implies that t is not a random
variable. Thus, the mean and the variance of the proposed distribution do not
exit.
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