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Two-by-two ANOVA: Global and Graphical Comparisons Based
on an Extension of the Shift Function

Rand R. Wilcox
University of Southern California

Abstract: When comparing two independent groups, the shift function
compares all of the quantiles in a manner that controls the probability of
at least one Type I error, assuming random sampling only. Moreover, it
provides a much more detailed sense of how groups compare, versus using
a single measure of location, and the associated plot of the data can yield
valuable insights. This note examines the small-sample properties of an ex-
tension of the shift function where the goal is to compare the distributions
of two specified linear sums of the random variables under study, with an
emphasis on a two-by-two design. A very simple method controls the proba-
bility of a Type I error. Moreover, very little power is lost versus comparing
means when sampling is from normal distributions with equal variances.

Key words: Distribution-free techniques, effect size, interactions, nonpara-
metric methods, quantile estimation, two-way ANOVA.

1. Introduction

The Doksum and Sievers (1976) shift function provides a global and detailed
description of how the distributions, corresponding to two independent random
variables, compare. It does this via confidence intervals for the differences be-
tween all of the quantiles, and the resulting plot can reveal information that is
completely missed when attention is restricted to a single measure of location.
The method is distribution free in the sense that the simultaneous probability
coverage over all quantiles can be determined exactly assuming random sampling
only. Moreover, in the event sampling is from normal distributions that differ in
location only, its power compares reasonably well with Student’s t. And under
general conditions it can have higher power than any method based on a single
measure of location simply because it is sensitive to broader range of features
associated with the distributions under study.
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The primary goal of this note is to consider an extension of the shift function to
a two-by-two ANOVA design. Let X1 and X2 be the random variables associated
with the first level of the first factor. And let X3 and X4 be the random variables
associated with the second level of the first factor. Consider Y1 = (X1 + X2)/2
and Y2 = (X3 + X4)/2,and let F1 and F2 be the corresponding distributions.
Then an approach to understanding how the levels of the first factor differ is to
investigate in detail how F1 compares to F2. Of course, an analog of interactions
could be studied as well where now Y1 = (X1 − X2)/2 and Y2 = (X3 − X4)/2.
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Figure 1: A plot of the shift function for the depression data.

Before continuing, an illustration of the shift function, as it is currently used,
might help motivate this paper. Victoroff et al. (2006) were generally interested
in both psychological and physiological measures related to terrorism. In one
portion of the study, which dealt with measures of depression among 14-year-old
boys living in Gaza, the goal was to compare two groups of individuals: those who
had a family member wounded or killed by Israelis, and those who had not. The
solid line in Figure 1 shows the estimated difference between the quantiles, where
the x-axis is the measure of depression for the first group (a family member has
not been killed or wounded). The circle indicates the sample median for the first
group and the upper and lower quartiles are marked by a +. The dashed lines
form an approximate .95 confidence band for the difference of all quantiles. (The
exact simultaneous probability coverage can be determined, assuming random
sampling only, and is .98.) This graph indicates that when comparing individuals
with relatively low measures of depression, there is relatively little difference,
but as we move toward situations where measures of depression are higher, the



Two-by-two ANOVA 461

difference between the groups becomes more pronounced. (Note that if the groups
differ in location only, the shift function would be a straight horizontal line.) In
particular, the hypothesis of equal quantiles is rejected for the quantiles extending
from .69 to .90.

It seems evident that the Doksum-Sievers method can make a practical differ-
ence versus using a single measure of location to compare groups. Consequently,
it is only natural to consider how the method might be applied when dealing with
a two-way design.

2. Review of the Doksum-Sievers Shift Function

This section reviews the technical details associated with the shift function
that will be needed here. Let G1 and G2 be the distributions associated with the
independent random variables X1 and X2, respectively. Let x1q and x2q be the
corresponding q-th quantiles. The shift function is

∆(x1q) = x2q − x1q.

Let Ĝj(x) be the usual empirical distribution associated with the j-th group,
based on a random sample of size nj , and let

T (Ĝ1, Ĝ2) = M1/2supx|Ĝ1(x) − Ĝ2(x)|

be the two-sample Kolmogorov-Smirnov test statistic, where M = n1n2/N and
N = n1 + n2. Consider the null hypothesis

H0 : G1(x) − G2(x) = 0, ∀x,

and when H0 is true, suppose c satisfies

P (T (Ĝ1, Ĝ2) ≤ c) = 1 − α.

Doskum and Sievers (1976, p. 423) show that, because T (Ĝ1, Ĝ2) ≤ c is equiva-
lent to

Ĝ1 −
c√
M

≤ Ĝ2 ≤ Ĝ1 +
c√
M

,

a level 1−α simultaneous distribution-free confidence band for the ∆(x) is given
by

[G−1
2 {G1(x) − c√

M
− x}, G−I

2 {G1(x) +
c√
M

− x, )

where G−1
2 (u) = inf{G2(x) ≥ u} and G−I

2 (u) = sup{G2(x) ≥ u}. (Also see
Switzer, 1976.) This band is called an S band.
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Given c, the exact value of P (T (Ĝ1, Ĝ2) ≤ c) can be determined using the
recursive method in Kim and Jennrich (1973) when tied values occur with prob-
ability zero. When tied values can occur, results in Schroër and Trenkler (1995)
can be used to determine P (T (Ĝ1, Ĝ2) ≤ c).

Following Doksum and Sievers, the method can be implemented as follows.
Let Xij (i = 1, . . . , nj) be a random sample of size nj from the jth group. Denote
the order statistics for the jth group by X(1)j ≤ · · · ≤ X(nj)j . For convenience,
let X(0)j = −∞ and X(nj+1)j = ∞. For any x satisfying X(i)1 ≤ x < X(i+1)1, let

k∗ =
〈

n1

(
i

n2
− c√

M

)〉
,

where the notation < x > means to round up to the nearest integer. Let

k∗ =
[
n1

(
i

n2
+

c√
M

)]
,

where [x] means that x is rounded down to the nearest integer. Then a level 1−α
simultaneous, distribution-free confidence band for ∆(x) (−∞ < x < ∞) is

[X(k∗)2 − x,X(k∗+1)2 − x), (2.1)

where X(k∗)2 = −∞ if k∗ < 0 and X(k∗)2 = ∞ if k∗ ≥ n2 + 1.

3. Description of the Proposed Extension

The focus is on J = 4 independent groups, but comments regarding the
more general case where J > 4 will be made. Let Xj be some random variable
associated with the jth group (j = 1, . . . , 4). Let

Y1 = X1 + X2,

Y2 = X3 + X4,

and let Fk be the distribution of Yk (k = 1, 2). One goal might be to test

H0 : F1(y) = F2(y), ∀y,

versus F1(y) 6= F2(y) for some y. But if this null hypothesis is rejected, perhaps
a more important goal is to determine where the distributions differ and by how
much using an obvious extension of the the shift function:

∆(y1q) = y2q − y1q.
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Let Xij (i = 1, . . . , nj) be a random sample of size nj from the jth group, let

Bik1 = Xi1 + Xk2,

and
Bik2 = Xi3 + Xk4.

For convenience, the n1n2 Bik1 values are written as V`1 (` = 1, . . . , n1n2) and
V`2 is defined in the same manner using the Bik2 values. Also set N1 = n1n2,
N2 = n3n4 and Mw = N1N2/(N1 + N2). Let F̂j be the empirical distribution
associated with the V`j values and let

W = M1/2
w sup|F̂1(v) − F̂2(v)|.

Then an extension of the shift function to the situation at hand is achieved if
now c can be determined such that

P (W ≤ c) = 1 − α. (3.1)

A fundamental obstacle to determining P (W ≤ c) is that among the N1 V`1

variables, some are dependent, and of course the same is true for the V`2 variables.
Consequently, the recursive algorithm derived by Kim and Jennrich (1973) for
determining P (T (Ĝ1, Ĝ2) ≤ c) does not extend to the situation at hand. And
if this issue is ignored, it is readily verified (via simulations) that the actual
probability coverage can differ substantially from the nominal level. But there
is a simple solution: Use simulations to determine c so that under normality,
equation (2) is approximately true. (This is readily done with modern computers
and software for accomplishing this goal is described and illustrated in section
5.)

Note that T (Ĝ1, Ĝ2) is invariant under order-preserving transformations of
the data, but this is not quite the case when using W . So the strategy is to to
generate nj values from a standard normal distribution for the jth group, compute
W , and repeat this say I times. Letting W(1) ≤ · · · ≤ W(I) be the resulting W
values written in ascending order, choose c to be W(d), where d = (1−α)I rounded
to the nearest integer. Here I = 1000 is used. Simulations reported in section
4 indicate that for non-normal distributions that represent a seemingly extreme
departure from normality, the actual probability of a Type I error remains fairly
close to the nominal level. The same is true for the discrete distributions to be
considered.
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3.1 The case J > 4

In principle, the method just described can be extended to J > 4 groups,
where primarily for convenience, J even is assumed. Let K = J/2. consider, for
example,

B1 = X1 + · · · + XK

and

B2 = XK+1 + · · · + XJ .

It is evident that this approach becomes impractical because estimating the dis-
tribution of B1, for example, would require computing n1n2 . . . , nK terms, which
soon becomes too large. To get at least an approximate solution, one possibility
would be to use a sample of size L of the n1 < n2 < · · · < nK combinations and
estimate the distribution of B1 for each of the L1 combinations, and of course
the same could be done when dealing with B2. Here, L1 = n(K−1)n(K) is used,
where n(1),≤ n(K) and L2 is defined likewise.

4. Some simulation results

If the goal is to have the probability of at least one Type I error equal to .05,
say, when applying the shift function, under general conditions this cannot be
achieved exactly because the distribution of the test statistic is discrete. That
is, the exact probability of at least one Type I error can be determined, given a
critical value c, but choosing c so that the probability of at least one Type I error
equal to .05, say, is impossible. So one goal here is to check on how close the
actual probability of at least one Type I error is to .05 using the approximation
of the critical value previously described. Because W is not quite invariant under
monotone increasing transformations of the data, another goal is to check the level
of the test when sampling from some non-normal distributions. Yet another goal
is to determine how much power is lost versus comparing means under normality
and homoscedasticity.

First consider the case n1 = n2 = n3 = n4 = 10 and suppose the goal is
to test the hypothesis of no interactions. (The same results are obtained when
dealing with main effects.) To begin, observations are sampled from standard
normal distributions. Then based on simulations with 2000 iterations, the actual
probability of at least one Type I error is .046. Increasing the sample sizes to 20,
the estimate is now .051.

As a check on the effects of sampling from non-normal distributions, obser-
vations were generated from g-and-h distributions (Hoaglin, 1985). If Z has a
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standard normal distribution, then

X =
{

g−1(exp(gZ) − 1)exp(hZ2/2), if g > 0
Zexp(hZ2/2), if g = 0.

has a g-and-h distribution where g and h are parameters that determine the first
four moments. In addition to normal distributions (g = h = 0), simulations were
run with a symmetric heavy-tailed distribution (h = .5, g = 0), an asymmetric
distribution with relatively light tails (h = .5, g = 0), and an asymmetric distri-
bution with heavy tails (g = h = .5). Table 1 summarizes the skewness (κ1) and
kurtosis (κ2) of these four distributions. Note that h = .5 represents a seemingly
extreme departure from normality because now kurtosis is not even defined. And
with g = h = .5, skewness is not defined. Here, equal sample sizes of 10, 20
and 100 were used, plus a situation where the first two groups have sample sizes
of 10 and the other two have sample sizes of 100. The estimated probability of
a Type I error, among all conditions considered, ranged between .046 and .058.
The highest estimate corresponds to where unequal sample sizes are used and
sampling is from an asymmetric distribution with heavy tails (g = h = .5). With
equal sample sizes the largest estimate was .056.

Table 1: Some properties of the g-and-h distribution

g h κ1 κ2

0.0 0.0 0.00 3.0
0.0 0.5 0.00 —
0.5 0.0 1.75 8.9
0.5 0.5 — —

A related issue is how tied values affect the probability of a Type I error.
To get at least some indication, observations were generated from the binomial
distribution (

10
x

)
.3x.710−x.

With n1 = n2 = n3 = n4 = 10, now the probability of at least one Type I error
was estimated to be .041.

As for power, consider again the situation where data are generated from a
normal distribution with δ = .8 added to every observation in the first group.
The usual ANOVA F test has power .44 when testing at the .05 level. The
heteroscedastic method for means derived by Johansen (1980) has power .42, and
the extension of the shift function has power .41. Let Φ denote a standard normal
cumulative distribution function. If instead sampling is from the contaminated
normal distribution

.9Φ(x) + .1Φ(x/10),
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which has heavy tails, and if now δ = 2, power for the ANOVA F, Johansen’s
method and the shift function is now .35, .50 and .93, respectively.

Now consider the case of a two-by-four design where the goal is to test the
hypothesis of no main effects for the first factor. In this case, only a subset of
all possible combinations of the data are used and an issue is whether this has
a major impact, under normality, on power versus ANOVA methods based on
means. If now δ = 1.2, with all sample sizes equal to 20 and again testing at the
.05 level, power for the ANOVA F, Johansen’s method and the shift function is
now .5, .5 and .42, respectively. For a two-by-five design, now power is .38, .38
and .32. For this latter case, if sampling is from the contaminated normal, power
is now .07, .08 and .17. Increasing δ to 2, the power estimates are .12, .13, and
.37.

5. More Comments and Illustrations

R software for applying the method in this paper is available from the au-
thor. For convenience functions specifically designed for a two-by-two design are
included. They are the functions Aband, intended to examine main effects for
the first factor, Bband, which deals with main effects for the second factor, and
iband, which deals with interactions. For the more general case where the goal
is to compare any two linear contrasts, the function sintcon can be used.

Note that the extensions of the shift function provide a graphical check on
the nature of any differences among the groups. If groups differ in location only,
the resulting plots should yield two straight, horizontal lines. If the groups differ
in both location and scale, again we get straight lines, but now they are not
horizontal. And if the groups differ in terms of skewness, the plotted lines will
be curved.

Also note that when testing the hypothesis of no interaction, the resulting
plot created by the function iband provides no information about the extent to
which the interaction is disordinal. One way of dealing with this, when dealing
with a two-by-two design, is to plot two shift functions. The first might be the
plot associated with the two groups corresponding to the first level of the first
factor, and the other would be the plot associated with the second level of the
first factor. If there is no disordinal interaction, the plots should be identical.
The function disband, also available from the author, can be used to create this
plot.

To illustrate some of these features, first consider an artificial situation where
n = 80 for each of four groups (a two-by-two design), the first group has a lognor-
mal distribution, shifted to have a median of zero, two groups have a standard
normal distribution, and the fourth has a normal distribution with mean 0 and
standard deviation 2. The upper-left panel of Figure 2 shows the resulting plot
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when examining interactions (with the R function iband). The upper-right panel
is the output from disband using the same data. The two shift functions dif-
fer, suggesting a disordinal interaction, and the graph reflects the additional fact
that the magnitude of the differences increases as we move from low to high val-
ues. The lower-left panel is based on data stemming from a study dealing with
weight gain associated with four types of diet. The two factors were source of
protein (beef versus cereal) and amount of protein (high versus low). Shown is
a shift function for the difference between the first two levels versus the second
two (using the function iband). An interaction is found, and because the plot is
approximately a straight horizontal line, it suggests that the interaction consists
essentially of a change in location only. But this plot does not reveal any infor-
mation about the extent to which the interaction is disordinal. To deal with this
issue, a shift function for both high versus low protein when the source of protein
is beef, as well as a shift function of high versus low when the source of protein is
cereal, is shown in the lower-right panel (using the function disband). As can be
seen, the two shift functions differ, consistent with a disordinal interaction, and
the nature of the differences appears to be primarily shifts in location.
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Figure 2: Plots based on the R functions iband and disband that provide details
about interactions.
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6. Concluding Remarks

As a final note, it would be of interest to extend the method in this paper
to dependent groups. Perhaps some extension of the method in Lombard (2005)
could be used, but this remains to be determined.
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