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The Log-exponentiated-Weibull Regression Models
with Cure Rate: Local Influence and Residual Analysis
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Abstract: In this paper the log-exponentiated-Weibull regression model is
modified to allow the possibility that long term survivors are present in
the data. The modification leads to a log-exponentiated-Weibull regression
model with cure rate, encompassing as special cases the log-exponencial
regression and log-Weibull regression models with cure rate typically used
to model such data. The models attempt to estimate simultaneously the
effects of covariates on the acceleration/deceleration of the timing of a given
event and the surviving fraction; that is, the proportion of the population
for which the event never occurs. Assuming censored data, we consider a
classic analysis and Bayesian analysis for the parameters of the proposed
model. The normal curvatures of local influence are derived under various
perturbation schemes and two deviance-type residuals are proposed to assess
departures from the log-exponentiated-Weibull error assumption as well as
to detect outlying observations. Finally, a data set from the medical area is
analyzed.

Key words: Cure rate models, exponentiated-Weibull distribution, influence
diagnostic, survival data; residual analysis.

1. Introduction

Models for survival analysis typically assume that all units under study are
susceptible to the event and will eventually experience this event if the follow-up
is sufficiently long. However, there are situations where a fraction of individuals
are not expected to experience the event of interest; that is, those individuals are
cured or insusceptible. For example, researchers may be interested in analyzing
the recurrence of a disease. Many individuals may never experience a recurrence;
therefore, a cured fraction of the population exists. Cure rate models have been
applied to estimate the possibility of a cured fraction. These models extend the
understanding of time-to-event data by allowing the formulation of more accu-
rate and informative conclusions. These conclusions are otherwise unobtainable
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from an analysis which fails to account for a cured or insusceptible fraction of
the population. If a cured component is not present, the analysis reduces to
standard approaches of survival analysis. Cure rate models have been used for
modeling time-to-event data for various types of cancer, including breast cancer,
non-Hodgkin lymphoma, leukemia, prostate cancer and melanoma. Thus, a cure
rate model is suitable for modeling data from cancer clinical trials. Berkson and
Gage (1952) introduce the mixture cure rate models, Maller and Zhou (1996)
give an extensive discussion of classic methods of inference for mixture cure rate
models. An alternative formulation of the parametric cure rate models is dis-
cussed in Yakovlev and Tsodikov (1996). A Bayesian formulation of this model
is given in Chen et al. (1999). Tsodikov et al. (2003) give an excellent review of
such methods. Outside the applications in this area, Hoggart and Griffin (2001)
focused on the time to a customer leaving a bank and Yamaguchi (1992) applied
the mixture cure rate models to the analysis of permanent employment in Japan.

The literature presents many applications of the survival models with cure rate
considering the Weibull family of distributions (see, Ibrahim et al., 2001; Maller
and Zhou , 1996). This family is suitable in situations where the failure rate
function is constant or monotone. This paper examines the statistical inference
aspects and the modeling of the presence of a cure rate of a given data set
by using the log-exponentiated-Weibull regression model. The inferential part
was carried out using the asymptotic distribution of the maximum likelihood
estimators, which in situations when the sample is small, the normality is more
difficult to be justified. As an alternative for classic analysis, we explore the use
of the Bayesian methods via Markov Chain Monte Carlo.

Influence diagnostics is an important part in the analysis of a data set, as it
provides us with an indication of bad model fitting or of influential observations.
Cook (1986) proposed a diagnostic approach, named local influence, to assess
the effect of small perturbations in the model and/or data on the parameter esti-
mates. Several authors have applied the local influence methodology in regression
models more general than the normal regression model (see, for example, Paula
1993, Galea et al., 2000, Dı́az-Garćıa et al., 2004, and Le et al., 2006). Moreover,
some authors have investigated the assessment of local influence in survival analy-
sis models: for instance, Pettitt and Bin Daud (1989) investigated local influence
in proportional hazard regression models, Escobar and Meeker (1992) adapted
local influence methods to regression analysis with censoring, Ortega et al. (2003)
considered the problem of assessing local influence in log-exponentiated-Weibull
regression models with censored observations and Ortega et al. (2008) investi-
gated local influence in the Weibull mixture cure models.

In Section 2 we briefly describe the cure rate model. In Section 3 we sug-
gest a log-exponentiated-Weibull regression model with cure fraction, in addition
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with the maximum likelihood estimators and the Bayes estimator. In Section 4,
we discuss the global and local influence method, the likelihood displacement is
used to evaluate the influence of observations on the maximum likelihood esti-
mators. We present residual from a fitted model using the martingale residual
proposed by Therneau et al. (1990) and we proposed a modified deviance resid-
ual for the generalized log-gamma regression model with cure fraction for the
log-exponentiated-Weibull regression model with cure rate in Section 5. In Sec-
tion 6 presents the results of an analysis with a real data set and analysis residual
some and conclusions appear in Section 7.

2. The Cure Rate Model

As in Yakovlev and Tsodikov (1996) and Chen et al. (1999), we formulate
the model within a biological context. The promotion time for the jth tumor cell
is denoted by Rj , j = 1, . . . , N, where N is random variable unobservable that
denotes the number of competing causes that can produce a detectable cancer.
If N = 0, we define P (R0 = ∞) = 1 to represent a cure. Hence, the observable
time to relapse of cancer or failure time is defined as T = min (Rj , 0 ≤ j ≤ N).
If N is a Poisson random variable with mean φ independent of the sequence Rj ,
j = 1, 2, . . . , also assumed independent random variable with the same cumulative
distribution function (c.d.f.) F (.) and S(.) = 1−F (.), we have that the population
survival function is given by

Spop(t) = P (N = 0) + P (R1 > t, . . . , RN > t|N ≥ 1)P (N ≥ 1)

= exp(−φ) +
∞∑

k=1

[
S(t)

]k φk exp{−φ}
k!

= exp
{
− φF (t)

}
. (2.1)

A corresponding cure fraction in model (2.1) is lim
t→∞

Spop(t) = exp{−φ} > 0, that
is not a proper model. As φ → ∞, the cure fraction tends to 0, whereas as φ → 0
the cure fraction tends to 1. Corresponding population density and hazard func-
tions are fpop(t) = φf(t)exp{−φF (t)} and hpop(t) = φf(t), respectively. They
are not proper probability density function or hazard function. However, hpop(t)
is multiplicative in φ and f(t); thus, it has the proportional hazard structure.
The population survival function (1) can be written as

Spop(t) = exp{−φ} +
[
1 − exp{−φ}

]
S∗(t),

where

S∗(t) =
exp{−φF (t)} − exp{−φ}

1 − exp{−φ}
,
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which is a proper survival function and

f∗(t) =
exp{−φF (t)}
1 − exp{−φ}

φf(t),

that is a proper probability density function.
Suppose we have n subjects and let Ni latent variables that denote the number

of competing causes that can produce a detectable cancer for the ith subject.
Further, we assume that Ni’s are independent with Poisson distributions with
means φi, i = 1, . . . , n. Further, suppose Ri1, . . . , RiNi are the promotion times for
the Ni competing causes for the ith subject, which are unobserved, and all have
proper cumulative distribution function, F (·|ψ) and survival function S(·|ψ) =
1 − F (·|ψ), where ψ is the parameter vector.

As in Chen et al. (1999), we assume that the mean of Ni is such that,
φ(xi) = exp(xT

i γ), where xT
i = (xi1, . . . , xip1) denotes the p1 × 1 vector of covari-

ate values for the ith subject, and γT = (γ1, . . . , γp1) denotes the corresponding
vector of regression coefficients. Let ti denote the survival time for subject i,
ti = min(Ti, Ci), with Ti = min(Ri0, Ri1, . . . , RiNi) and Ci is the censoring time
whereas δi is the censoring indicator, assuming 1 if ti = Ti and 0 otherwise. The
observed data is D = (n, t, δ,X), where t = (t1, . . . , tn)T , δ = (δ1, . . . , δn)T and
X = (xT

1 , . . . ,xT
n ), Also, let N = (N1, . . . , Nn)T . The complete data is given by

Dc = (n, t, δ,X,N), where N is an unobserved vector of latent variables. Chen
et al.(1999) show that the likelihood function for the complete data is

L(γ, ψ|Dc) =
{ n∏

i=1

[
Nif(ti|ψ)

]δi
[
S(ti|ψ)

]Ni−δi
}

× exp

{
n∑

i=1

[
Ni log

[
φ(xi)

]
− log(Ni!) − φ(xi)

]}
. (2.2)

Assuming out the unobserved latent variable N in (2.2) the marginal log-
likelihood function for the observable data is given by

L(γ, ψ|D) =
∑
N

L(γ, ψ|Dc)

=
n∏

i=1

exp
(
φ(xi)f(ti|ψ)

)δi exp
(
− φ(xi)

[
1 − S(ti|ψ)

])
. (2.3)

Recently De Castro et al. (2007) show that the likelihood function in (2.3)
can be represented by the following expression:

L(γ, ψ|D) =
n∏

i=1

{
fpop(ti|ψ)

}δi
{

Spop(ti|ψ)
}1−δi

. (2.4)
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This expression can be viewed as a generalization of the likelihood function found
in models for censored data (Kalbfleish and Prentice, 2002), since the proper
density and survival functions are replaced by their improper counterparts.
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Figure 1: Some forms specials for hazard function for the exponetiated-Weibull
family (WE(α, θ, σ)).

3. The Log-exponentiated-Weibull Regression Models with Cure Rate

The random variable T nonnegative has a exponentiated Weibull (WE) dis-
tribution is its probability density is of form

f(t) = αθλ[1 − exp(−(λt)α)]θ−1 exp[−(λt)α](λt)α−1, (3.1)

and survival function is given by,

S(t) = 1 − [1 − exp(−(λt)α)]θ , (3.2)

where t > 0 and α > 0, θ > 0, are shape parameters and λ > 0 is scale parameter.
It can be shown that the hazard function is given by

h(t) =
αθλ[1 − exp(−(λt))]θ−1 exp(−(λt)α)(λt)α−1

1 − (1 − exp(−(λt)α))θ
, (3.3)
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The great flexibility of this model to fit lifetime data, is given by the different
forms that the hazard function (3.3) can take, that is, (i) if α ≥ 1 and αθ ≥ 1,
then the hazard function is monotonically increasing; (ii) if α ≤ 1 and αθ ≤ 1,
then the hazard function is monotonically decreasing; (iii) if α > 1 and αθ < 1,
then the hazard function is bathtub shaped and (iv) if α < 1 and αθ > 1, then
we have a unimodal hazard function. In Figure 1, we have some case specials for
hazard function (3.3).

Applications of the WE distribution in reliability and survival studies were
investigated by Mudolkar et al. (1995) and Cancho et al. (1999). Cancho and
Bolfarine (2001) proposed the exponentiated-Weibull mixture model to modeling
the presence of cure fraction in lifetime data. Some properties of this distribution
have been studied more detailed in Mudholkar and Hutson (1996) and Nassar and
Eissa (2003).

We assume that the promotion time in the cure rate model in (2.1) follows
a exponentiated-Weibull distribution with density function given by (3.1). We
consider the following log-exponentiated-Weibull regression models

Yi = z>i β + σεi, i = 1, . . . , n, (3.4)

where Yi is log survival time for subject i, β = (β1, . . . , βp2) is a vector of unknown
parameters to be estimated, z>i = (zi1, zi2, . . . , zip2) is the explanatory vector
and σ > 0 is unknown parameter and εi are random variables assumed to be
identically distributed with common probability density function

f(ε) = θ[1 − exp{− exp(ε)}]θ−1 exp{ε − exp(ε)},∞ < ε < ∞, (3.5)

where θ > 0 is unknown parameter. It is supposition implicates that the variable
Yi has been log-exponentiated-Weibull distribution (see, Cancho et al.,1999).

On the other hard, by considering the model with cure rate in (2.1) and by as-
suming that such log(Rij) follow log-exponentiated-Weibull distribution with yi =
min

{
log(Ti), log(Ci)

}
in which log(Ti) = min

{
log(Ri0), log(Ri1), . . . , log(RiNi)

}
,

i = 1, 2, . . . , n we can show that the population survival function is

Spop(yi) = exp
{
− φi(xi)

({
1 − exp

[
− exp

(
yi − zT

i β

σ

)]}θ)}
, (3.6)

where φi(xi)) = exp(xT
i γ). This model will be referred to as the log-exponentiated-

Weibull regression model with cure rate (LEWR-CR). This model is an extension
of an accelerated failure time model using the exponentiated-Weibull distribution
and it allows to determine the effect of covariates both on the failure time and
on the cure rate itself. The corresponding density function is given by
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fpop(yi) =
θ

σ
φi(xi) exp

{
− φi(xi)

({
1 − exp

[
− exp

(
yi − zT

i β

σ

)]}θ)}
×

[
1 − exp

{
− exp

(yi − zT
i β

σ

)}]θ−1

× exp
{

yi − zT
i β

σ
− exp

(
yi − zT

i β

σ

)}
, (3.7)

where fpop(y) = − d
dySpop(y). Note that fpop(y) is not a proper probability density

function since Spop(y) is not a proper survival function.

3.1 Likelihood inference for the LEWR-CR

Considering the result in (2.4) the log-likelihood function for α =
(
θ, σ, γT ,βT

)T
,

corresponding to the observed data is given by

l(α) =
∑
i∈F

log
[
φ(xi)

]
+ r log(θ) − r log(σ) +

∑
i∈F

(
yi − zT

i β

σ

)
−

∑
i∈F

exp
(

yi − zT
i β

σ

)
+ (θ − 1)

∑
i∈F

log
(

1 − exp
{
− exp

(yi − zT
i β

σ

)})
−

n∑
i=1

φ(xi)
({

1 − exp
[
− exp

(
yi − zT

i β

σ

)]}θ)
, (3.8)

where F and C denote, respectively, the set of uncensored and censored individ-
uals, and r is number uncensored observations. This model allows to determine
the effect of covariates both on the failure time and on the cure rate itself. The
maximum likelihood estimates for the parameter vector α =

(
θ, σ, γT , βT

)T can
be obtained by maximizing the log-likelihood function. In this paper, the software
Ox (MAXBFGS subroutine) (see Doornik, 2001) was used to compute maximum
likelihood estimates (MLE). Covariance estimates for the maximum likelihood es-
timators α̂ can also be obtained using the Hessian matrix. Confidence intervals
and hypothesis testing can be conducted by using the large sample distribution of
the MLE which is a normal distribution with the covariance matrix as the inverse
of the Fisher information since regularity conditions are satisfied. More specifi-
cally, the asymptotic covariance matrix is given by I−1(α) with I(α) = −E[L̈(α)]

such that L̈(α) =
{

∂2l(α)
∂α∂αT

}
.

Since it is not possible to compute the Fisher information matrix I(α) due to
the censored observations (censoring is random and noninformative), it is possible
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to use the matrix of second derivatives of the log likelihood, −L̈(α), evaluated at
the MLE α = α̂, which is a consistent estimator. The required second derivatives
are computed numerically.

For testing the adequacy of log-Weibull regression model with cure rate, that
is, H0 : θ = 1, we can consider the likelihood ratio statistics, which in this case is
given by

Λn = −2
{

`(α̃) − `(α̂)
}

(3.9)

where α̂ is the maximum likelihood estimator that follows by maximizing the log-
likelihood in (3.8) and α̃ the restricted maximum likelihood estimator computer
under H0, that is, with θ = 1. For large samples, Λn is distributed approxi-
mately like the chi-square distribution with one degree of freedom. For testing
the adequacy of the log-exponential regression model with cure rate, that is,
H0 : (σ, θ)> = (1, 1)>, the likelihood deviance Λn is as given in equation (3.9)
but α̃ being the restricted maximum likelihood ratio estimator computed under
H0, that is, with σ = 1 and θ = 1. In this case Λn is distributed in large samples
approximately like the chi-square distribution with two degrees of freedom.

3.2 Bayesian inference for the LEWR-CR

The use of the Bayesian method besides being an alternative analysis, allows
the incorporation of previous knowledge on the parameters through informative
priori densities. When there is not this information one can consider noninfor-
mative priors. In the Bayesian approach, the relevant information to the model
parameters is obtained through posterior marginal distributions. As such, two
difficulties arise. The first refers to the attainment of the required marginal pos-
terior distributions and the second to the calculation of the moments of interest.
Both cases require solving integrals that many times do not present analytical so-
lution. In this paper we have used the simulation method of Markov Chain Monte
Carlo (MCMC), such as the Gibbs sampler and Metropolis-Hasting algorithm to
encompass such difficulties.

We consider the joint prior density for α =
(
θ, σ, γT , βT

)T of the form

π(α) =

(
p2∏
i=1

π(βi)

)(
p1∏

k=1

π(γk)

)
π(σ)π(θ), (3.10)

where βi ∼ N(ai, bi), i = 1, . . . , p2, γi ∼ N(a1i, b1i), i = 1, . . . , p1, σ ∼ IG(c, d)
θ ∼ G(e, f), with N(a, b) denoting the Normal distribution, IG(a, b) denoting
the Inverse Gamma distribution with shape parameter a > 0 and scale parameter
b > 0 and G(e, f) denoting the Gamma distribution with mean e/f and variance
a/f2. We assume that the hyperparameters are specified.
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Combining the likelihood function, L(α) = exp(`(α)), with `(α) in (3.8) and
prior specification (3.10), the joint posterior distribution for α is given by,

π(α|D) ∝
�

θ

σ

�r

exp

8<
:
X
i∈F

log
�
φ(xi)

�
+
X
i∈F

�
yi − zT

i β

σ

�
−
X
i∈F

exp

�
yi − zT

i β

σ

�
+

(θ − 1)
X
i∈F

log
�
Gi(β, σ)

�
−

nX
i=1

φ(xi)
�
Gi(β, σ)

�θ�
9=
;π(α), (3.11)

where, D denotes the observed data, r denotes the number of uncensored obser-

vations, Gi(β, σ) = 1 − exp
{
− exp

(yi−zT
i β

σ

)}
and φi(xi)) = exp

(
xT

i γ

)
.

To implement the MCMC methodology, the full conditionals of the parameters
are given by

π(β|γ, σ, θ) ∝ exp

8<
:
X
i∈F

�
yi − zT

i β

σ

�
−
X
i∈F

exp

�
yi − zT

i β

σ

�
+ (3.12)

(θ − 1)
X
i∈F

log
�
Gi(β, σ)

�
−

nX
i=1

φ(xi)
�
Gi(β, σ)

�θ�
9=
;π(β)

π(γ|β, σ, θ) ∝ exp

8<
:
X
i∈F

log
�
φ(xi)

�
−

nX
i=1

φ(xi)
�
Gi(β, σ)

�θ�
9=
;π(γ) (3.13)

π(σ|β, γ, θ) ∝ σ−r exp

8<
:
X
i∈F

�
yi − zT

i β

σ

�
−
X
i∈F

exp

�
yi − zT

i β

σ

�
+ (3.14)

(θ − 1)
X
i∈F

log
�
Gi(β, σ)

�
−

nX
i=1

φ(xi)
�
Gi(β, σ)

�θ�
9=
;π(σ),

π(θ|β, γ, σ) ∝ θr exp

8<
:θ

X
i∈F

log
�
Gi(β, σ)

�
−

nX
i=1

φ(xi)
�
Gi(β, σ)

�θ�
9=
;π(θ). (3.15)

Since the above conditional posteriors do not present standard forms, the use of
the Metropolis-Hasting sampler is required.

4. Influence Diagnostics

Local influence calculation can be carried out for model (6). If likelihood
displacementLD(ω) = 2{l(α̂) − l(α̂ω)} is used, where α̂ω denotes the MLE
under the perturbed model, the normal curvature for α at direction d, ‖ d ‖= 1,
is given by Cd(α) = 2|dT∆T

[
L̈(α)

]−1∆d|, where ∆ is a (p1 + p2 + 4) matrix
that depends on the perturbation scheme and whose elements are given by ∆vi =
∂2l(α|ω)/∂θv∂ωi, i = 1, 2, . . . , n and v = 1, 2, . . . , p1 + p2 + 4 evaluated at α̂
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and ω0, where ω0 is the no perturbation vector (see Cook, 1986). For the log-
exponentiated-Weibull regression models with cure rate, the elements of L̈(α)
are given in appendix A. We can also calculate normal curvatures Cd(θ),Cd(σ),
Cd(γ) and Cd(β) to perform various index plots, for instance, the index plot
of dmax, the eigenvector corresponding to Cdmax , the largest eigenvalue of the
matrix B = −∆T

[
L̈(α)

]−1∆ and the index plots of Cdi
(θ), Cdi

(σ) Cdi
(γ) and

Cdi
(β) named total local influence (see, for example, Lesaffre and Verbeke, 1998),

where di denotes an n= vector of zeros with one at the i− th position. Thus, the
curvature at direction di assumes the form Ci = 2|∆T

i

[
L̈(α)

]−1∆i| where ∆T
i

denotes the ith row of ∆. It is usual to point out those cases such that

Ci ≥ 2C̄, C̄ =
1
n

n∑
i=1

Ci. (4.1)

4.1 Curvature calculations

Next, we calculate, for three perturbation schemes, the matrix

∆ = (∆vi)[(p1+1)+(p2+1)+2×n
] =

(
∂2l(α|ω)

∂θvωi

)
[
(p1+1)+(p2+1)+2×n

], (4.2)

where v = 1, 2, . . . , p1 + p2 + 4 and i = 1, 2, . . . , n.
Considering the model defined in (12) and its log-likelihood function given by

(13).

Case-weights perturbation

Consider the vector of weights ω = (ω1, ω2, . . . , ωn)T .
In this case the log-likelihood function takes the form

l(α|ω) =
X
i∈F

ωi log
�
φ(xi)

�
+ log(θ)

X
i∈F

ωi − log(σ)
X
i∈F

ωi +
X
i∈F

ωihi −

X
i∈F

ωi exp{hi} + (θ − 1)
X
i∈F

ωi log
h
1 − exp

n
− exp(hi)

oi
−

X
i∈F

ωiφ(xi)
h
1 − exp

n
− exp(hi)

oiθ
−
X
i∈C

ωiφ(xi)
h
1 − exp

n
− exp(hi)

oiθ
, (4.3)

where 0 ≤ ωi ≤ 1 and ω = (1, . . . , 1)T . Let us denote ∆ = (∆θ,∆σ,∆γ ,∆β)T .
Then the elements of vector ∆θ take the form

∆i =

{
θ̂1 + log(ĝi)

[
1 − φ̂(xi)ĝθ̂

i

]
if iεF,

−φ̂(xi) log(ĝi)ĝθ̂
i if iεC.
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On the other hand, the elements of the vector ∆σ can be shown to be given by

∆i =

8<
: ĥiσ̂

−1
n

ĥ−1
i − 1 + exp{ĥi} + exp{ĥi}(1 − ĝi)ĝ

−1
i

�
1 − θ̂

�
− 1 + φ̂(xi)ĝ

θ̂
i

��o
if iεF,

ĥiσ̂
−1θ̂ exp{ĥi}(1 − ĝi)φ̂(xi)ĝ

(θ̂−1)
i if iεC.

The matrix ∆γ (p1 × n) is expressed as

∆ki =

{
xik

[
1 − exp{xT

i β̂}ĝθ̂
i

]
if iεF,

−xik exp{xT
i β̂}ĝθ̂

i if iεC.

The matrix ∆β (p2 × n) is expressed as

∆ji =

8<
: zij σ̂−1 exp{ĥi}

n
− exp{ĥi}−1 − 1 + (1 − ĝi)ĝ

−1
i

�
− θ̂ + 1 + θ̂φ̂(xi)ĝ

θ̂
i

�o
if iεF,

zij θ̂σ̂−1φ̂(xi) exp{ĥi}(1 − ĝi)ĝ
(θ̂−1)
i if iεC.

Response perturbation

We will consider here that each yi is perturbed as yiw = yi + ωiSy, where Sy

is a scale factor that may be the estimated standard deviation of Y and ωi ∈ R.
Here the perturbed log-likelihood function becomes expressed as

l(α|ω) =
X
i∈F

log
�
φ(xi)

�
+ r log(θ) − r log(σ) +

X
i∈F

h∗
i −

X
i∈F

exp{h∗
i } + (θ − 1)

X
i∈F

log
h
1 − exp

n
− exp(h∗

i )
oi

−

X
i∈F

, φ(xi)
h
1 − exp

n
− exp(h∗

i )
oiθ

−
X
i∈C

φ(xi)
h
1 − exp

n
− exp(h∗

i )
oiθ

, (4.4)

where h∗
i = σ−1(yi + ωiSy − zT

i β).
In addition, the elements of the vector ∆θ take form

∆i =

 Syσ̂
−1 exp{ĥi}(1 − ĝi)ĝ−1

i

{
1 − φ̂(xi)ĝθ̂

i

[
θ̂ log(ĝi) + 1

]}
if iεF,

Syσ̂
−1φ̂(xi) exp{ĥi}(1 − ĝi)ĝ

(θ̂−1)
i

[
θ̂ log(ĝi) + 1

]
if iεC.

On the other hand, the elements of the vector ∆σ can be shown to be given
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by

∆i =



Sxσ̂−2 exp{ĥi}

{
− exp{−ĥi} + ĥi + 1 + (1 − ĝi)ĝ

(θ̂−1)
i[

− (θ̂ − 1)ĝ(θ̂−1)
i

{
ĥi(1 − exp{ĥi}) − (1 − ĝi)(1 + ĥi) + 1

}
+

θ̂φ̂(xi)ĥi

{
exp{ĥi}

[
(θ̂ − 1)(1 − ĝ−1

i )ĝ−1
i − 1

]
+ ĥ−1

i + 1
}]}

if iεF,

Sxσ̂−2hi exp{ĥi}φ̂(xi)θ̂(1 − ĝi)ĝ
(θ̂−1)
i{

exp{ĥi}
[
(θ̂ − 1)(1 − ĝ−1

i )ĝ−1
i − 1

]
+ ĥ−1

i + 1
}

if iεC.

The entries of the matrix ∆γ (p1 × n) can be expressed as

∆ki =

{
−xikSyσ̂

−1θ̂ exp{ĥi}φ̂(xi)(1 − ĝi)ĝ
(θ̂−1)
i if iεF,

−xikSyσ̂
−1θ̂ exp{ĥi}φ̂(xi)(1 − ĝi)ĝ

(θ̂−1)
i if iεC.

Furthermore, the elements the matrix ∆β, (p2 × n) can be expressed as

∆ji =

8>>>>>>><
>>>>>>>:

zijSxσ̂−2 exp{ĥi}
(

1 − (1 − ĝi)ĝ
θ̂−1
i

�
(θ̂ − 1)(ĝi + exp{ĥi})ĝ

(θ̂−1)
i +

θ̂φ̂(xi)
n

exp{ĥi}
�
(θ̂ − 1)ĝ−1

i (1 − ĝi) − 1
�
+ 1

o�)
if iεF,

zijSxσ̂−2θ̂φ̂(xi) exp{ĥi}(1 − ĝi)ĝ
θ̂−1
i

�
exp{ĥi}

h
(θ̂ − 1)ĝ−1

i (1 − ĝi) − 1
i

+ 1

�
if iεC.

Explanatory variable perturbation (Cure rate)

Consider now an additive perturbation on a particular continuous explanatory
variable (rate cure), namely Xt, by making xitω = xit +ωiSx, where Sx is a scaled
factor, ωi ∈ R. This perturbation scheme leads to the following expressions for
the log-likelihood function and for the elements of the matrix ∆:

In this case the log-likelihood function takes the form

l(α|ω) =
X
i∈F

log
�
φ∗(xi)

�
+ r log(θ) − r log(σ) +

X
i∈F

hi −

X
i∈F

exp{hi} + (θ − 1)
X
i∈F

log
h
1 − exp

n
− exp(hi)

oi
−

X
i∈F

, φ∗(xi)
h
1 − exp

n
− exp(hi)

oiθ
−
X
i∈C

φ∗(xi)
h
1 − exp

n
− exp(hi)

oiθ
, (4.5)

where φ∗(xi) = exp{x∗T
i } = γ0 + γ1xi1 + . . . + γt(xit + ωiSx) + . . . + γp1xip1 .
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In addition, the elements of the vector ∆θ are expressed as

∆i =
{

−γ̂tSxĝθ̂
i log(ĝi) if i = 1, 2, . . . , n.

The elements of vector ∆σ are expressed as

∆i =
{

γ̂tSxθ̂σ̂−1ĥi exp{ĥi}(1 − ĝi)ĝθ̂
i if i = 1, 2, . . . , n.

The elements the matrix ∆γ may be expressed when k 6= t

∆ki =

{
−xikγ̂tSx

[
φ̂(xi)

]−2
if iεF,

0 if iεC.

The elements of the vector ∆γ, when k = t are given by

∆ti =

 Sx

{
φ̂−1(xi)

[
− xitγ̂tφ̂

−1(xi) + 1
]
− ĝi

}
if iεF,

−Sxĝθ̂
i if iεC.

The elements the matrix ∆β can be expressed

∆ji =
{

zij γ̂tSxθ̂σ̂−1 exp{ĥi}(1 − ĝi)ĝ
(θ̂−1)
i if i = 1, 2, . . . , n.

Explanatory variable perturbation (Failure Time T )

Consider now an additive perturbation on a particular continuous explanatory
variable, namely Zt, by making zitω = zit + ωiSt, where St is a scaled factor,
ωi ∈ R. This perturbation scheme leads to the following expressions for the
log-likelihood function and for the elements of the matrix ∆:

l(α|ω) =
X
i∈F

log
�
φ(xi)

�
+ r log(θ) − r log(σ) +

X
i∈F

h∗
i −

X
i∈F

exp{h∗
i } + (θ − 1)

X
i∈F

log
h
1 − exp

n
− exp(h∗

i )
oi

−

X
i∈F

φ(xi)
h
1 − exp

n
− exp(h∗

i )
oiθ

−
X
i∈C

φ(xi)
h
1 − exp

n
− exp(h∗

i )
oiθ

(4.6)

where h∗
i = σ−1(yi − z∗Ti β) and z∗Ti = β0 + β1zi1 + β2zi2 + · · ·+ βt(zit + ωiSt) +

· · · + βp2xip2 .
In addition, the elements of the vector ∆θ are expressed as

∆i =

 −β̂tSxσ̂−1 exp{ĥi}(1 − ĝi)ĝ
(θ−1)
i

[
ĝ−θ̂
i + θ̂ log(ĝi) + 1

]
if iεF,

−β̂tSxσ̂−1 exp{ĥi}(1 − ĝi)ĝ
(θ−1)
i

[
θ̂ log(ĝi) + 1

]
if iεC.
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The elements of vector ∆σ are expressed as

∆i =

8>>>>>>>>>><
>>>>>>>>>>:

βtSxσ̂−2

(
1 − exp{ĥi}(1 + ĥi) + (1 − ĝi)ĝ

(θ̂−2)
i exp{ĥi}

�
(
ˆ̂
θ − 1)ĥiĝ

−θ̂
i

n
exp{ĥi}+

ĝi(1 + ĥ−1
i )

o
− θ̂φ̂(xi)

n
ĥi exp{ĥi}(θ̂ − 1)(1 − ĝi) + ĝi(ĥi exp{ĥi} + ĥi + 1)

o�)
if iεF,

−β̂tθ̂Sxσ̂−2 exp{ĥi}φ̂(xi)(1 − ĝi)ĝ
θ̂−2
i�

(θ̂ − 1)hi exp{ĥi}(1 − ĝi) + ĝi

h
ĥi exp{ĥi} + ĥi + 1

i�
if iεC.

The elements the matrix ∆β may be expressed when j 6= t,

∆ji =

8>>>>>><
>>>>>>:

zij β̂tSxσ̂−2 exp{ĥi}(1 − ĝi)

(
(1 − ĝi)

−1 + (θ̂ − 1)
�
ĝi + exp{ĥi}

�
−

θ̂φ̂(xi)ĝi

h
θ̂ exp{ĥi}(1 − ĝi) + ĝi

�
1 − exp{ĥi}

�i)
if iεF,

−zij β̂tSxθ̂σ̂−2φ̂(xi) exp{ĥi}(1 − ĝi)ĝi

h
θ̂ exp{ĥi}(1 − ĝi) + ĝi

�
1 − exp{ĥi}

�i
if iεC.

The elements of the vector ∆β, when j = t are given by

∆ti =

8>>>>>>>><
>>>>>>>>:

Sxσ̂−1

�
− 1 − exp{ĥi}

h
ẑitβ̂t + θ̂φ̂(xi)(1 − ĝi)ĝ

(θ̂−1)
i + 1

i
−

ĥi(θ̂ − 1)(1 − ĝi)ĝ
−1
i

�
+ zitβ̂tSxσ̂−2 exp{ĥi}(1 − ĝi)�

(θ̂ − 1)
h
ĝi + exp{ĥi}

i
+ θ̂φ̂(xi)ĝi

h
exp{ĥi}

�
θ̂(1 − ĝi) − ĝi

�
+ ĝi

i�
if iεF,

Sxθ̂σ̂−1φ̂(xi) exp{ĥi}ĝ
(θ̂−1)
i (1 − ĝi) if iεC.

The elements the matrix ∆γ may be expressed

∆ki =
{

xikSxβ̂tθ̂σ̂
−1φ̂(xi) exp{ĥi}(1 − ĝi)ĝθ̂−1

i if i = 1, 2, . . . , n,

where ĝi = 1 − exp{− exp(ĥi)}, ĥi = yi−zT
i

ˆβ
σ̂ , k = 0, 1, . . . , p1, j = 0, 1, . . . , p2,

and i = 1, 2, . . . , n.

5. Residual Analysis

In order to study departures from the error assumptions as the well as presence
of outlying observations, we will consider two kinds of residuals: deviance com-
ponent residual (see, for instance, McCullagh and Nelder, 1989) and martingale-
type residual (see for instance, Barlow and Prentice, 1988; Therneau et al., 1990).
More details can be found in Ortega et al. (2003).
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5.1 Martingale-type and deviance modified components residuals

This martingale-type modified residual was introduced in counting processes
and can be written in log-exponentiated-Weibull regression models with rate cure
as

rMi =

 1 − log
[
exp{−φ̂(xi)ĝθ̂

i }
]

+ log
[
1 − exp{−φ̂(xi)}

]
if iεF,

log
[
1 − exp{−φ̂(xi)}

]
− log

[
exp{−φ̂(xi)ĝθ̂

i }
]

if iεC.
(5.1)

More details about counting processes can be found, for instance, in Fleming
and Harrington (1991) and Ortega (2001). These authors show that the distri-
bution of the deviance component residual based on the martingale residual has
very close asymptotic distribution to the normal distribution.

Therefore, we have that the deviance component residual for log-exponentiated-
Weibull regression models with rate cure becomes

rDi =

{
sgn(rMi)

√
2
{
rMi + log(1 − rMi)

} 1
2 if iεF,

sgn(rMi)
√

2
{
rMi

} 1
2 if iεC.

(5.2)

where ĝi = 1 − exp{− exp(ĥi)}, ĥi = σ̂−1(yi − zT
i β̂), φ̂(xi) = exp{xT

i γ̂}.

5. Residual Analysis

In order to study departures from the error assumptions as the well as presence
of outlying observations, we will consider two kinds of residuals: deviance com-
ponent residual (see, for instance, McCullagh and Nelder, 1989) and martingale-
type residual (see for instance, Barlow and Prentice, 1988; Therneau et al., 1990).
More details can be found in Ortega et al. (2003).

5.1 Martingale-type and deviance modified components residuals

This martingale-type modified residual was introduced in counting processes
and can be written in log-exponentiated-Weibull regression models with rate cure
as

rMi =

 1 − log
[
exp{−φ̂(xi)ĝθ̂

i }
]

+ log
[
1 − exp{−φ̂(xi)}

]
if iεF,

log
[
1 − exp{−φ̂(xi)}

]
− log

[
exp{−φ̂(xi)ĝθ̂

i }
]

if iεC.
(5.1)

More details about counting processes can be found, for instance, in Fleming
and Harrington (1991) and Ortega (2001). These authors show that the distri-
bution of the deviance component residual based on the martingale residual has
very close asymptotic distribution to the normal distribution.
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Therefore, we have that the deviance component residual for log-exponentiated-
Weibull regression models with rate cure becomes

rDi =

{
sgn(rMi)

√
2
{
rMi + log(1 − rMi)

} 1
2 if iεF,

sgn(rMi)
√

2
{
rMi

} 1
2 if iεC.

(5.2)

where ĝi = 1 − exp{− exp(ĥi)}, ĥi = σ̂−1(yi − zT
i β̂), φ̂(xi) = exp{xT

i γ̂}.

6. Application

In this section, the application of the local influence theory to a set of real data
on cancer recurrence is discussed. The data are part of an assay on cutaneous
melanoma (a type of malignant cancer) for the evaluation of postoperative treat-
ment performance with a high dose of a certain drug (interferon alfa-2b) in order
to prevent recurrence. Patients were included in the study from 1991 to 1995,
and follow-up was conducted until 1998. The data were collected by Ibrahim et
al. (2001b). This data set has recently been analyzed by Mizoi (2004), using
a Weibull model with cure fraction. The data present the survival times, T, as
the time until the patient’s death. The original size of the sample was n = 427
patients, 10 of which did not present a value for covariate tumor thickness. When
such cases were removed, a sample of size n = 417 patients was retained. The per-
centage of censored observations is 56%. The following variables were associated
with participant i, i = 1, 2, . . . , 417.

• ti: observed time (in years);

• xi1: treatment (0= observation, 1=interferon);

• xi2: age (in years);

• xi3: nodule (nodule category: 1 to 4);

• xi4: sex (0=male, 1=female);

• xi5: p.s. (performance status-patient’s functional capacity scale as regards
his daily activities: 0=fully active, 1=other);

• xi6: tumor (tumor thickness in mm.).

The survival function graph, Kaplan-Meier estimate, is presented in Figure
2, from where a significant fraction of survivors can be observed.
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Figure 2: Plot of the Survivor Function for the melanoma data

Firstly, we consider the following regression model:

yi = log(ti) = β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + σεi, i = 1, . . . , 417,

where εi are independent random variable with common probability density func-
tion given by (3.5) and φ(xi) = exp(γ0+γ1xi1+γ2xi2+γ3xi3+γ4xi4+γ5xi5+γ6xi6),
where yi denotes the lifetime logarithm.

6.1 Maximum likelihood results

To obtain the maximum likelihood estimates (MLEs) for the parameters in
the log-exponentiate-Weibull regression model we use the subroutine MAXBFGS
in Ox, whose results are given in the following Table 1.

We note the covariate treatment is significative (at 1%) in the log of time T ,
the predictor nodule is significative (at 5%) for both in the log of time and cure
fraction, also the predictor sex is significative (at 10%).

The value of the likelihood ratio to test the null hypothesis H01 : θ = 1 in (3.9)
provides Λn = 18.772, which clearly is significante at the 5%, with critical value
χ2

1,0.05 = 3.841. Clearly, the LER-CR model is also not adequate, since for testing
H0 : θ = 1, σ = 1, the observed value of likelihood ratio statistics is Λn = 49.104
(2 degrees of freedom) with p-value ≈ 0. Thus, the likelihood ratio test indicates
that the LWER-CR model presents a much better fit that the LWR-CR to the
data set under considerations.
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Table 1: Maximum likelihood estimates for the log-exponentiated-Weibull re-
gression model with cure rate

Parameter Estimate SE p-value
σ 1.5567 0.2745 -
θ 6.2222 2.030 -
βtreatment 0.4088 0.1586 0.0099
βage -0.0031 0.0057 0.5833
βnodule -0.1868 0.0778 0.0164
βsex -0.2674 0.1611 0.0970
βp.s -0.0729 0.2159 0.7355
βtumor 0.0164 0.0227 0.4697
γ0 -1.4227 0.4868 0.0035
γtreatment 0.3393 0.1892 0.0730
γage 0.0076 0.0071 0.2837
γnodule 0.2523 0.0898 0.0049
γsex -0.3196 0.1890 0.0908
γp.s 0.0940 0.2523 0.7094
γtumor 0.0356 0.0276 0.1970

Table 2: Posterior summaries for the log-exponentiated-Weibull regression
model with cure rate.

Parameter Mean Median S.D. 2,5% 97.5% R̂
σ 1.632 1.613 0.2998 1.109 2.271 1.001
θ 5.936 5.725 1.869 2.917 10.14 1.008
βtreatment 0.4627 0.4623 0.1853 0.0952 0.8342 1.002
βage -0.0018 -0.0018 0.0062 -0.0138 0.0107 1.007
βnodule -0.1868 -0.1844 0.0827 -0.3543 -0.0317 1.004
βsex -0.3008 -0.2961 0.1836 -0.6857 0.0456 1.006
βp.s -0.109 -0.1056 0.1815 -0.4726 0.2467 1.000
βtumor 0.0206 0.0199 0.0263 -0.0291 0.0742 1.001
γ0 -1.456 -1.489 0.4593 -2.292 -0.5273 1.019
γtreatment 0.415 0.415 0.2124 0.0082 0.8523 1.001
γage 0.0094 0.0095 0.0072 -0.0047 0.02397 1.001
γnodule 0.246 0.2477 0.09103 0.05907 0.4167 1.011
γsex -0.3494 -0.3432 0.1994 -0.7444 0.03491 1.003
γp.s 0.04082 0.04001 0.03024 -0.01716 0.1022 1.012
γtumor 0.02779 0.05206 3.154 -6.206 6.223 1.071

6.2 Bayesian analysis

We consider now a Bayesian analysis for the data set, using minimal prior
information. The following independent priors were considered to perform the
Gibbs sampler: βi ∼ N(0, 100), i = 1, . . . , 6 γi ∼ N(0, 100), i = 0, 1, . . . , 6
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σ ∼ IG(1, 0.01), θ ∼ G(1, 0.01), so that we have a vague prior distribution.
Considering these prior densities we generated two parallel independent runs of
the Gibbs sampler chain with size 50000 for each parameter, disregarding the
first 10000 iterations to eliminate the effect of the initial values and to avoid
correlation problems, we considered a spacing of size 10, obtaining a sample of size
4000 from each chain. To monitor the convergence of the Gibbs samples we used
the between and within sequence information, following the approach developed
in Gelman and Rubin (1992) to obtain the potential scale reduction, R̂. In all
cases, these values were close to one, indicating chain convergence. In Table 2 we
report posterior summaries for the parameters of the log-exponentiated-Weibull
regression model with cure rate.

To compare the LEWR-CR model and LWR-CR model fits by inspecting the
estimated of the expected value of Akaike’s Information Criterion (EAIC), the
expected value of Bayesian Information Criterion (EBIC) and Deviance informa-
tion criterion (DIC) (see, Spiegelhalter et al., 2002), all put together in Table
3. According to EAIC, EBIC and DIC, the log-exponentiated-Weibull regression
(LEWR-CR) model improves the corresponding log-Weibull regression (LWR-
CR) model. Similar conclusions can be made analyzing the credibility interval
for the parameter θ under LEWR-CR model since it does not contain θ = 1.

Table 3: EAIC, EBIC and DIC criteria

Model EAIC EBIC DIC

LEWR-CR 903.900 964.396 888.578
LWR-CR 920.600 977.063 904.946

6.3 Local influence analysis

In this section, we will make an analysis of local influence for the cancer data.

Case-weights perturbation

By applying the local influence theory developed in Section 4, where case-
weight perturbation is used, value Cdmax(α) = 1.5853, Cdmax(γ) = 1.2163 and
Cdmax(β) = 1.4495 was obtained as maximum curvature. In Figure 3, the graph
for the eigenvector corresponding to |dmax(α)|, |dmax(γ)| and |dmax(β)| for all
points is presented. Clearly, the most influential is observation 341 on α (See
Figure 3(a)). But marginally we noticed that the observation 47 can be influential
on γ and the observation 341 on β. We also mentioned that the observation 47
introduce one of the largest lifetimes and the observation 341 presents the smallest
lifetime.
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Figure 3: Case-weights perturbation. (a) Index plot of dmax for α. (b) Index
plot of dmax for γ. (c) Index plot of dmax for β.
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Figure 4: Response perturbation. (d) Index plot of dmax for α. (e) Index plot
of dmax for γ. (f) Index plot of dmax for β.

Influence using response variable perturbation

Next, the influence of perturbations on the observed survival times will be
analyzed. The value for the maximum curvature calculated was Cdmax(α) =
19.303, Cdmax(γ) = 1.3153 and Cdmax(β) = 6.6636. Figure 4, containing the
graph for |dmax(γ)|, |dmax(α)| and |dmax(β)| for all points. Results in Figure
4(d) suggest that the observation 176 is the most influential on α. But marginally
we noticed that the observation 386 can be influential on γ and the observations
134 and 369 on β.

Influence using explanatory variable perturbation

The perturbation of the covariables age(x2) and tumor(x6) is investigated
here. After perturbation of covariable age, value Cdmax(α) = 1.1243, Cdmax(γ) =
1.1012 and Cdmax(β) = 0.4667 was obtained as maximum curvature, and after
perturbation of covariable tumor, values Cdmax(α) = 1.0351, Cdmax(γ) = 0.9418
and Cdmax(β) = 0.8326 were achieved. The respective index plot of |dmax(α)|,
|dmax(γ)| and |dmax(β)| against the observation index are shown in Figures 5
and 6. Results in Figura 5(g) and 6(j) suggest that the observations 176 and 351
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are the most influential in α. But marginally we noticed that the observation 47,
196 and 351 can be influential on γ and the observation 176 on β
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Figure 5: Age explanatory variable perturbation. (g) Index plot of dmax for
α. (h) Index plot of dmax for γ. (i) Index plot of dmax for β.
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Figure 6: Tumor explanatory variable perturbation. (j) Index plot of dmax for
α. (k) Index plot of dmax for γ. (l) Index plot of dmax for β.

6.4 Residual analysis

In order to detect possible outlying observations as well as departures from
the assumptions of the log-exponentiated-Weibull regression models with rate
cure, we present in Figure 7, the graphs of rDi against the order observations.

By analyzing the residuals deviance graph, a random behavior is observed for
the datas. As we can observe through the local influence analysis and analysis
and the residual analysis it doesn’t exist jointly influential points. Thus, the final
model becomes the one given by

yi = β1xi1 + β3xi3 + β4xi4 + σεi, φ(xi) = exp{γ0 + γ1xi1 + γ3xi3 + γ4xi4} (6.1)
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Figure 7: Index plot of the deviance

The parameters MLEs are reported in the Table 4.

Table 4: Maximum likelihood estimates for the log-exponentiated-Weibull re-
gression model with cure rate

Parameter Estimate SE p-value
σ 1.4990 0.1887 -
θ 5.7294 1.1124 -
βtreatment 0.4247 0.1509 0.0049
βnodule -0.1937 0.0704 0.0059
βsex -0.2698 0.1593 0.0905
γ0 -0.8691 0.2929 0.0031
γtreatment 0.3032 0.1843 0.0998
γnodule 0.2459 0.0871 0.0047
γsex -0.3514 0.1863 0.0592

We note the covariate treatment and nodule is significative (at 5%) in the
log of time T , the predictor nodule and sexo is significative (at 5%) in the cure
fraction. The covariate nodule is significative for both in the log of time and cure
fraction, also the predictor sex and treatment is significative (at 10%) in the log
of time and cure fraction respectively.

We may interpret the estimated coefficients of the final model as following.
The predictor nodule decelerates the lifetime of individual’s and alters the cured
proportion significantly, and that significant difference exists among the levels of
treatments (observation and interferon) in relation log of time.
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7. Concluding Remarks

In this study, the log-exponentiated-Weibull regression (LEWR) model was
modified in order to include long-term individuals. In the proposal under con-
sideration, log-linear parametric modeling was taken as a basis for survival time.
The model attempts to estimate simultaneously the covariates effects on the ac-
celaration/decelaration of the timing of a given event and surviving fraction, that
is, the proportion of the population for which the event never occurs.

Continuing with modeling investigation, we applied local influence theory
(Cook (1986) and Thomas and Cook (1990)) and conducted a study based on
martingale and deviance residuals in a survival model with a cure fraction. The
necessary matrices for application of the technique were obtained by taking into
account various types of perturbations to the data elements and to the model. By
applying such results to a data set, indication was found of which observations
or set of observations would sensitively influence the analysis results. This fact is
illustrated in application (Section 6). By means of a real data set, it was observed
that, for some perturbation schemes, the presence of certain observations could
considerably change the levels of significance of certain variables. The results of
the applications indicate that the use of the local influence technique in models
with a cure fraction may be rather useful in the detection of possibly influential
points by admitting two types of estimation methodology: maximum likelihood
and Bayesian. In order to measure the quality of fitting, martingale and deviance
residuals were used, which showed that the model fitting was correct. Finally
we can observe that the log-exponentiated-Weibull regression models with rate
considered is a robust model.
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Dı́az-Garćıa, J. A., Galea Rojas, M., and Leiva-Sánchez, V. (2003). Influence diagnos-
tics for elliptical multivariate linear regression models. Commun. Stat., Theory
Methods, 32, 625-641.

Doornik, J. A. (2001). Ox 3.0 : an object-oriented matrix programming language, 4th
edition. Timberlake Consultants Ltd.

Escobar, L. A. and Meeker, W. Q. (1992). Assessing influence in regression analysis
with censored data. Biometrics, 48, 507-528.

Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with
long-term survivors. Biometrics, 38, 1041-1046.

Fleming, T. R. and Harrington, D. P. (1991). Counting processes and survival analysis.
John Wiley & Sons.

Galea, M., Riquelme, M., and Paula, G. A. (2000). Diagnostic methods in elliptical
linear regression models. Braz. J. Probab. Stat., 14, 167-184.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7, 457-511.

Greenhouse, J. B. and Wolfe, R. A. (1984). A competing risks derivation of a mixture
model for the analysis of survival data. Commun. Stat., Theory Methods, 13,
3133-3154.

Hoggart, C. and Griffin, J. E. (2001). A bayesian partition model for customer at-
trition. In Bayesian Methods with Applications to Science, Policy, and Official
Statistics (Select Papers from ISBA 2000) (Edited by E. I. George), 61-70. Creta,
International Society for Bayesian Analysis.

Ibrahim, J. G., Chen, M.-H., and Sinha, D. (2001). Bayesian survival analysis. Springer-
Verlag.

Kalbfleisch, J. D. and Prentice, R. L. (2002). The statistical analysis of failure time
data, second edition. John Wiley & Sons.

Lesaffre, E. and Verbeke, G. (1998). Local influence in linear mixed models. Biometrics,
54, 570-582.



Log-exponentiated-Weibull Regression Models 457

Maller, R. A. and Zhou, X. (1996). Survival analysis with long-term survivors. John
Wiley & Sons.

McCullagh, P. and Nelder, J. A. (1983). Generalized linear models. Chapman & Hall.

Mizoi, M. F. (2001). Influência local em modelos de sobrevivência com fracão de cura.
Doctor thesis, IME-University of São Paulo, São Paulo-Brazil. (in Portuguese).

Mudholkar, G. S. and Hutson, A. D. (1996). The exponentiated Weibull family: some
properties and a flood data application. Comm. Statist. Theory Methods, 25,
3059-3083.

Mudholkar, G. S., Srivastava, D. K., and Freimer, M. (1995). The exponentiated
Weibull family: A reanalysis of the bus-motor-failure data. Technometrics, 37,
436-445.

Nassar, M. M. and Eissa, F. H. (2003). On the exponentiated Weibull distribution.
Comm. Statist. Theory Methods, 32, 1317-1336.

Ortega, E. M. M. (2001). Influence Analysis in Generalized Log-Gamma Regression
Models. Doctor thesis, IME-University of SãoPaulo, São Paulo-Brazil. (in Por-
tuguese).

Ortega, E. M. M., Bolfarine, H., and Paula, G. A. (2003). Influence diagnostics in
generalized log-gamma regression models. Comput. Statist. Data Anal., 42, 165-
186.

Ortega, E. M. M., Cancho, V. G., and Lachos, V. H. (2008). Influence diagnostics
in the weibull mixutre model with covariates. Statistics and Operations Research
Transactions, In press.

Pettitt, A. N. and Bin Duad, L. (1898). Case-weighted measures of influence for pro-
portional hazards regression. Applied Statistics, 38, 51-67.

Sy, J. P. and Taylor, J. M. G. (2000). Estimation in a Cox proportional hazards cure
model. Biometrics, 56, 227-236.

Therneau, T. M., Grambsch, P. M., and Fleming, T. R. (1990). Martingale-based
residuals for survival models. Biometrika, 77, 147-160.

Tsodikov, A. D., Ibrahim, J. G., and Yakovlev, A. Y. (2003). Estimating cure rates
from survival data: an alternative to two-component mixture models. J. Amer.
Statist. Assoc., 98, 1063-1078.

Yakovlev, A. and Tsodikov, A. D. (1996). Stochastic models of tumor latency and their
biostatistical applications, volume 1 of Mathematical Biology and Medicine. World
Scientific, New Yersey.

Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression
model of surviving fraction: An application to the analysis of “permanent employ-
ment” in Japan. Journal of the American Statistical Association, 87, 284-292.



458 V. G. Cancho, E. M. M. Ortega and H. Bolfarine

Received June 4, 2007; accepted March 7, 2008.

Vicente, G. Cancho
Instituto de Ciências Matemáticas e de Computacão
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