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Super-Whiteness of Returns Spectra
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Abstract: Until the late 70’s the spectral densities of stock returns and stock
index returns exhibited a type of non-constancy that could be detected by
standard tests for white noise. Since then these tests have been unable to
find any substantial deviations from whiteness. But that does not mean
that today’s returns spectra contain no useful information. Using several
sophisticated frequency domain tests to look for specific patterns in the
periodograms of returns series we find nothing or, more precisely, less than
nothing. Actually, there is a striking power deficiency, which implies that
these series exhibit even fewer patterns than white noise. To unveil the
source of this “super-whiteness” we design a simple frequency domain test
for characterless, fuzzy alternatives, which are not immediately usable for
the construction of profitable trading strategies, and apply it to the same
data. Because the power deficiency is now much smaller, we conclude that
our puzzling findings may be due to trading activities based on excessive
data snooping.
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1. Introduction

There is abundant evidence that price changes are predictable, but there is
also evidence that this predictability is getting smaller over time (see, e.g., Patro
and Wu, 2004, Reschenhofer 2004a). Of course, predictability does not neces-
sarily imply the existence of profitable trading strategies, if transaction costs are
taken into account. Over the past decades, transaction costs have fallen dramat-
ically. But at the same time, predictability has also decreased. The economic
relevance of predictability must therefore always be evaluated in temporal con-
text, regardless whether these phenomena are connected or not.

The simplest and best documented source of predictability is serial correlation.
The hypothesis that returns are serially uncorrelated (white noise hypothesis)
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can be tested either with time domain tests or with frequency domain tests.
While time domain tests for white noise are based on the sample autocorrelations,
frequency domain tests are based on the periodogram. The periodogram of a
time series is the sample analog of its spectral density. It is obtained by first
decomposing the time series into a sum of sinusoidal components with different
amplitudes, frequencies, and phases and then plotting the squared amplitudes
against the frequencies. The white noise hypothesis implies on the one hand that
all nontrivial theoretical autocorrelations vanish and on the other hand that the
”theoretical periodogram”, i.e., the spectral density, is constant. It will therefore
be rejected if some sample autocorrelations are too large in absolute vale or if
some periodogram values (or clusters of periodogram values) are much larger
than others.

Some tests for white noise have been specially tailored to guarantee robustness
against conditional heteroskedasticity (Taylor 1984, Lo and MacKinlay 1988, Deo
2000). However, it is a priori not clear whether approximate tests that are valid
under a large range of assumptions are really more useful and reliable than exact
tests assuming normality (see Faust, 1992, Richardson and Stock, 1989). Durlauf
(1991) proved the robustness of the asymptotics of various frequency domain
tests against many forms of heteroskedasticity. Reschenhofer (2004b) introduced
a test that is also robust against other peculiarities of financial time series such
as nonstationarities and calendar anomalies.

In contrast to the predictability of a returns series by its own past, predictabil-
ity by various financial variables (such as the dividend-price ratio) and macroe-
conomic variables (such as inflation) is much harder to establish in a rigorous
manner (for conflicting findings see Lanne, 2002, on the one hand and Xu, 2004,
on the other hand). This is simply due to the much greater risk of over-fitting

In this paper, we call into question the common belief that an apparently
constant spectrum is completely uninformative. Using conventional frequency
domain tests, which are most powerful in the case of distinct spectral patterns,
and taking explicitly into account the possibility that there may be a lack of
patterns, we find even fewer distinct patterns in the periodograms of returns
series than we would expect in the case of a perfect white noise process. For
a further investigation of this puzzling finding, we design a simple and robust
frequency domain test for white noise against characterless, fuzzy alternatives
and apply it to the same data. It turns out that this new test is more powerful
than the other tests, which indicates that a spectrum exhibiting an extremely
flat and wide peak is a more realistic alternative to a constant spectrum than a
spectrum with a steep and narrow peak. While the latter alternative implies the
presence of sinusoidal components with large amplitudes and frequencies within
a narrow band, the former alternative implies cycles with small amplitudes and
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fuzzy periods, which cannot immediately be used for the construction of trading
strategies. The observed power deficiency of the conventional tests may therefore
be due to trading activities based on excessive data snooping.

The paper is organized as follows. The next section explains the different
frequency domain tests that are used in our investigation. Section 3 reports the
results obtained by applying these tests to financial data. Section 4 concludes.

2. Some Frequency Domain Tests for White Noise

Frequency domain tests for white noise are typically based on the periodogram
of the observed time series. Since the normalized cumulative periodogram

0 ≤ J1 ≤ . . . ≤ Jm−1 ≤ 1, m = [(−1)/2] (2.1)
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of a sample x1, . . . , xn from white noise approximately has the same distribution
as an ordered sample from a uniform distribution, common goodness-of-fit statis-
tics such as the Kolmogorov-Smirnov statistic or the Anderson-Darling statistic
can be used to test the white noise hypothesis

H0 : Exs = Ext, V ar(xs) = V ar(xt), Cov(xt, xt+k) = 0 if k 6= 0.

Under the additional assumption that x1, . . . , xn are Gaussian, the tests are
exact. In the next section, we will apply these tests to stock index returns xt =
log(yt/yt−1), t = 1, . . . , n, obtained from daily stock index data yt, t = 0, . . . , n.

Using a very general setting, Durlauf (1991) examined the convergence of the
normalized cumulative periodogram as a random function and used the Contin-
uous Mapping Theorem to establish the asymptotic behavior of certain statistics
that map a random function into a scalar random variable. Durlauf’s asymptotic
theory is robust to many forms of heteroskedasticity and applies particularly also
to tests based on common statistics such as the Kolmogorov-Smirnov statistic and
the Anderson-Darling statistic. Durlauf (1991) also established the consistency
of these tests against all MA alternatives.

In contrast, other popular tests focus only on a certain subset of frequencies
and can therefore not be consistent against all alternatives. For example, it
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follows from

1
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that the variance ratio statistic

V k =
ˆV ar(x1 + · · · + xk+1)
(k + 1) ˆV ar(x1)

(2.5)

can (apart from a multiplicative constant) be interpreted as an estimator for the
normalized spectral density,

fx(ω) =
1
2π

(1 +
∞∑

j=1

ρx(j) cos(ωj)), (2.6)

at frequency zero (see, e.g., Cochrane, 1988, Lo and MacKinlay, 1988). Here
γx and ρx denote the autocovariance function and the autocorrelation function,
respectively, of the regular stationary process xt. Thus, the use of this statistic
can only be justified if there is a concrete suspicion that the most significant
deviations from the null hypothesis occur in the very low frequency range.

Of course, nice asymptotic properties such as the consistency against all MA
alternatives do not always imply high power in finite samples. Because of the weak
performance of the ordinary Kolmogorov-Smirnov test in the case of multimodal
alternatives, Reschenhofer (1997) introduced generalized Kolmogorov-Smirnov
tests KSj , j = 2, 3, 4, . . ., which are designed for alternatives with 1, 2, 3, · · ·
peaks. The test KSj rejects the null hypothesis whenever the maximum sum of
j − 1 local deviations from uniformity is too large. In order to obtain a test that
performs reasonably well in a wide range of alternatives, Choi (1999) proposed
to combine the p-values obtained from k different, one-sided tests into the single
test statistic

T = −2
k∑

j=1

log(pj) (2.7)

and Reschenhofer (2008) proposed to combine the k−1 generalized Kolmogorov-
Smirnov tests KS2, . . . , KSk via their p-values into the single test statistic

KS2−k = min
2≤j≤k

pj

Although the combined tests are extremely competitive in a wide range of dis-
tinctive, possible multimodal alternatives, it may be expected that they are not
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useful in the case of returns spectra, which are either constant or at best char-
acterless and fuzzy. In such a case we do not need sophisticated tests that look
for specific spectral patterns. Simple tests that are based on vague alternatives
may be more appropriate. Perhaps the weakest suspicion that we can have about
returns spectra is that lower frequencies play a more important role than higher
frequencies. A matching test statistic is given by

F ∗ =
I1 + · · · + I[m/2]

Im−[m/2]+1 + · · · + Im
. (2.8)

Under the null hypothesis of Gaussian white noise, this statistic has an F (2[m/2],
2[m/2]) distribution. Of course, if there is no excessive power in the low frequency
range, the test F ∗, which rejects the null hypothesis whenever the statistic F ∗ is
too large, will be totally insensitive.

3. Application to Financial Data

Experience has taught us that neither a good performance in simulation stud-
ies nor nice theoretical properties such as consistency and robustness can ensure
success in a concrete application. It is therefore a priori not clear how the tests
discussed in the previous section will perform when they are applied to financial
data. In general, it makes more sense to use stock indices rather than individual
stocks to investigate market efficiency, because index futures can be bought or sold
in large volumes without affecting the price. Perhaps the most important stock
index is the S&P 500 index, which represents a broad set of stocks and has a long
history. For our analysis we downloaded the daily S&P 500 index from January
3rd 1950 to March 30th 2007 from Yahoo! Finance. Because the characteristics of
this time series, y0, . . . , yN , change over time, we compare the performance of the
different frequency domain tests for white noise in a rolling analysis using over-
lapping segments of n = 41 (m = 20) and n = 101 (m = 50) returns. For each n,
the first segment contains the returns xt = log(yt/yt−1), t = 1, . . . , n, the second
segment contains the returns xt = log(yt/yt−1), t = 2, . . . , n + 1, . . ., and the last
segment contains the returns xt = log(yt/yt−1), t = N −(n−1), . . . , N . We apply
the ordinary Kolmogorov-Smirnov test KS2, the generalized Kolmogorov-Smirnov
tests KS3 and KS4, the combined test KS2−4, the Anderson-Darling test AD, and
the F-test F ∗ to each segment at the 5% level of significance. For each test T
and each segment Sj let RT

j denote the outcome. RT
j has the value one if the null

hypothesis is rejected and zero if the null hypothesis is not rejected. Because of
the non-stationarity of the time series we do not simply report the total number
of rejections for each test. Instead, we determine for each t = 1, . . . , N − (n − 1)
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the cumulative number of rejections up to that point, i.e.,

CT
j (t) =

t∑
j=1

RT
j (3.1)

The cumulative numbers of rejections are plotted for n = 41 and n = 101 in
Figures 1a and 1b, respectively. In the first three decades, in which the returns
exhibit considerable positive autocorrelation, all tests are able to detect deviations
from whiteness. The rejection rates clearly exceed the significance level. So what
we observe is definitely power and not just the type I error. But there are also
striking performance differences. Both the ordinary Kolmogorov-Smirnov test
KS2 and the Anderson-Darling test AD, which gives more weight to the tails
than KS2, outperform the more sophisticated tests KS3, KS4, and KS2−4. In
this application, it is definitely not worth looking for complex alternatives. The
simplest test, F ∗, is the most powerful. However, its competitive position worsens
as n increases. For n = 101 (m = 50) the Anderson-Darling test is already almost
as powerful as F ∗.

The performance differences occur only up to the late 70’s. Afterwards all
tests except F ∗ are equally bad. Their power even falls below the level of signif-
icance. This anomaly becomes apparent when the cumulative net rejections of
the null hypothesis are plotted (see Figures 2a and 2b). The net rejections are
obtained by subtracting the rejections corresponding to the level of significance,
i.e.,

cT
j (t) =

t∑
j=1

RT
j − 0.005t (3.2)

The fact that the rejection rates are now much smaller than the significance level
implies that they must again be interpreted as power and not just as type I error.
But which alternatives can produce so few rejections? Any deviation from the
null hypothesis of a constant spectrum implies that the spectrum must be higher
at some frequencies and lower at others. Of course, it should be much easier for
a test to detect real differences rather than spurious ones. So we would hardly
expect to observe rejection rates that are lower than the significance level. But if
returns series exhibited even fewer distinct patterns than purely random series,
the power could indeed fall below the significance level. This might, for example,
happen if emerging spurious patterns are over-interpreted by financial analysts
and subsequently affected by their trading activities. This line of argumentation
is supported by the fact that we observe no comparable power deficiency for the
test F ∗, which has been designed to detect deviations from whiteness that occur
in extremely broad frequency bands and are therefore of little practical value for
the construction of profitable trading strategies.
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Figure 1: (a): Cumulative rejections of the null hypothesis at the 5% level for
segments of n = 41 S&P500 returns by various tests. (b): Cumulative rejections
of the null hypothesis at the 5% level for segments of n = 101 S&P500 returns
by various tests
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Figure 2: (a): Cumulative net rejections of the null hypothesis at the 5% level
for segments of n = 41 S&P500 returns by various tests. (b): Cumulative
net rejections of the null hypothesis at the 5% level for segments of n = 101
S&P500 returns by various tests.

4. Concluding remarks

In order to examine the question whether returns are serially uncorrelated or
not we must not rely on only one test. Even a test that is consistent against a
wide class of alternatives can have low power in certain situations. In principle,
the combination of several tests could help lessen this problem. Unfortunately,
returns spectra do not exhibit distinctive features such as peaks and troughs. At
best we can observe a vague tendency of the spectral densities of returns to be
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higher at low frequencies and lower at high frequencies. The results presented in
this paper show that such deviations from constancy can be detected much better
by a simple test such as F ∗, which divides the Fourier frequencies into two halves
and compares the sum of the periodogram ordinates at the lower frequencies with
the sum of the periodogram ordinates at the higher frequencies. In contrast, the
power of more sophisticated tests, which look for more distinctive deviations from
constancy, can even be smaller than the level of significance. This is particularly
true for todays’s returns.

A typical frequency domain test for white noise rejects the null hypothesis
whenever the time series contains sinusoidal components with too large ampli-
tudes. Under the null hypothesis of white noise, all amplitudes are roughly of
the same size, no amplitudes can be systematically larger than others. There is
a perfect uniformity. Amazingly, the amplitudes obtained from the S&P 500 re-
turns appear even more uniform. This super-whiteness can not just be the result
of random fluctuations. Something more must be at work besides chance.

A possible explanation is that even spurious patterns have an effect on the
strategies of active traders. This explanation is corroborated by the fact that
tests looking for fuzzy alternatives, which cannot immediately be used for the
construction of trading strategies, do not show the same power deficiency. All in
all, it seems that active traders contribute to market efficiency only up to a certain
point. Beyond that point, their activities may lead to super-efficiency, which
must on no account be misinterpreted as perfect efficiency but rather implies
some special form of predictability.
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Universitätsstr. 5, A-1010
Vienna, Austria
erhard.reschenhofer@univie.ac.at


