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Abstract: Different models are used in practice for describing a binary lon-
gitudinal data. In this paper we consider the joint probability models, the
marginal models, and the combined models for describing such data the best.
The combined model consists of a joint probability model and a marginal
model at two different levels. We present some striking empirical observa-
tions on the closeness of the estimates and their standard errors for some
parameters of the models considered in describing a data from Fitzmaurice
and Laird (1993) and consequently giving new insight from this data. We
present the data in a complete factorial arrangement with 4 factors at 2
levels. We introduce the concept of “data representing a model completely”
and explain “data balance” as well as “chance balance”. We also consider
the best model selection problem for describing this data and use the Search
Linear Model concepts known in Fractional Factorial Design research (Sri-
vastava (1975)).

Key words: Balance, binary data, data representing a model, deviance statis-
tic, joint probabilities, likelihood, longitudinal data, marginal probabilities,
profile explanatory matrix.

1. Introduction

We consider a longitudinal data with a binary response variable Y observed
at t time points on each of the n individuals. A set of p explanatory variables
X1, X2, . . . , Xp is also observed with the response variable Y . We denote the
observations on Y and X1, X2, . . . , Xp for the ith individual at time point j by
(yij ; xij1, . . . , xijp), i = 1, . . . , n, and j = 1, . . . , t. The value yij of Y for the ith

individual at the jth time point is equal to 1 with probability µij and is equal to
0 with probability (1− µij). We further assume that our data are complete. For
describing the data throughout this paper, we consider the observed values of Y
at the fixed values of X1, X2, . . . , Xp. Consequently, the probability µij depends
on (xij1, . . . , xijp)′ = xij . We also consider a bigger probability structure giving
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µij ’s. The profile response of the ith individual is denoted by Yi and its observed
value is denoted by yi = (yi1, . . . , yit)′. The observed profile explanatory matrix
of the ith individual is denoted by xi = (xi1, . . . ,xit)′. We denote P (Yi =
yi|xi) = π(yi,xi). The π(yi,xi)’s are the joint probabilities and the µij ’s are
the marginal probabilities. The π’s and µ’s are naturally related to each other
[Diggle et al. (2002), Dobson (2002), Fitzmaurice et al. (2004), Molenberghs and
Verbeke (2005)].

The number of distinct vectors for yi, i = 1, . . . , n, is 2t since yij = 0 or 1.
We denote one of possible yi vectors by u = (u1, . . . , ut)′, where uj = 0 or 1,
j = 1, . . . , t, and

nu = {number of i ∈ {1, . . . , n} with yi = u}. (1.1)

The data are represented by the values of nu for all u. Table 1 in Section 2
gives an example with the data in terms of the values of nu. Section 3 presents
the classes of joint probability models describing the dependence of log π(yi,xi)
on yi. Section 4 explains the concepts of “data balance” and “chance balance”.
Moreover, the concept of “data representing a model completely” is introduced.
Section 5 describes the best model selection for fitting the classes of models given
in Section 3 to the data in Table 1 using the likelihood method. Section 6 presents
the marginal models describing the dependence of log π(yi,xi) on xi. Section 7
describes the combined model
( Fitzmaurice and Laird (1993)) consisting of a joint probability model in Section
3 and a marginal model in Section 6. Section 8 presents some striking observations
on the closeness of the estimates and their standard errors for some parameters
of the joint probability models, the marginal models and the combined models.
We have posted Tables 5 - 12 on our website1.

2. An Example

We now consider a data from Fitzmaurice and Laird (1993) in Table 1 on page
145. This is a subset of Six Cities data from Ware et al., 1984 on a longitudinal
study of the health effects of air pollution. The n individuals for this study are
537 children from Steubenville, Ohio and thus n = 537. Each child was examined
annually at ages 7 through 10. Therefore the time point j is the age (6 + j),
j = 1, . . . , 4 and t = 4. The response variable Y is the wheezing status : yes or
no. The yij = 1 for yes and yij = 0 for no. Two explanatory variables (p = 2) are
Age− 9 = X1, Maternal Smoking (MS) = X2. The xij2 = 1 for the ith child and
for all j if the mother smoked regularly since the first year of the study (time point
1 or equivalently j = 1) and xij2 = 0 otherwise. The vector u′ = (u1, u2, u3, u4)

1http://www.statistics.ucr.edu/papers/ghosh.html
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and the nu values are given in Table 1.
If the mother of the ith child smoked regularly since the first year of the study,

then the matrix xi is

xi =


x′

i1

x′
i2

x′
i3

x′
i4

 =


−2 1
−1 1

0 1
1 1

 . (2.1)

If the mother of the ith individual did not smoke since the first year of the study,
then the matrix xi is

xi =


x′

i1

x′
i2

x′
i3

x′
i4

 =


−2 0
−1 0

0 0
1 0

 . (2.2)

The observed profile response vector yi of the ith individual is one of the 16 vec-
tors u listed in Table 1, with probability P [Yi = yi|xi] = π(yi,xi) where xi is
either in (2.1) and (2.2).

Table 1: The values of nu when xij2 = 0 and xij2 = 1

u′ nu

(u1 u2 u3 u4) xij2 = 0 xij2 = 1 Total
0 0 0 0 237 118 355
0 0 0 1 10 6 16
0 0 1 0 15 8 23
0 0 1 1 4 2 6
0 1 0 0 16 11 27
0 1 0 1 2 1 3
0 1 1 0 7 6 13
0 1 1 1 3 4 7
1 0 0 0 24 7 31
1 0 0 1 3 3 6
1 0 1 0 3 3 6
1 0 1 1 2 1 3
1 1 0 0 6 4 10
1 1 0 1 2 2 4
1 1 1 0 5 4 9
1 1 1 1 11 7 18



412 Subir Ghosh and Arunava Chakravartty

3. Joint Probability Models

We first present a joint probability model introduced in Fitzmaurice and
Liard(1993). We define for h = 2, . . . , t and t ≥ 2,

Ψ = (ψ1, . . . , ψt)′,
Ωh = (ω12, . . . ; ω123, . . . ; ω12...h, . . . , ω(t−h+1)...t)

′,

y(i)
h = (yi1yi2, . . . ; yi1yi2yi3, . . . ; yi1yi2 . . . yih, . . . , yi(t−h+1) . . . yit)′, (3.1)

where Ψ is a (t× 1) vector, Ωh and y(i)
h are (lh × 1) vectors, lh =

(
t
2

)
+ . . . +

(
t
h

)
.

The model is

Mh : log π(yi,xi) = ψ0 + Ψ′yi + Ω′
hy

(i)
h

= ψ0 + (ψ1yi1 + . . . + ψtyit)
+ (w12yi1yi2 + . . . + w123yi1yi2yi3 + . . .

+ w12...hyi1yi2 . . . yih + . . .

+ w(t−h+1)...tyi(t−h+1) . . . yit), (3.2)

where the constant ψ0 depends on Ψ and Ωh so that

n∑
i=1

π(yi,xi) = 1. (3.3)

The right hand side of (5) depends on i through yi and y(i)
h but does not depend

on xi. We present some special cases to explain the model clearly. For t = 2

M2 : log π(yi,xi) = ψ0 + (ψ1yi1 + ψ2yi2) + w12yi1yi2.

For t = 3

M2 : log π(yi,xi) = ψ0 + (ψ1yi1 + ψ2yi2 + ψ3yi3)
+ (w12yi1yi2 + w13yi3 + w23y23),

M3 : log π(yi,xi) = ψ0 + (ψ1yi1 + ψ2yi2 + ψ3yi3)
+ (w12yi1yi2 + w13yi3 + w23y23) + w123yi1yi2yi3).

We now generate models that are nested within Mh. For t = 3 and h = 2, the
nested models within M2 are

M121 : log π(yi,xi) = ψ0 + (ψ1yi1 + ψ2yi2 + ψ3yi3) + (w12yi1yi2),

M122 : log π(yi,xi) = ψ0 + (ψ1yi1 + ψ2yi2 + ψ3yi3) + (w13yi1yi3),
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M123 : log π(yi,xi) = ψ0 + (ψ1yi1 + ψ2yi2 + ψ3yi3) + (w23yi2yi3).

In describing the data by a model, we can never be sure whether one model
describes the data better over the other possible models. For this reason, we now
consider a class of models for describing the data. Our goal is to identify a model
describing the data best (Srivastava (1975)).

Let Ωkhs be a (k × 1) column vector whose elements are the sth subset of
k elements of Ωh, s = 1, . . . ,

(
lh
k

)
. Let y(i)

khs be a (k × 1) column vector whose
elements are the sth subset of the k elements of y(i)

h , s = 1, . . . ,
(
lh
k

)
. We now

consider a class of
(
lh
k

)
models given below.

Mkhs : log π(yi,xi) = ψ0 + Ψ′yi + Ω′
khsy

(i)
khs, (3.4)

where s = 1, . . . ,
(
lh
k

)
and ψ0 depends on Ψ and Ωkhs.

When h = 2, we get l2 =
(

t
2

)
. For k = 1, we have l2 models M12s (s = 1, . . . , l2)

in the class of our models. For k = 2, we have
(
l2
2

)
models M22s (s = 1, . . . ,

(
l2
2

)
)

in the class. It can be seen from (3.4) that for h = 2 and k = 1, . . . , l2,

ω12 = log π((0, 0, u3, . . . , ut),xi) + log π((1, 1, u3, . . . , ut),xi)
− log π((0, 1, u3, . . . , ut),xi) − log π((1, 0, u3, . . . , ut),xi),

(3.5)

where the (u1, u2, u3, . . . , ut)’s are the distinct yi’s. Thus ω12 = 0 if and only if

π((0, 0, u3, . . . , ut),xi) π((1, 1, u3, . . . , ut),xi)
= π((0, 1, u3, . . . , ut),xi) π((1, 0, u3, . . . , ut),xi),

(3.6)

for all the 2t−2 vectors (u3, . . . , ut). The (3.5) and (3.6) provide the relationship
between an individual model parameter in ωkhs with the probabilities π(yi,xi)’s
in (3.4). Similarly for ωjj′ ; j, j′ = 1, . . . , t, j < j′.

A special case of (3.2) assuming Ωh = 0 gives the model,

M0 : log π(yi,xi) = ψ0 + Ψ′yi, (3.7)

where ψ0 depends on Ψ. We compare the model M0 with the models Mkhs in
(3.4) as a first step in our model comparisons.

The log-likelihood for Mkhs is given by

lkhs =
n∑

i=1

log π(yi,xi)

=
∑
u

nu log π(u,x),
(3.8)
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where u is one of the 2t distinct yi’s; nu defined in (1.1) is the number of times
the response vector u occurs among the n profile response vectors yi, i = 1, . . . , n;
and x is the xi corresponding to yi. The maximum value of lkhs in the method of
maximum likelihood is denoted by l̂khs. Similarly, the log-likelihood for M0 and
its maximum value are denoted by l0 and l̂0, respectively. The deviance statistic
is given by

Dkhs = 2 [l̂khs − l̂0], (3.9)

which is approximately χ2 distributed with k degrees of freedom (df). The higher
the value of Dkhs; h = 2, . . . , t, s = 1, . . . ,

(
lh
k

)
, k = 1, . . . , lh; means better the

description of the data by the model Mkhs. We will consider only the Dkhs values
that are greater than χ2

α;k, the upper 100α percentage point of the χ2 distribution
with k df . When one model Mk1h1s1 is nested within another Mk2h2s2 , where
k2 > k1,we consider the difference,

Dk2h2s2 − Dk1h1s1 = 2 [l̂k2h2s2 − l̂k1h1s1 ], (3.10)

which is approximately χ2 distributed with (k2−k1) df . When Dk2h2s2 −Dk1h1s1

is greater than χ2
α;(k2−k1), the model Mk2h2s2 is considered significantly different

from Mk1h1s1 in describing the data at the α level of significance.

4. Data Representation

In the log-likelihood lkhs in (3.8) for Mkhs, we assume,

max
u

π(u,x) = π(w,x). (4.1)

Note that π(u,x) in (3.4) depends on u but not on x. Also w is one of the 2t

possible u’s. For brevity , we write π(u,x) = πu. We have

nw = n −
∑
u6=w

nu. (4.2)

The nu values are given in the column “Total ” of Table 1. It can be checked
from (3.8) that

lkhs = n log πw −
∑
u6=w

nu (log πw − log πu). (4.3)

From (4.1) we have (log πw − log πu) ≥ 0 for all u and hence

lkhs ≤ n log πw. (4.4)
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In (4.4), the equality holds for all values of nu’s satisfying
∑

u nu = n if and only
if the πu’s are all equal. We now assume

max
u

nu = nv. (4.5)

Then

nv = n−
∑
u 6=v

nu, lkhs = n log πv−
∑
u6=v

nu (log πw−log πu)−
∑
u6=v

nu (log πv−log πw).

(4.6)
The last term on the right hand side of (4.6) vanishes when v = w. The situation
‘v = w ’ is naturally of interest because the data represents the model in terms of
the maximum πu’s. The “data represents the model more completely” if the u’s
give the same ordering of nu’s and πu’s from their smallest value to their largest
value.

In most of our analyses, we assume that the data represents a model com-
pletely and we draw inferences under that particular model. In reality, we do not
know this model but we are able to postulate a class of models so that one of
them is better represented by the data than the others. The problem is to search
and identify a model within the postulated class which is best represented by
the data (Srivastava (1975), Shirakura, Takahashi, and Srivastava (1996), Ghosh
and Teschmacher (2002)). The postulated class of models in this paper consists
of the models Mkhs defined in (3.4) and the data are the nu values. We draw
inferences on the elements of Ψ and Ωh from the nu values.

When the values of nu’s are all equal, we describe the situation as a “ data
balance ” and otherwise a “ data imbalance ”. A measure of the data imbalance
is

s2
n =

1
2t − 1

∑
u

(nu − n̄)2, (4.7)

where n̄ =
P

u nu

2t . A higher value of s2
n indicates a greater data imbalance. We

calculate the numerical value of s2
n for measuring the degree of imbalance in

the data. When the πu’s are all equal, we describe the situation as a “ chance
balance ” or otherwise a “ chance imbalance ”. A measure of chance imbalance is

s2
π =

1
2t − 1

∑
u

(πu − π̄)2, (4.8)

where π̄ =
P

u πu

2t . A higher value of s2
π indicates a greater chance imbalance.

Since the πu’s are all unknown, we cannot calculate the numerical value of s2
π,

but we can estimate it based on the values of nu. The effects“ chance imbal-
ance ” and “ḋata imbalance ” can be seen in (4.3) and (4.4) for maximizing the
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log-likelihood lkhs.

5. Best Models

In this section, we fit the class of models Mk2s to the data given in Table 1.
We have t = 4 and l2 =

(
4
2

)
= 6. For k = 1, there are

(
l2
1

)
= 6 models M12s,

s = 1, . . . , 6. We compare all these 6 models with M0 to obtain the numerical
values of the deviance statistic D12s, s = 1, . . . , 6 given in Table 2. All the values
of D12s in Table 2 are greater than the critical value χ2

0.05;1 which is equal to 3.84.
The model that gives the highest value of D12s is chosen. The subset s = 4 with
elements (2, 3) gives the highest value of D12s. Hence the model M124 provides
the best description for the data within the class of models M12s, s = 1, . . . , 6. In
Table 3, we present the model providing the best description of the data within
the class of models Mk2s, s = 1, . . . ,

(
l2
k

)
, for k = 1, . . . , l2. The best model for k

is nested within the best model for k′; k, k′ = 1, . . . , 6, k < k′.
Table 4 presents the numerical values of D(k+1)2s − Dk2s, k = 1, . . . , (l2 −

1). Three models M42s with the elements in the subset (23, 34, 12, 14), M52s

with (23, 34, 12, 14, 24), and M62s with (23, 34, 12, 14, 24, 13) are definitely the top
candidates to be considered. The model M42s with the elements in the subset
(23, 34, 12, 14) provides an adequate description of the data within the class of
models Mk2s, s = 1, . . . ,

(
l2
k

)
for k = 1, . . . , l2 and l2 = 6. Table 5 (Ghosh and

Chakravartty (2007)) presents the estimate (E), standard error (SE), observed
χ2 ((E/SE)2), and p-value for the parameters of the best models in Table 3. The
best models within the k classes of models Mk2s, s = 1, . . . ,

(
6
k

)
for k = 1, 2, 3, 4

have all ψ parameters and ω parameters highly significant at α = 0.05 and
α = 0.01. The best models within the k classes of models Mk2s, s = 1, . . . ,

(
6
k

)
for

k = 5 and 6 have all ψ parameters and (ω23, ω34, ω12, ω14) parameters significant
at both α = 0.05 and α = 0.01. Moreover, the parameters ω24 for k = 5, ω24 and
ω13 for k = 6 are significant at α = 0.05 but not significant at α = 0.01.

Table 2: The values of D12s, s = 1, . . . , 6

Subset s Elements of D12s

subset s

1 1 2 54.42
2 1 3 41.36
3 1 4 44.12
4 2 3 83.26
5 2 4 45.18
6 3 4 58.50
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Table 3: Best models within Mk2s, s = 1, . . . ,
(
l2
k

)
, for k = 1, . . . , l2

k Elements of subset s D12s χ2
0.05,k

for the best model
1 2 3 83.26 3.84
2 2 3, 3 4 141.76 5.99
3 2 3, 3 4, 1 2 196.18 7.81
4 2 3, 3 4, 1 2, 1 4 225.64 9.49
5 2 3, 3 4, 1 2, 1 4, 2 4 230.14 11.07
6 2 3, 3 4, 1 2, 1 4, 2 4, 1 3 235.34 12.59

Table 4: The numerical values of D(k+1)2s − Dk2s, k = 1, . . . , (l2 − 1)

k D(k+1)2s − Dk2s p-value
1 58.50 0.0000
2 54.42 0.0000
3 29.46 0.0000
4 4.50 0.0339
5 5.20 0.0226

6. Marginal Models

We now consider three marginal models with the presence of xij1 for describing
the data. The first marginal model MM1 is

MM1 : log
(

µij

1 − µij

)
= β0 + β1xij1 + β2xij2 + β12xij1xij2, (6.1)

where the β’s are unknown parameters; (xi11, xi21, xi31, xi41)′ = (2,−1, 0, 1)′;
xij2 = 1 if the mother smoked and xij2 = 0 otherwise. The maximum log-
likelihood for MM1 is denoted by l̂MM1 where −2l̂MM1 = 1819.4800.

The second marginal model MM2 is

MM2 : log
(

µij

1 − µij

)
= β0 + β1xij1 + β2xij2 (6.2)

The model MM2 is nested within the model MM1. The maximum log-likelihood
for MM2 is denoted by l̂MM2 where −2l̂MM2 = 1819.8894. The deviance statistic

DMM12 = 2
[
l̂MM1 − l̂MM2

]
, (6.3)

which is approximately χ2 distributed with 1 df. The observed DMM12 = 0.4094
and χ2

0.05;1 = 3.84. Hence there is a strong evidence from the data that the
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parameter β12 in MM1 is not significantly different from zero at α = 0.05. Con-
sequently, the model MM2 provides an adequate description of the data when
we compare it with the model MM1.

The third marginal model MM3 is

MM3 : log
(

µij

1 − µij

)
= β0 + β1xij1 (6.4)

The maximum log-likelihood for MM3 is denoted by l̂MM3 where −2l̂MM3 =
1824.6820. The deviance statistic for comparing MM2 with MM3 is given by

DMM23 = 2
[
l̂MM2 − l̂MM3

]
, (6.5)

which is approximately χ2 distributed with 1 df. The observed DMM23 is 4.7926
and the p-value is 0.0285. The β2 in MM2 is significant at α = 0.05 and not
significant at α = 0.01, by the likelihood ratio test. The model MM2 provides
a better description of the data when we compare it with the model MM3 at
α = 0.05. The model MM3 provides an adequate description of the data when
we compare it with the model MM2 at the α = 0.01.

Table 6 presents the E, SE, observed χ2
(
(E/SE)2

)
, and p-value for the β

parameters in MM1, MM2 and MM3. For the model MM1, the parameters β0

and β1 are significant at α = 0.05 and only β0 is significant at α = 0.01. However,
the parameter β1 is not barely significant at α = 0.01 for MM1. For both the
models MM2 and MM3, the parameters β0 and β1 are significant at α = 0.01 .
However, the parameter β1 is barely significant at α = 0.01 for both MM2 and
MM3.

7. Combined Models

Fitzmaurice and Laird (1993) proposed a combined model simultaneously con-
sisting of a joint probability model and a marginal model. We now consider 18
Fitzmaurice-Laird models consisting simultaneously of one of the 6 best models
in Table 3 and one of MM1, MM2 and MM3. We then apply the general like-
lihood based approach introduced in Fitzmaurice and Laird (1993) for drawing
inferences on the β (marginal mean) parameters and ω (the conditional associ-
ation) parameters. We present the E, and the corresponding robust SE (rSE)
for the β and ω parameters and their corresponding robust χ2 (rχ2) and robust
p-value (r p-value) described in the Fitzmaurice-Laird approach.
We observe from Table 9 (Ghosh and Chakravartty (2007)) that the 9 Fitzmaurice-
Laird models for (k,MMi), k = 4, 5, 6 and i = 1, 2, 3, are comparable to each
other. From Table 7 (Ghosh and Chakravartty (2007)), it is clear that the 3
models,(k,MM3), k = 4, 5, 6, are the best for describing the data. The model for
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(k = 4,MM3) provides an adequate description of the data in comparison to the
other models for (k = 5,MM3) and (k = 6,MM3).

8. Results and Conclusions

In our calculations presented in Tables 5, 6 and 7 (Ghosh and Chakravartty
(2007)), we observe some striking empirical results.

Observation 1. In Table 5 (Ghosh and Chakravartty (2007)), the E and SE
values of the parameters ψ1, ψ2 and ω23 when k = 1 are exactly the same as the
corresponding values when k = 2. The E and SE values of ω23 are exactly the
same for k = 1, 2 and 3. Consequently, the observed χ2 and p-values values are
also the same.

Observation 2. The E and SE values of β̂ in Table 6 (Ghosh and Chakravartty
(2007)) are very close to the corresponding E and rSE values in Table 7 for
MMu, u = 1, 2, 3, and k = 1, . . . , 6. Table 10 highlights this similarity.

Observation 3. The E and SE values of ω̂ in Table 5 (Ghosh and Chakravartty
(2007)) are close to the corresponding E and rSE values in Table 7 (Ghosh and
Chakravartty (2007)) for MMu, u = 1, 2, 3, and k = 1, . . . , 6. Table 11 highlights
this similarity.

Observation 4. The E and rSE values of ω̂23 and ω̂34 in Table 7 (Ghosh and
Chakravartty (2007)) for (k = 2,MMu) are very close to the corresponding values
for (k = 3,MMu), u = 1, 2, 3. Table 12 highlights this similarity.
Fitzmaurice and Laird (1993) demonstrated that β̂’s and ω̂’s are uncorrelated to
each other. Observations 2 and 3 can be explained from this important fact of
uncorrelatedness. In other words, β̂’s and ω̂’s for a combined model are expected
to be close to β̂’s for the marginal model and ω̂’s for the joint probability model
separately. Observations 1 and 4 are original in this paper and call for further
research.
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