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Abstract: Much of the statistical literature regarding categorical data focuses
on the odds ratio, yet in many epidemiological and clinical trial settings, the
relative risk is the quantity of interest. Recently, Spiegelman and Hertz-
mark illustrated modeling and SAS programming for modeling relative risk
in contrast to the logistic model’s odds ratio. The focus of their work is
on a single relative risk, i.e., for one binary response variable. Herein, we
outline two methods for estimating relative risks for two correlated binary
outcomes. The first method is weighted least squares estimation for categor-
ical data modeling. The second method is based on generalized estimating
equations. The two methods are readily implemented using common statis-
tical packages, such as SAS. The methods are illustrated using clinical trial
data examining the relative risks of nausea and vomiting for two different
drugs commonly used to provide general anesthesia.
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1. Introduction

Statistical methods are well established for a variety of research designs. Of-
ten, the research study will utilize a binary endpoint (e.g., a ‘success’ or ‘failure’).
Cornfield (Cornfield 1951) discussed two measures of association for comparing
binomial proportions across groups, and these measures are applied broadly in
research. To illustrate the methods, consider a standard 2×2 contingency table in
which the binary outcome is presented as the columns and a two group treatment
(or exposure) is presented as the rows. Denote πi as P (Success|Treatment i) and
oi = πi/(1− πi) as the odds of a successful outcome for Treatment i, i = 1, 2. To
quantify the treatment differences in πi or oi, either the relative risk or odds ratio
could be used. The relative risk is defined as RR = π1/π2, i.e. the ratio of the
two success probabilities, and measures the proportional increase (or decrease)
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in the probability of a ‘success’ in Treatment 1 when compared to Treatment 2.
Cornfield also proposed the odds ratio (o1/o2) as a relative measure of association
that measures the proportional increase (or decrease) in the odds of a ‘success’
in Treatment 1 relative to Treatment 2. Mathematically, these quantities are
related as follows:

OR = RR

(
1 − π2

1 − π1

)
.

In clinical trials and prospective epidemiological studies the relative risk is
typically of principal interest. Yet, the logistic regression model, based on the log
odds (i.e., logit) transformation, is often the first model fit to “approximate” the
relative risk via the odds ratio. Recently, Spiegelman and Hertzmark (Spiegelman
and Hertzmark 2005) observed that computational advances no longer necessitate
this approximation of relative risk by the odds ratio. Stated simply, if interest
is in the relative risk, then model the relative risk, not the odds ratio. Universal
application of a logistic regression model for binary outcomes is not required for
every prospective study data analysis. Other links, in the context of generalized
linear models, can be used to model the success probability for a binary outcome.
This leads to direct calculation of the relative risk, and with additional calcula-
tions a variance estimate and a corresponding confidence interval for the relative
risk are produced.

Spiegelman and Hertzmark describe log-linear models for estimating rela-
tive risk. The methods of Spiegelman and Hertzmark can be implemented using
standard GLM-fitting software (e.g., PROC GENMOD in SAS); however, the ap-
proach for estimating relative risk for two (or more) correlated binary outcomes
requires extensions. The subject of this paper is to describe these generaliza-
tions for both weighted least squares (WLS) and generalized estimating equation
(GEE) approaches.

We describe two methods for estimating the relative risk of correlated binary
endpoints. The first method, a WLS approach, is an application of the Grizzle
et al. (Grizzle et al. 1969) approach to modeling categorical data. The second
method utilizes GEE to allow for the adjustment of continuous and/or categorical
covariates in the model (Lu et al. 2001). Both methods can be implemented with
standard statistical software packages. The methods are illustrated using an
international, multi-center study evaluating the efficacy of propofol as a therapy
to prevent post-operative vomiting and nausea (Apfel et al. 2003, Apfel et al.
2004).

The paper is organized as follows. The statistical methods for the WLS
and GEE approaches are outlined first. Next, the methods are applied, and
interpreted, for a clinical trial.
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2. Methods

2.1 Weighted least squares approach

Grizzle et al. (Grizzle et al. 1969) developed a linear models approach for
categorical data, and it is applicable to this setting. In the presence of only
one covariate (e.g., treatment group), two correlated binary outcome responses
can be presented as a 2 × 2 × 2 three-way contingency table. Table 1 illustrates
a setting in which treatment group is one dimension, while the remaining two
dimensions are the paired binomial responses. Thus, the following multinomial
probability vectors, which are based on the contingency table presented as Table
1, are defined for the treatment and control groups:

πt =
[

πt11 πt12 πt21 πt22

]′ ;
πc =

[
πc11 πc12 πc21 πc22

]′ ;
and π =

[
π′

t π′
c

]′
.

The variance-covariance matrix for π follows the usual form for two independent
multinomials, namely,

V (π) =
[

Vt(πt) 0
0 Vc(πc)

]
, where

Vx(πx) = 1
nx..

[Diag(πx) − πx ∗ π′
x]4×4

for x ∈ (t, c) .

Table 1: Frequency distribution and cell probabilities for two paired binomial
responses measured on two treatments.

Cell Counts (Cell Probability)
Outcome 2

Outcome 1 + − Total
Treatment Group

+ nt11 (πt11) nt12 (πt12) nt1· (πt1·)
− nt21 (πt21) nt22 (πt22)

Total nt·1 (πt·1) nt··

Control Group + nc11 (πc11) nc12 (πc12) nc1· (πc1·)
− nc21 (πc21) nc22 (πc22)

Total nc·1 (πc·1) nc··

Since the interests of the study are in the two marginal outcome proba-
bilities for each treatment group and the comparison between groups, the re-
sponse functions of interest are ft = [log(πt11 + πt12)], log(πt11 + πt21)]′ and
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fc = [log(πc11 + πc12)], log(πc11 + πc21)]′ for the treatment and control groups,
respectively. Therefore, the response vector is f(π) = [ft′ fc′]′.

When data are observed, the estimated cell probabilities are pxij = π̂xij =
nxij/nx.., where x indicates treatment (x = t) or control (x = c). This yields the
estimated vector of probabilities p = [p′t p′c], where p′t = [nt11/nt.., . . . , nt22/nt..]
and p′c = [nc11/nc.., . . . , nc22/nc..]. An estimated variance-covariance matrix of
f(p) can be obtained by the delta method as S = H ∗ V (p) ∗ H′, where V (p) is
the sample estimate of V (π) and H is as follows:

H =
∂f

∂π
|π=p

=


nt..

nt11+nt12

nt..
nt11+nt12

0 0 0 0 0 0
nt..

nt11+nt21
0 nt..

nt11+nt21
0 0 0 0 0

0 0 0 0 nc..
nc11+nc12

nc..
nc11+nc12

0 0
0 0 0 0 nc..

nc11+nc21
0 nc..

nc11+nc21
0

 .

Note that although the two response functions from the same group are correlated
(both are functions of nt11 for the treatment group and nc11 for the placebo
group), the sample variance-covariance matrix, S, is of full rank and a model
containing up to four parameters is estimable.

One can see that the difference in the first and third elements in f(π) defines
the log relative risk for the first binary outcome when the treatment is compared
to the control. Similarly, the difference in the second and fourth entries in f(π)
defines the log relative risk for the second binary outcome. In order to find
the WLS estimate for the log relative risk using the four estimable parameters
(β = [β1, β2, β3, β4]′) in the saturated model, we utilize the following model
matrix such that f(π) = Xβ:

X =


1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1


The model, parameterized as such, allows for the estimation of the marginal

log relative risks for each of the two binary outcomes while accounting for the de-
pendence of the two outcomes. The WLS estimates of β are: β̂ = (X ′S−1X)−1X ′

S−1f(p) and the estimated variance-covariance matrix of β̂ is Cov(β̂) = (X ′S−1X)−1.
The difference of the first and third rows in f(π) is of clinical interest and is

the log relative risk for the first outcome. In terms of the linear predictor defined
by the model matrix, this difference is simply 2β3. Similarly, the log relative
risk for the second binary outcome is 2β4. The standard error, Wald tests, and
confidence intervals of such scaled values may be calculated using the estimated
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variance-covariance matrix of β̂. In addition, the estimate of the log relative risk
may be exponentiated to produce an estimate for relative risk. A 95% confidence
interval for the relative risk for the first binary outcome is

exp[2β̂3 ± 1.96
√

22Cov(β̂)3,3] = exp[2(β̂3 ± 1.96
√

Cov(β̂)3,3)] .

The difference in estimated marginal relative risks also may be of clinical
interest. Testing this difference against zero would be testing whether or not
the treatment is equally effective (or ineffective) for the two binary outcomes at
significance level α. The 95% confidence interval for this difference is

exp[2(β̂3 − β̂4 ± 1.96
√

Cov(β̂)3,3 + Cov(β̂)4,4 − 2Cov(β̂)3,4)] ,

which is centered around the point estimate of exp[2(β̂3 − β̂4)]. The correlation
between β̂3 and β̂4 is estimated as

Cov(β̂)3,4√
Cov(β̂)3,3Cov(β̂)4,4

.

Hence, apart from the occasional zero cell count, this approach to modeling these
correlated log relative risks is relatively straightforward.

2.2 Generalized estimating equation (GEE) approach

While the WLS approach is appropriate for randomized clinical trials, often
there is a need to adjust the analysis for design variables such as clinical site
or additional baseline variables, some of which may not be categorical. In this
instance, a GEE approach is more flexible and can be applied (Lu et al. 2001).
To formulate the model, suppose that ith subject has a bivariate outcome vector
Yi = [Yi1 Yi2]′, for i = 1, 2, . . . , N . Let E[Yij |Xij ] = P (Yij = 1|Xij) = Pij for
j = 1, 2 be the probability of observing a positive response on the first binary
outcome (J = 1) or on the second (J = 2) for the ith subject on the jth outcome.
When a logarithm link function is used, the log-linear function of Pij in Xij is
log(Pij) = Xijβ, where β is a p × 1 regression coefficient vector. Thus, Pi =
[Pi1, Pi2]′ = [exp(Xi1β), exp(Xi2β)]′.

Similar to the WLS approach, the model matrix configuration is of impor-
tance. The coding of values of the model matrix is as follows: the first column
is the intercept with a value of 1 for all rows; the second column is the indicator
for which of the two binary outcomes the row is referencing; the third column
is the group identity (1 if the subject is in the treatment group and 0 if the
subject is in the control group); the fourth column codes the interaction between



402 Rickey E. Carter et al.

outcome indicator and treatment. This model matrix is for when the interaction
between binary outcomes and treatment (i.e., differential treatment effect on the
two binary outcomes) is of interest, and can be illustrated as

Xi =
[

Xi1

Xi2

]
=

[
1 1 1 1
1 0 1 0

]
if the ith subject is on treatment and

Xi =
[

Xi1

Xi2

]
=

[
1 1 0 0
1 0 0 0

]
if the ith subject is on control.

The parameter vector consists of four elements, β = [β1, β2, β3, β4]′, as before.
β4 measures the treatment effect on the first outcome beyond that for the second
outcome. If there is no differential effect on the two outcomes, then the interac-
tion term may be deleted and the parameter β3 would be the common log relative
risk of the treatment relative to the control. The solutions, β̂ and α̂, the cor-
relation of the binary outcomes, are obtained iteratively as described elsewhere
(Zeger and Liang 1986). This method can be implemented using SAS PROC
GENMOD with a logarithm link function and binomial distribution specification
in the model statement. The correlation of the binary outcomes is specified with
the REPEATED statement. Note that this design accommodates additional co-
variates in the design matrix and produces “adjusted” relative risks in the same
manner as a multiple logistic regression produces adjusted odd ratios.

3. Example

Annually, over 75 million surgical patients world wide are administered anes-
thesia, and up to one third of these patients will develop some combination of
nausea and vomiting if left untreated during post-operative recovery (Apfel et
al. 2004). Clinically, nausea is an unpleasant sensation in the abdomen and
may provide significant discomfort to the patient. However, vomiting poses a
greater medical risk in that the forcible expulsion of stomach contents through
the mouth may cause damage to surgical site. These two adverse effects are com-
monly considered paired (e.g., occurrence of nausea and vomiting), and in fact,
nausea often times culminates in vomiting. As such, the assessment of adjuvant
therapies to minimize the incidence of nausea and/or vomiting in patients after
general anesthesia is of clinical importance. Correspondingly, numerous studies
have been conducted to date, and one recent trial provides the motivation for
this research.
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Apfel et al. (Apfel et al. 2003) conducted IMPACT (an International Mul-
ticenter Protocol to assess the single and combined benefits of Antiemetic inter-
ventions in a controlled Clinical Trial of a 2× 2× 2× 2× 2× 2 factorial design),
for the prevention of postoperative nausea and vomiting. For the purpose of
this illustration, we consider two of the randomized treatments, namely propofol
versus volatile anesthetics. The volatile anesthetics group serves as the control
group. Initially, the data were analyzed using the odds ratio (Apfel et al. 2004);
however, IMPACT is a prospective clinical trial design, and the effect of propofol
on the symptoms is more appropriately expressed in terms of relative risk. The
research question is whether or not propofol is effective in controlling postopera-
tive vomiting and nausea and, when it is effective, whether it is equally effective
for controlling vomiting and nausea.

To answer these questions, IMPACT evaluated the incidence of nausea and
vomiting on 5,159 participants. Of these, 3,426 were randomized into the propofol
treatment group and the remaining 1,733 were randomized into the control group
to whom only the volatile anesthetic was provided. The outcome data for this
study are presented as Table 2. The incidence of nausea appears higher than that
of vomiting on both treatments and similarly, the incidence of both nausea and
vomiting appear lower on the propofol group than on the control group.

Table 2: Realization of IMPACT study presented in the Context of Table 1

Cell Counts (Estimated Cell Probability)
Nausea

Treatment Group Vomiting + − Total

+ 358 (0.1045) 23 (0.0067) 381 (0.1112)
− 677 (0.1976) 2368 (0.6912)

Total 1035 (0.3021) 3426

Control Group + 223 (0.1287) 13 (0.0075) 236 (0.1362)
− 426 (0.2458) 1071 (0.6180)

Total 649 (0.3745) 1733

The estimation for the relative risks of nausea and vomiting using the WLS
approach was conducted using PROC CATMOD in SAS (SAS Institute Inc.
2001). When WLS is applied to the data from IMPACT, the estimates in Table
3 are obtained. Using these WLS estimates and testing procedures, it was found
that propofol had a significant effect in controlling vomiting and nausea. The
relative risk for these two symptoms are, respectively, 0.82 (95% C.I. from 0.70
to 0.95) and 0.81 (95% C.I. from 0.75 to 0.87) with the control group’s risks as
the references. Using the 95% confidence interval for the ratio of relative risks
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(0.89, 1.16) suggests that propofol is equally effective for the two symptoms since
the 95% confidence interval includes 1 and is quite narrow.

Table 3: Relative risks (RR) and confidence intervals estimated for the IM-
PACT clinical trial examining the effects of propofol relative to volatile anes-
thetic for controlling post operative nausea and vomiting.

Weighted Least Squares Generalized Estimating Equations

RR 95% CI RR 95% CI
Vomiting 0.82 (0.70, 0.95) 0.82 (0.70, 0.95)
Nausea 0.81 (0.75, 0.87) 0.81 (0.75, 0.87)
Ratio of relative risks 1.01 (0.89, 1.16) 1.01 (0.89, 1.16)
for vomiting and nausea

Common relative risk 0.81 (0.75, 0.87)
for vomiting and/or nausea
with propofol vs
volatile anesthetics

To implement the GEE method, the data format was restructured/organized
such that each subject had two rows of data, one for each symptom. Values for the
subject on the design matrix with dimension of 2 x 4 were determined according
to his/her group identity (propofol or control; refer to the design matrix part of
Section 2.2). Thus, the first row for each subject coded the person’s conditions
related to his/her response on vomiting and the second row coded that for the
nausea response. Yi = [Yi1, Yi2]′, where Yi1 = 1(or 0) for a positive (or negative)
response on vomiting and Yi2 = 1 (or 0) for a positive (or negative) response on
nausea. A positive response is defined as the observation of the symptom within
24 hours post surgery.

PROC GENMOD in SAS was used to obtain the estimates of β. When
these estimates were exponentiated, estimates for relative risk and its confidence
intervals were obtained. The results are listed in Table 3. The data supports the
hypothesis that propofol does not provide differential effects for either nausea or
vomiting (p=0.86), and the estimated relative risks and 95% confidence intervals
for propofol’s effect on nausea or vomiting are identical to that obtained from the
WLS method when the interaction of treatment and symptom are included in the
model. Eliminating the interaction term from the model yields an estimate for
the pooled (or common) relative risk of 0.81 and corresponding 95% confidence
interval of (0.74, 0.87). The results are concordant for the two methods in this
example; in other settings, there may be good reason to use one method over the
other including the desire to incorporate continuous covariables.
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4. Discussion

Estimation of relative risk in lieu of the more common odds ratio should be
considered when the data arise from a prospective study (Spiegelman and Hertz-
mark 2005). In this paper we developed methods for modeling correlated relative
risks, noting that these techniques are illustrations of Grizzle et al. (Grizzle et
al. 1969) linear model approach to categorical data and GEE method by Liang
and Zeger (Zeger and Liang 1986). These methods can be implemented using
common statistical software, or may be implemented with software supporting
matrix operations. The syntax for the motivating example using SAS PROC
GENMOD, SAS PROC CATMOD, and SAS IML, are available upon request
from the first author.

The WLS approach directly utilizes the analytical expressions for the vari-
ance/covariance of the binary outcomes. Thus, in situations where only one
dichotomous covariable is of interest (e.g., treatment), WLS is preferred. The
GEE approach illustrated naturally extends to situations with more than two
correlated binary outcomes, and is preferable in instances when adjustment for
additional covariables is necessary. Convergence difficulties in the bernoulli like-
lihood, using either WLS or GEE, may occur when the success probabilities
approach one (Wacholder 1986, Zou 2004, Carter et al. 2005, Spiegelman and
Hertzmark 2005, Blizzard and Hosmer 2006). Utilizing the Poisson likelihood
with robust variance estimator improves convergence in the univariate setting
(Zou 2004, Carter et al. 2005) and naturally extends to the multivariate setting
when using GEE as outlined above.

Many statisticians prefer the canonical link (i.e., logit transformation) when
analyzing binary outcomes. In the case of rare diseases, the odds ratio will ap-
proximate the relative risk, but in clinical trials with non-rare outcomes, the
relative risk will be overestimated by the odds ratio. Zhang and Yu (Zhang
and Yu 1998) propose a technique for estimating RR based on the mathematical
relationship of OR with RR. This approach utilizes the predicted probabilities
obtained from a logistic regression model, but in the presence of multiple covari-
ates, this approach does not produce adjusted estimates of relative risk due to the
need to fully specify the values for the covariate vector. Moreover, this approach
produces inconsistent estimates for relative risk and invalid confidence intervals
(Zou 2004).

The motivating example originated through collaboration with the principal
investigator of IMPACT. The example of nausea and vomiting expresses the no-
tion of correlated binary endpoints well. If additional covariates are considered,
then further GEE modeling could be considered. This example presents an exam-
ination of adverse effects patients can encounter with anesthetic therapies. The
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statistical modeling illustrates the ease with which correlated relative risks can be
estimated directly and compared in clinical trials and other prospective studies.
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