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Abstract: Graphs are a great aid in interpreting multidimensional data.
Two examples are employed to illustrate this point. In the first the many
dissimilarities generated in the Analytic Network Process (ANP) are anal-
ysed using Individual Differences Scaling (INDSCAL). This is the first time
such a procedure has been used in this context. In the second the single
set of dissimilarities that arise from the Analytic Hierarchy Process (AHP)
are analysed using Multidimensional Scaling (MDS). The novel approach
adopted here replaces a complex iterative procedure with a systematic ap-
proach that may be readily automated.

Key words: Analytic hierarchy process, analytic network process, decision
support, individual differences scaling, multidimensional scaling.

1. Introduction

It is often said that a picture is worth a thousand words. It is always use-
ful to have diagrams to enhance the interpretation of analytic techniques. In
this instance graphical techniques employed by statisticians will be applied to
techniques more commonly encountered in management science or operations
research.

In recent years many papers have been written examining the Analytic Hi-
erarchy Process (AHP, Saaty, 2001, for example) as an aid to decision making.
This has been extended to the Analytic Network Process (ANP, Saaty, 1996).
Similarly Multidimensional Scaling (MDS, Cox and Cox, 2001, for example) has
been widely employed to assist in data presentation.

Two works have combined these methods. That of Huang et al. (2005)
combined the ANP with MDS while Ernstberger (1995) combined the AHP with
MDS; these furnish the two examples considered here. The first example benefits
from the application of the INDSCAL procedure, while for the second a direct
procedure is developed which avoids the iterative scheme previously utilised.
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For those not familiar with the numerical procedures employed here: Ana-
lytic Hierarchy Process, Analytic Network Process, Individual Differences Scal-
ing, Non-metric Multidimensional Scaling and Procrustes Analysis. These are
now briefly reviewed; the topics are presented in alphabetic order.

2. Overview Of The Numerical Techniques Employed

2.1 Analytic hierarchy process

The AHP is a method for formalizing decision making where there are a lim-
ited number of choices but each has a number of attributes and it my be difficult
to formalize some of those attributes. It is a structured technique for dealing with
complex decisions. The AHP provides a methodology for structuring a problem,
for representing and quantifying its elements, for relating those elements to overall
goals, and for evaluating alternative solutions.

A complex problem is decomposed into a hierarchy of simpler sub-problems,
each of which can be analysed separately. The elements of the hierarchy can relate
to any aspect of the decision problem under consideration. Once the hierarchy is
built, the various elements may be analysed. Comparisons are made in pairs. In
making the comparisons, assessments of the relative importance of the elements
are made.

On completion priorities as numerical values are derived for the alternatives.
It is a simple matter to select the optimum choice, or to rank them in order of
importance.

The AHP has been used in a large number of applications to provide some
structure on a decision making process. Originally it was introduced by Saaty
(1977) and more fully described in Saaty (1980) with some nice examples in Wind
and Saaty (1980). For a more recent review see Zahedi (1986), while Smith and
von Winterfeldt (2004) explore some of the current controversies.

In the AHP procedure the decision maker is required to make pair wise com-
parisons between n alternatives based on a ratio scale, the choices are made from
the integers between 1 and 9 and their reciprocals (I = {1/9, 1/8, 1/7, 1/5, 1/4, 1/3,
1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9}). The resulting decisions are summarised in a square ma-
trix (A : Aij , i = 1, . . . , n; j = 1, . . . , n) of dimension n. It is reciprocal symmetric
that is aij = 1/aji. The priority vector of the alternatives is the right eigen vector
associated with the dominant eigen value (Aν = λν). An alternate approach is
to adopt the row geometric mean νi = N−1(

∏n
j=1 aij)1/n with an appropriate

normalisation term (N :
∑n

i=1 νi = 1) (Barzilai, 1997). For a detailed review
of various alternate approaches to this numerical problem see Choo and Wedley
(2004).

For further details and examples see Saaty (1996 and 2001).
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2.2 Analytic network process

A more advanced framework for setting priorities known as the ANP method
of decision making was developed from the AHP. The ANP differs from the AHP
in that it generalises the pair-wise comparison process so that decision models can
be built as complex networks which may include the following interconnecting
components: decision objectives, criteria, stakeholders, alternatives, scenarios
and other factors.

The key concept of the ANP is that influence does not necessarily have to
flow downwards, as is the case with the hierarchy in the AHP. Influence can flow
between any factors in the network, causing non-linear networks of priorities and
alternative choices. The ANP is extremely useful for predictive modelling.

Popular applications of the ANP are decisions where risks and threats are
important factors in the decision making process. When success may depend on
an understanding of the entire environment, rather than just that of business
goals and objectives.

The ANP was proposed by Saaty (Saaty, 1996; Saaty and Vargas, 1998)
to overcome the problem of interdependence and feedback between criteria or
alternatives. The ANP is the general form of the AHP.

The first phase of the ANP is to compare the criteria in a whole system to
form a super matrix. This is achieved using the usual AHP decision criteria. The
system can be represented by a network, which represents the interaction of the
elements in a cluster (these are the features in the first example), on elements
in the same or another cluster. Typically one considers the elements one at a
time in one cluster and pair wise comparisons made of the elements in the other
clusters to that element. The general form of super matrix, which is a matrix of
matrices, (following Huang et al. 2005) is

W = (wij)n×n,

where wij is a matrix associated with the ith cluster Ci on the row, and with
the jth cluster Cj on the column, Cm = (em1, em2, . . . , emn)′, eij denotes the ith
element in the jth cluster, wij is the principal eigenvector of the influence of the
elements compared in the jth cluster to the ith cluster. In addition, if the jth
cluster has no influence to the ith cluster, then wij = 0. Clearly the super matrix
(W ) is symmetric.

For further details and examples see Saaty and Vargas (1998) and also Huang
et al. (2005), who present an example and a fuller discussion.
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2.3 Individual differences scaling

INDSCAL is a form of MDS. Its basic assumption is that each individual
respond to all the dimensions of the stimuli but may utilize the dimensions in
varying degree. Each subject weights the dimensions separately and, maybe,
differently.

Carol and Chang (1970) proposed a metric model comprising two spaces: a
group stimulus space and a subjects (or individuals) space, both of chosen dimen-
sion p. Points in the group stimulus space represent the objects or stimuli, and
form an ”underlying” configuration. The individuals are represented as points in
the subjects space. The coordinates of each individual are the weights required to
give the weighted Euclidean distances between the points in the stimulus space,
the values that best represent the corresponding dissimilarities for that individ-
ual. Hence the acronym INDSCAL INdividual Differences SCALing.

Let the points in the group stimulus space be given by xrt (r = 1, . . . , n; t =
1, . . . , p). Let the points in the individuals space have coordinates wit (i =
1, . . . , N ; t = 1, . . . , p). Then the weighted Euclidean distance between stimuli
r and s, for the ith individual is

drs,j =

√√√√ p∑
i=1

wit(xrt − xst)2

The individual weights {wit} and stimuli coordinates {xrt} are then sought
by an iterative scheme that best match {drs,i} to {δrs,i . For further details and
examples see Cox and Cox (2001).

2.4 Non-metric multidimensional scaling

MDS is a data visualisation technique for exploring dissimilarities in data.
The basic algorithm starts with a symmetric matrix of dissimilarities between
items. It assigns a location to each item in a space of an appropriate dimension.
The procedure finds a monotonic relationship between the items in the matrix
and the Euclidean distance between them. The relationship is typically found
using isotonic regression.

The majority of MDS analyses are carried out with X a subset of RP , and with
p = 2 in particular. A configuration of points is sought in RP which represent the
original objects, such that the distances between the points {drs} match order
wise, as well as possible, the original dissimilarities {δrs}.

Let the rth point in X have coordinates xr = (xr1, . . . , xrp)′.
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Let the distance measure for points r and s in X, be Euclidean metric

drs =

√√√√ p∑
i=1

(xri − xsi)2.

Define disparities {d̂rs}, viewed as a function of the distances {drs}, by

d̂rs = f(drs)

where f is a monotonic function such that

d̂rs ≤ d̂tu whenever δrs < δtu.

Thus the disparities “preserve” the order of the original dissimilarities but
allow possible ties in the disparities.

Let the stress function be S, where

S =

√∑
r<s(drs − d̂rs)2∑

r<s d2
rs

.

Note the original dissimilarities {δrs} only enter into the stress function by defin-
ing an ordering for the disparities {d̂rs}. The aim is to find a configuration that
attains minimum stress.

The approach adopted follows that of Kruskal (1964a, b) and is a complex
iterative technique. In particular the monotone function adopted is monotonic
least squares regression.

The first step is to choose an initial configuration. Various strategies may
be adopted when making this choice, however these frequently result in only
locating a local minima. This will often lead to different authors producing
conflicting results. To avoid this a number of different randomly selected starting
points are employed. Typically the number chosen is selected bearing in mind
restrictions on available computer time. For the small problems considered here
1,000 random restarts were employed.

For further details and examples see Cox and Cox (2001).

2.5 Procrustes analysis

Procrustes analysis is essentially a method of shape analysis where items
located in two clusters are aligned as closely as possible with operations such as
dilation, reflection and rotation.

Configurations may be compared employing Procrustes statistics (Mardia et
al., 1979). The resulting Procrustes statistic takes a value in the range [0, 1];
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the procedure seeks the isotropic dilation, reflection and rotation needed to best
match the two configurations. A value of zero indicates a perfect match.

Summarizing the steps in a Procrustes analysis where configuration Y is to
be matched to configuration X:

1. Subtract the mean vectors for the configurations from each of the respective
points in order to have the centroids at the origin.

2. Find the rotation matrix A = (XT Y Y T X)1/2(Y T X)−1 and rotate the X
configuration to XA.

3. Scale the X configuration by multiplying each coordinate by ρ, where ρ =
tr(XT Y Y T X)1/2/tr(XT X).

4. Calculate the minimised and scaled value of

R2 = 1 − {tr(XT Y Y T X)1/2}2/{tr(XT X)tr(Y T Y )}.

This is known as the Procrustes statistic.

For further details and examples see Cox and Cox (2001).

3. Example 1 – The Analytic Network Process

The example employed is taken from Huang et al. (2005). Here six products
{A,B,C,D,E, F} are to be considered. The decision makers are interested in five
features, the price, the package, the location, the function, and the manufacturer.
The proximity matrices which summarise expert’s opinions are presented in Table
1. Where a value of 1 indicates equal importance and 9 is the most extreme value,
often referred to as absolute importance. Intermediate values are interpreted
accordingly. The resulting matrix is reciprocal symmetric, aij = 1/aji. The
super matrix is a matrix of matrices, and was given in the original work, it
provides the weights (resulting from the eigen analysis) in Table 1. The weights
are the appropriately normalised vector corresponding to the unit eigen value of
the supermatrix.

This is purely a numerical example developed by Huang et al. (2005) with
the aim of assessing the closeness of the products, which represents important
information for the firms. Their analysis identifies four groups {A,E}, {B}, {C}
and {D,F}. Such an interpretation may be debateable.
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Table 1: Proximity matrices

Features Weight

Price Product A 0.424

B 2 B
C 2 2 C
D 3 6 7 D
E 7 8 5 8 E
F 5 1 3 7 1

Package Product A 0

B 8 B
C 3 5 C
D 5 6 3 D
E 9 1 2 4 E
F 7 1 7 9 1

Location Product A 0

B 8 B
C 6 2 C
D 4 9 4 D
E 6 8 4 4 E
F 5 3 1 7 5

Function Product A 0.127

B 1 B
C 3 1 C
D 5 3 7 D
E 2 7 4 4 E
F 2 4 8 6 4

Manufacturer Product A 0.449

B 4 B
C 8 3 C
D 3 5 3 D
E 5 2 4 4 E
F 9 7 1 6 4

The analysis aims to combine the properties of the five features. As a pre-
cursor to this step the similarity between the features is examined. Clearly similar
features could be merged.

4. How Different Are the Features

Non-metric multidimensional scaling (Kruskal, 1964a and 1964b) is employed
on the five proximity matrices from Table 1 (Huang et al., 2005). To ensure a
global rather than a local solution was obtained 1,000 random starts were em-
ployed. Having obtained the two-dimensional configurations these were compared
employing Procrustes statistics (Mardia et al., 1979), these values are summarised
in Table 2.
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Table 2: Procrustes comparison of the vectors for the features

Price Package Location Function Manufacturer

Price 0 0.589 0.952 0.765 0.803
Package 0.589 0 0.503 0.712 0.696
Location 0.952 0.503 0 0.669 0.701
Function 0.765 0.712 0.669 0 0.984
Manufacturer 0.803 0.696 0.701 0.984 0

A value of zero (as seen on the diagonal of Table 2) indicates a perfect match.
Since the smallest off diagonal value exceeds 0.5 it may safely be assumed that
the features are viewed as being distinct and all features should be retained.

The previous authors (Huang et al., 2005) took the average of the five prox-
imity matrices, which they then analysed using MDS. This analysis was repeated
resulting in the plot in Figure 1; again 1,000 random restarts of the procedure
were employed.
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Figure 1: Comparative plots
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For consistency with previous workers the axis have been labelled with numer-
ical scales. This is misleading since a non-metric procedure is used which employs
monotone regression. Thus the fit is made to the ordering of the dissimilarities
not their magnitude. As pointed out in the Procrustes analysis the result is only
unique up to factors of dilation, reflection and rotation.

Unfortunately “averaging” destroys the many differences indicated between
the factors by the relatively high Procrustes statistics (Table 2). To preserve and
analyse the full set of dissimilarities Individual Differences Scaling (referred to as
INDSCAL) as proposed by Carroll and Chang (1970) is employed. This metric
model is composed of two spaces, a group stimulus space and a subject’s space.
Individual subject weights and stimuli coordinates are sought which best match
the total set of dissimilarities. The coordinates of the products are displayed in
Figure 1.

The Procrustes statistic relating the coordinates in Figure 1 are presented
later.

The original authors argued that weights taken from the ANP should have
been used when obtaining the average dissimilarities. Repeating the MDS anal-
ysis with this constraint produced the coordinates plotted in Figure 1.

Again INDSCAL can be used to preserve the raw data, with each set of dissim-
ilarities being scaled by the weight from the ANP, hence only price, function and
manufacturer feature in the analysis, package and location having zero weight.
The coordinates are plotted in Figure 1.

As before Procrustes statistics are employed on the results in Figure 1 to
assess if the coordinates are truly different, these statistics are summarised in
Table 3.

Table 3: Procrustes comparison of the weighted dissimilarities for the products

MDS INDSCAL Weighted MDS Weighted INDSCAL

MDS 0 0.118 0.141 0.618
INDSCAL 0.118 0 0.126 0.580
Weighted MDS 0.141 0.126 0 0.729
Weighted INDSCAL 0.618 0.580 0.729 0

While they differ the solutions for MDS, Weighted MDS and INDSCAL have
some slight similarity, all giving statistics below 0.15. However it is clear that the
weighted INDSCAL solution is very different, since it preserves the most infor-
mation from the raw data, it is this approach that should be adopted. Thus any
conclusions should be drawn from the weighted INDSCAL analysis summarised
in Figure 1. The products appear to exhibit three groups, {A,E}, {B,F} and
{C,D}, these pairings would not have been recognised from the other plots (Fig-
ure 1).
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Table 4: AHP matrix and priority vector

Size Tuition Student/Faculty

Size 1 1/4 1/3
Tuition 4 1 3
Student/Faculty 3 1/3 1

Priority Vector 0.1199 0.6079 0.2721

Table 5: Values for each alternative/attribute plus bounds

Institution Size Tuition Student/Faculty

1 Anderson University 667 5610 6
2 Ball State University 14369 1767 16
3 Bethel College 276 5452 7
4 Butler University 2086 7418 13
5 Calumet College of St. Jos. 386 2306 11
6 DePauw University 2320 8850 15
7 Earlham College 1074 9696 11
8 Franklin College of Indiana 711 5720 14
9 Goshen College 963 5720 14
10 Grace College 659 4874 12
11 Hanover College 1046 4980 13
12 Huntington College 461 5600 17
13 University of Indianapolis 1254 6440 12
14 Indiana Institute of Tech. 406 5450 20
15 Indiana State University 9559 1760 16
16 Indiana University 25219 1780 18
17 Indiana University S. Bend 1600 1544 11
18 Indiana University S.E. 2094 1246 20
19 IUPUI Fort Wayne 3758 1555 12
20 IUPUI 21 Manchester 6861 1840 6
21 Manchester College 944 6330 12
22 Martin Center College 115 3610 8
23 Purdue University Calumet 3250 1562 14
24 Purdue University 26185 1816 12
25 Rose Hulman Institute 1300 7980 14
26 St. Joseph’s College 798 6640 15
27 St. Mary of the Woods 351 6330 7
28 St. Mary’s College 1792 7863 15
29 Taylor University 1478 7087 16
30 Tri-State University 997 5958 14
31 University of Evansville 2227 6994 14
32 University of Notre Dame 7572 9650 9
33 University of Southern IN 2698 1440 24
34 Valparaiso University 2971 7092 11
35 Wabash College 889 7545 13

Lower bound 3000 0 0
Upper bound 15000 2500 16

The second example is taken from Ernstberger (1995).
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5. Example 2 – The Analytic Hierarchy Process

The example involves the process of choosing a college to attend. Suppose
that the choice is restricted to Indiana and it has been determined that the funda-
mental attributes contributing to this decision include undergraduate enrolment,
in-state tuition cost, and the student/faculty ratio. It is also known that this is a
simple two level hierarchy with the attributes on the lower level and satisfaction
on the upper level. The user is asked to make a pair wise comparison of the
relative importance of the attributes on a 9 point scale where 1 means they are
equally important and 9 means that choice A (row) is absolutely more important
than choice B (column). The matrix of comparisons is assumed to be recipro-
cal symmetric (see Table 4). The relevant information for al1 potential college
choices is provided in Table 5.

6. The Data

In this case there are 3 attributes (M=3) and 35 (N=35) alternatives. The
selected AHP matrix and resulting priority vector (Ernstberger, 1995) are pre-
sented in Table 4.

The values corresponding to each alternative and attribute, plus the selected
bounds for each attribute (Ernstberger, 1995) are presented in Table 5.

The original integrated method of Ernstberger (1995) will be summarised.
As proposed the procedure was an iterative scheme. Having selected the

attributes upon which the decision will be based their relative weights are selected
employing the AHP. The user is then asked to impose numerical constraints on
the attributes. An integer programming (IP) approach is employed to identify
the most relevant choice set. At this stage the user is offered the alternative of
employing the AHP or MDS to refine the alternatives. The procedure may now
be recommenced.

This procedure requires some quite complex technology (AHP, MDS, IP) plus
a great deal of interaction with the user. Some notation will be needed to present
the procedure proposed here. The approach is more direct with all operations
being achievable with any spreadsheet.

7. Notation

Assume there are N alternatives from which the optimum is to be selected
based on M attributes. The user makes a pair-wise comparison of the relative
importance of the attributes. The AHP is employed to convert these comparisons
into a vector of priorities for the attributes aj : j = 1, . . . ,M . In addition the
user must provide upper uj : j = 1, . . . ,M and lower lj : j = 1, . . . ,M acceptance
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levels on each attribute. The actual values corresponding to each alternative and
each attribute must be available νij : i = 1, . . . , N, j = 1, . . . ,M . To assist in
following the procedure the example from Ernstberger (1995) is presented.

Given the same raw information the approach now deviates from that previ-
ously employed. The procedure will now be introduced.

Table 6: Transformed values for each alternative/attribute

Institution Size Tuition Student/Faculty Priority Rank

1 Anderson University 0.6671 0.2159 0.9644 0.4737 16
2 Ball State University 0.8529 0.9788 0.5449 0.8455 7
3 Bethel College 0.6390 0.2410 0.9910 0.4928 15
4 Butler University 0.7628 0.0445 0.7948 0.3348 26
5 Calumet College of St. Jos. 0.6470 0.9144 0.9215 0.8841 5
6 DePauw University 0.7775 0.0065 0.6322 0.2692 35
7 Earlham College 0.6956 0.0000 0.9215 0.3341 27
8 Franklin College of Indiana 0.6702 0.1995 0.7165 0.3966 19
9 Goshen College 0.6879 0.1995 0.7165 0.3987 18
10 Grace College 0.6665 0.3475 0.8641 0.5263 13
11 Hanover College 0.6937 0.3263 0.7948 0.4978 14
12 Huntington College 0.6524 0.2175 0.4577 0.3350 25
13 University of Indianapolis 0.7080 0.1130 0.8641 0.3887 21
14 Indiana Institute of Tech. 0.6484 0.2413 0.2189 0.2840 32
15 Indiana State University 1.0000 0.9793 0.5449 0.8635 6
16 Indiana University 0.0664 0.9777 0.3730 0.7038 11
17 Indiana University S. Bend 0.7313 0.9931 0.9215 0.9421 2
18 Indiana University S.E. 0.7633 1.0000 0.2189 0.7590 9
19 IUPUI Fort Wayne 0.8596 0.9926 0.8641 0.9416 3
20 IUPUI 21 Manchester 0.9771 0.9724 0.9644 0.9707 1
21 Manchester College 0.6866 0.1240 0.8641 0.3928 20
22 Martin Center College 0.6272 0.6393 1.0000 0.7359 10
23 Purdue University Calumet 0.8323 0.9922 0.7165 0.8979 4
24 Purdue University 0.0000 0.9746 0.8641 0.8276 8
25 Rose Hulman Institute 0.7111 0.0234 0.7165 0.2945 31
26 St. Joseph’s College 0.6763 0.0949 0.6322 0.3108 30
27 St. Mary of the Woods 0.6444 0.1240 0.9910 0.4223 17
28 St. Mary’s College 0.7439 0.0270 0.6322 0.2776 33
29 Taylor University 0.7231 0.0624 0.5449 0.2729 34
30 Tri-State University 0.6903 0.1670 0.7165 0.3792 24
31 University of Evansville 0.7717 0.0683 0.7165 0.3290 28
32 University of Notre Dame 0.9907 0.0002 0.9910 0.3886 22
33 University of Southern IN 0.8005 0.9971 0.0000 0.7021 12
34 Valparaiso University 0.8165 0.0621 0.9215 0.3864 23
35 Wabash College 0.6827 0.0388 0.7948 0.3217 29

8. Procedure

The values are transformed to reflect the desirability imposed by the user.
To this end a normal transform (φ) is employed, with mean µj = (uj + lj)/2
and standard deviation σj = (uj − lj). Various alternatives were examined for
the standard deviation, such as σj = (uj − lj)/2, with no major effect on the
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conclusions reached. The chosen transformation has the property of associating
relatively high values with observations within the bounds set by the user. Val-
ues outside this interval become less attractive. Then the transformed value is
ν ′

ij = φ(νij : µj , σ
2
j ), to complete the transformation each attribute column is

further transformed to the range [0, 1]. This gives the attributes equal weight,
so that the priority vector will be applicable. This is performed by identify-
ing the maximum, maxj = maximum{ν ′

ij : i = 1, . . . , N}, , and the minimum,
minj = mimimum{ν ′

ij : i = 1, . . . , N}, of the transformed data. The final values,
employed for the calculation are

ν ′′
ij =

ν ′
ij − minj

maxj −minj
.

.
For the example employed here the transformed values are presented in Table

6.
These values may be combined with the priority vector to obtain a priority

value, pi : i = 1, . . . , N , for each alternative. These values are summarised in
Table 6.

The institutions with the highest priority, as presented in Table 6, match
those previously identified by Ernstberger (1995).
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Figure 2: Ranked priority values

A graph of these priority values, Figure 2, makes clear the change in level
reflected by the various options. The labels on the figure correspond to the
numbers assigned to the institutions.
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The precise shape of this curve, but not apparently the order of the values, is
affected by the choice of standard deviation. Similarly the choice of desirability
function has little effect.

Obviously this only effectively gives a one-dimensional view of the data. In a
similar vein MDS still has a role to play, presenting a more detailed view than
that of Figure 2.

9. Applying Multidimensional Scaling

To introduce the attribute priorities a weighted Cartesian dissimilarity (Cox
and Cox, 2001) is employed. In this case the dissimilarity is dik =

∑M
j=1 aj(ν ′′

ij −
ν ′′

kj)
2, i = 1, . . . , N, k = 1, . . . , N . The resulting plot, Figure 3, produces a clearer

relationship between the various options.
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Figure 3: MDS plot of the institutions

Since the procedure only depends on the order of the dissimilarities it has little
dependence on the choice of variance and transformation function. It is necessary
to refer back to Table 6 to identify the cluster of likely candidates, which have
been highlighted in the figure. Thus there are some institutions {2, 15, 22, 24}
that may be worth a second look, an interesting cluster {16, 18, 33} may also be
worth considering, while the remainder may be safely neglected. This degree of
interpretation is not possible from Figure 2.

10. Conclusion

For the first example considered the authors averaged (or weighted averaged)
the dissimilarities and then employed MDS to represent the products. A nat-



Multidimensional Scaling 395

ural consequence of averaging is to blur the difference between the factors. To
preserve this difference the INDCSAL procedure is employed. Both procedures
result in coordinates for the products that have been demonstrated by Procrustes
analysis to be vastly different. The weighted INDSCAL analysis retains the most
information about the choices made and is the recommended option.

The procedure presented here for the second example is the conventional AHP
with the addition of user-supplied constraints applied to the attribute variables.
The AHP priority vector is employed to both generate a priority for each al-
ternative and also dissimilarities between alternatives. The dissimilarities, via
MDS, provide a graphical representation of the AHP. The example presented is
relatively straightforward, employing only three attributes. The extension of the
procedure to problems in much higher dimensions is straightforward and is the
strength of the approach used here.

In each case the final decision aid is a simple plot. It is hoped that the ease of
interpreting these figures will encourage their use in conjunction with the ANP
and AHP.
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