
Journal of Data Science 7(2009), 365-380

Estimating Bivariate Survival Function by Volterra Estimator
Using Dynamic Programming Techniques

Jiantian Wang and Pablo Zafra
Kean University

Abstract: For estimating bivariate survival function under random censor-
ship, it is commonly believed that the Dabrowska estimator is among the
best ones while the Volterra estimator is far from being computational ef-
ficiency. As we will see, the Volterra estimator is a natural extension of
the Kaplan-Meier estimator to bivariate data setting. We believe that the
computational ‘inefficiency’ of the Volterra estimator is largely due to the
formidable computational complexity of the traditional recursion method. In
this paper, we show by numerical study as well as theoretical analysis that
the Volterra estimator, once computed by dynamic programming technique,
is more computationally efficient than the Dabrowska estimator. Therefore,
the Volterra estimator with dynamic programming would be quite recom-
mendable in applications owing to its significant computational advantages.

Key words: Bivariate survival function, computational complexity, Dabrowska
estimator, dynamic programming, Kaplan-Meier estimator, Volterra estima-
tor.

1. Introduction

Bivariate failure time data arise when a survival study is done on paired units,
such as twins, both eyes of one patient, or paired organs of the same individual.
Nonparametric estimation of bivariate survival function under the presence of
censoring is of great importance in applications (Prentice and Cai, 1992).

Let T = (T1, T2) be a pair of nonnegative random variables representing the
failure times with joint survival function S(t1, t2) = P (T1 ≥ t1, T2 ≥ t2), and
C = (C1, C2) be a pair of censoring times which is independent of T . Under
usual right censoring, the observable variables are,

X = (X1, X2) = (T1∧C1, T2∧C2), and ∆ = (∆1, ∆2) = {I(T1 ≤ C1), I(T2 ≤ C2)},

where a ∧ b = min(a, b) and I(·) is the indicator function. A primary ob-
jective in analyzing bivariate failure data is to estimate the bivariate survival

366 Jiantian Wang and Pablo Zafra

function S(t1, t2) based on the observed data Xi = (X1i, X2i), ∆i = (∆1i, ∆2i),
i = 1, · · · , n.

This estimating problem turns out to be surprisingly ‘difficult’ (Gill, 1992;
Oakes, 2001), even though the corresponding problem in univariate case is well
solved by the classical Kaplan-Meier estimator (Kaplan and Meier, 1958). Many
statisticians have made their efforts in solving this problem. For example, Bickel
(personal communication) suggested an estimator based on the Volterra repre-
sentation of the survival function. Langberg and Shaked (1982) advocated an
estimator by conditioning technique. Campbell and Földes (1982), Lo and Wang
(1989), among others, investigated the properties of the Langberg-Shaked estima-
tor. Mun̂oz (1980), Campbell (1981), Hanley and Parnes (1983) and van der Laan
(1996) studied the nonparametric maximum likelihood estimation (NPMLE) of
bivariate survival function by using Efron’s (1967) self-consistency algorithm. Lin
and Ying (1993), Wang and Wells (1997) and Tsai and Crowley (1998) considered
this estimation problem under some special censoring mechanisms. Based on a
product representation of bivariate survival function in terms of its conditional
bivariate hazard measures, Dabrowska (1988) proposed her bivariate product-
limit estimator. Prentice and Cai (1992) represented bivariate survival function
by its marginal survival functions and its covariance function and proposed their
estimator in accordance with such representation.

Extensive comparisons for these proposed estimators have been carried out by
some researchers. For instance, Bakker (1990) compared the Dabrowska estima-
tor and the Volterra estimator. van der Laan (1997) compared the Dabrowska es-
timator, the Prentice-Cai estimator, and the NPMLE of van der Laan. These re-
searchers, among others, claimed that the Dabrowska estimator and the Prentice-
Cai estimator are among the best ones while the Volterra estimator is far from
being computational efficiency.

It has been shown that those estimators are all consistent under independent
censoring. In comparing the performance of consistent estimators, we believe that
the computational complexity could be a determining factor. We thus speculate
that the ‘inefficiency’ of the Volterra estimator may be due to the unfavorable
computational complexity of the traditional recursion method. If this estimator
is computed by some more efficient algorithms, say, the dynamic programming
technique, its computational complexity could be reduced, and thus the perfor-
mance of this estimator would be improved significantly.

In this paper, we investigate the performances of the Volterra estimator, the
Dabrowska estimator (DB), among others. For our convenience, we refer to the
Volterra estimator computed by dynamic programming technique as the Dynamic
Volterra estimator (DV), that computed by traditional recursion method as the
Recursive Volterra estimator (RV). We show that the computational complexity

Estimating Bivariate Survival Function 367

of the DB is O(n4), the complexity of the RV is NP or at least exponential,
whereas that of the DV, is only O(n2). Therefore, the DV is of the least compu-
tationally complicated among these estimators and therefore, the performance of
the DV would be better than even the DB.

To confirm our theoretical analysis, we conduct a number of numerical studies
for comparing the performances and computational time costs of the DV, the DB,
the RV, and the Lin-Ying estimator and the Independence estimator, which are
nearly-optimal under some special data settings. Our simulation results show
that the DV is quite efficient in accuracy and cost, its performance could even
better than those nearly-optimal estimators. Therefore the DV would be the
most recommendable one to applications due to its computational efficiency and
the ease for implementation.

The following section describes the Dabrowska estimator, the Volterra esti-
mator, the Lin-Ying estimator, and the Independence estimator, along with some
short comments. Section 3 discusses the computational complexities of these es-
timators, while numerical studies are followed in Section 4. A short conclusion is
then presented in Section 5.

2. Description of the Estimators

2.1. Dabrowska estimator

For a bivariate step function F (t1, t2) satisfying F (0, 0) = 1, one has the
following product representation,

F (t1, t2) = F (0, t2)F (t1, 0)
F (t1, t2)
F (0, t2)

F (0, 0)
F (t1, 0)

=
∏

0<v≤t2

F (0, v)
F (0, v−)

∏
0<u≤t1

F (u, 0)
F (u−, 0)

∏
0<u≤t1
0<v≤t2

F (u, v)
F (u, v−)

F (u−, v−)
F (u−, v)

.

Based on this representation, Dabrowska (1988) proposed the following estimator,

ŜD(t1, t2) = Ŝ(t1, 0)Ŝ(0, t2)
∏
u≤t1
v≤t2

[
1 − Λ̂10(du, v−)Λ̂01(u−, dv) − Λ̂11(du, dv)

{1 − Λ̂10(du, v−)}{1 − Λ̂01(u−, dv)}

]
,

(2.1)
where Ŝ(t1, 0), Ŝ(0, t2) are marginal Kaplan-Meier estimators for S(t1, 0), S(0, t2),
and Λ̂11(du, dv), Λ̂10(du, v−), Λ̂01(u−, dv) are empirical estimates of the respective
probabilities that T1 = u and T2 = v, that T1 = u, and that T2 = v among pairs
in the risk set Y (u, v) =

∑n
j=1 I(X1j ≥ u,X2j ≤ v), (see Dabrowska (1988) and

Prentice and Cai (1992) for more details).

368 Jiantian Wang and Pablo Zafra

2.2. Volterra estimator

In order to show that the Volterra estimator is a natural extension of the
Kaplan-Meier estimator in high dimension, we consider general multivariate data
settings first. Define a partial-order in Rm = {(x1, x2, · · · , xm)} as follows: For
two points p = (p1, p2, · · · , pm), q = (q1, q2, · · · , qm), we write p ≥ q, p ≤ q, p < q
and p > q if these hold componentwise. Denote H(t) as the bivariate Heaviside
function defined as H(t) = 1 for t ≥ 0 and H(t) = 0 otherwise.

For a function f(x) in Rm, denote

f(x1, . . . , x̃i, . . . , xm) = f(x1, . . . , xi−1, 0, xi+1, . . . , xm),

that is, replace the ith component by 0. Define the following projective operators:

Γif(x1, x2, . . . , xm) = f(x1, . . . , x̃i, . . . , xm),
Γijf(x1, x2, . . . , xm) = f(x1, . . . , x̃i, . . . , x̃j , . . . , xm),

· · · · · · · · ·
Γ12···mf(x1, x2, . . . , xm) = f(x̃1, · · · , x̃m) = f(0, · · · , 0).

Let Γi =
∑

|I|=i Γ
I for I ⊆ {1, 2, · · · ,m} and Γ0 be the identity operator.

Let Ti = (T1i, T2i, · · · , Tmi) and Ci = (C1i, C2i, · · · , Cmi) be multivariate vari-
ables in Rm. Correspondingly, t = (t1, · · · , tm) ∈ Rm, is the multivariate time
variable. Denote N(t) =

∑n
i=1 I(Ti ≤ t, Ti ≤ Ci) and Y (t) =

∑n
i=1 I(Ti ≥

t, Ci ≥ t). By Glivenko-Cantelli theorem, n−1N(t) → ω(t) = Pr(T ≤ t, T ≤ C)
and n−1Y (t) → π(t) = Pr(T ≥ t, C ≥ t). The independence assumption
between C and T leads to an identity dS(t)/S(t) = (−1)mdω(t)/π(t), here
dS(t) = dS(t1, · · · , tm) = ∂m

t1,··· ,tmS(t1, · · · , tm). Consequently the estimating
equation is

dŜ(t)/Ŝ(t−) = (−1)mdN(t)/Y (t),

or equivalently, dŜ(t) = (−1)mŜ(t−)dN(t)/Y (t). Solving this multivariate differ-
ence equation, one obtains

Ŝ(t) = (−1)m
n∑

i=1

Ŝ(T−
i)

H(t − Ti)I(Ti ≤ Ci)
Y (Ti)

+
m∑

k=1

(−1)k−1ΓkŜ(t). (2.2)

In univariate case, the estimator (2.2) reduces to

Ŝ(t) = 1 −
n∑

i=1

Ŝ(T−
i)

H(t − Ti)I(Ti ≤ Ci)
Y (Ti)

=
n∏

i=1

{
1 − H(t − Ti)I(Ti ≤ Ci)

Y (Ti)

}
,

which is just the classical Kaplan-Meier product limit estimator (KME). Hence,
we can regard (2.2) as a natural generalization of the KME in higher dimension.

Estimating Bivariate Survival Function 369

In bivariate case, the estimator (2.2) becomes

Ŝ(t) =
n∑

i=1

Ŝ(T−
i)

H(t − Ti)I(Ti ≤ Ci)
Y (Ti)

+ Ŝ(t1, 0) + Ŝ(0, t2) − 1, (2.3)

where Ŝ(t1, 0), Ŝ(0, t2) are corresponding marginal Kaplan-Meier estimators of
S(t1, 0), S(0, t2), respectively. This estimator is similar to the one proposed
by Bickel (unpublished communication) who obtained it by solving a Volterra
type equation. We thus refer to the estimator (2.2) as to multivariate Volterra
estimator and the estimator (2.3) as Volterra estimator.

Conceive the value of Wi = Ŝ(T−
i)H(t − Ti)I(Ti ≤ Ci)/Y (Ti) as the jump

of Ŝ(t) at point Ti and regard
∑m

k=1(−1)k−1ΓkŜ(t) as the boundary value of
Ŝ(t), we can understand that the multivariate Volterra estimator simply evaluates
the estimated value as the boundary values add or subtract the summation of
preceding jumps as compensation.

2.3 Lin-Ying estimator

When censoring has a known simple structure, one can have a simple estimator
for S(t). For example, under univariate censoring, Lin and Ying (1993) proposed
the following estimator for bivariate survival function,

ŜLY (t1, t2) =
1
n

n∑
i=1

I(X1i ≥ t1, X2i ≥ t2)
K̂(t1 ∨ t2)

, (2.4)

where t1 ∨ t2 = max(t1, t2) and K̂(·) is the Kaplan-Meier estimator for K(t) =
P (C ≥ t) applying to univariate data {Xi = min(Ci, Ti), ∆ = I(Ci ≤ Ti)} with
Ti = T1i ∨ T2i, i = 1, · · · , n.

2.4 Independence estimator

When failure times T1 and T2 are independent, the bivariate survival function
becomes S(t1, t2) = P (T1 ≥ t1, T2 ≥ t2) = P (T1 ≥ t1)P (T2 ≥ t2) = S1(t1)S2(t2).
Thus, a natural candidate for estimating the bivariate survival function would be
the ‘Independence’ estimator

Ŝ(t1, t2) = Ŝ1(t1)Ŝ2(t2), (2.5)

where Ŝ1(t1) = Ŝ(t1, 0) and Ŝ2(t2) = Ŝ(0, t2) are corresponding marginal Kaplan-
Meier estimators of S(t1, 0), S(0, t2), respectively.

370 Jiantian Wang and Pablo Zafra

2.5 Some comments

A common misunderstanding regarding on the Volterra estimator is that it
might not use data efficiently. Suppose that a sample consists of 25% doubly un-
censored observations, 25% doubly censored observations, 25% of singly censored
observations along the x coordinate and 25% along the y coordinate. The Volterra
estimator uses the marginal Kaplan-Meier estimators, and the jump points of the
estimate coincide with the location of the doubly uncensored observations (25%
of the sample). It seems to some researchers that the Volterra estimator use only
of 25% of data. While the Dabrowska estimators use all doubly uncensored and
singly censored observations, and thus it uses 75% of the data so it has to be
more efficient.

However, this is not true. Those singly uncensored observations and even
doubly censored observations are used in the estimation of the marginal Kaplan-
Meier estimators in Volterra estimator.

When data size is small or at the points where the size of ‘at risk’ is small,
the Volterra estimator could be negative while the Dabrowska estimator is always
positive. This is also a reason that many researchers believe that the Dabrowska
estimator is superior to the Volterra estimator. However, when sample size is
small, none of them can give a good estimation.

A basic feature for survival function is its monotonicity. Dabrowska (1988)
revealed that the DB can not guarantee its monotonicity. We find such anomaly
is inevitable. Since from observed data, essentially only the hazard functions
(and its functionals) are identifiable. As we all know, for univariate function, its
monotonicity can be determined by its first derivatives. However, for multivariate
function, its monotonicity cannot be determined by its partial derivatives. Thus,
for multivariate survival function, its monotonicity cannot be determined by its
hazard functions, and therefore, it is not surprising that the Dabrowska estima-
tor, the Prentice-Cai estimator, the Lin-Ying estimator, as well as the Volterra
estimator, all can not guarantee the monotonicity of the estimated multivariate
survival function.

The Lin-Ying estimator and the Independence estimator are almost the op-
timal ones under the corresponding data structures. Unfortunately, unlike the
Volterra estimator, they are not applicable to general random censored data. If
the Volterra estimator is competitive to these estimators under the special data
settings, then, it strongly suggests that the Volterra estimato could be the optimal
one.

When sample size is large enough, these estimators will converge to the true
survival function since all are consistent under independent censoring. For a con-
sistent estimator, its performance largely depends on how fast it converges. In

Estimating Bivariate Survival Function 371

comparing the performance of consistent estimators, the computational complex-
ity could be a determining factor. In the next section, we give out the algorithms
and analyze the complexity for these estimators.

3. Algorithms and Complexity Analysis

The algorithm for the Dabrowska estimator was described in Bakker (1990)
and in van der Laan (1997). For completeness sake, we state it here again.

Step 1. Compute Ŝ(t1, 0) and Ŝ(0, t2) by the Kaplan-Meier estimator;

Step 2. For each lattice point (X1i, X2j), compute R(i, j) which is defined as
R(i, j) = A/B where

A = Y (X1i, X2j){Y (X1i, X2j) − N10(δX1i, X2j) − N01(X1i, δX2j)
+ N11(δX1i, δX2j)

B = Y (X1i, X2j) − N10(δX1i, X2j)}{Y (X1i, X2j) − N01(X1i, δX2j)

and N(δx, y) = N(x−, y) − N(x, y).

Step 3. Compute the estimate ŜD(t1, t2) by the formula

ŜD(t1, t2) = Ŝ(t1, 0)Ŝ(0, t2)
∏

(X1i,X2j)≤(t1,t2)

R(i, j).

It is clear from the formula Ŝ(t1, 0) =
n∏

i=1

{1− δ1i/Y (X1i, 0)} that the compu-

tational complexity for step 1 is O(n2). The computational complexity for com-
puting R(i, j), on the average, is O(n2) since to evaluate the functions N10, N01,
and N11 is O(n2). Consequently, the complexity for computing the Dabrowska
estimator is O(n4).

Traditionally, the Volterra estimator is computed by recursive algorithm ac-
cording to the recursion scheme (2.2). The algorithm can be simply described
as:

RecursionVolterra(t1, t2)
if (t1 or t2 is 0), return Ŝ(t1, 0) or Ŝ(0, t2)
else for i = 1, · · · , n, if Ti ≤ Ci, result=result+RecursionVolterra(T−

i)/Y (Ti)
result=result+ Ŝ(t1, 0) + Ŝ(0, t2) − 1, return result

Recursive method is desirable for programming but its computational com-
plexity is usually terrible. Clearly, the complexity for the above algorithm is NP

372 Jiantian Wang and Pablo Zafra

or non-polynomial. One way to reduce the complexity of recursive scheme is
using the so-called dynamic programming technique (see, Sahni, 1997, Chapter
15). The algorithm for computing the Volterra estimator by applying dynamic
programming technique can be described as follows:

Step 1. Compute Ŝ(t1, 0) and Ŝ(0, t2) by the Kaplan-Meier estimator;

Step 2. Sort {Xi; i = 1, 2, . . . , n} lexicographically according to the first or second
component and denote the sorted data by {X(1), . . . , X(n)};

Step 3. By the recursive formula (2.3), compute the estimated value Ŝ(X(1)),
Ŝ(X(2)), · · · , until for all X(i) ≤ t, i = 1, . . . n;

Step 4. Compute Ŝ(t) by (2.3).

The computational complexity for step 1 is O(n2), for step 2 is at most O(n2),
for step 3 and 4 is also O(n2). Thus, the complexity for computing the Volterra
estimator by dynamic programming technique is O(n2).

The computational complexities for the Lin-Ying estimator and the ‘Indepen-
dence’ estimator are clearly O(n2).

4. Numerical Studies

To investigate the behavior of the Volterra estimators, we conduct a number
of simulations with different survival and censoring distributions, like the Clayton
distributions and the Pareto distributions. We compare the DV with DB and also
with the Lin-Ying estimator and the Independence Estimator. We refer to the
probability P (∆1 = 1, ∆2 = 1) as the probability for ‘full observation’.

4.1 The Clayton model

Assume the pairs of failure times are distributed according to the Clayton
(1978) bivariate exponential distribution with bivariate survival function as

Sθ(t1, t2) = (et1/θ + et2/θ − 1)−θ.

Assume the censoring C follows an independent bivariate exponential model
whose components are all exponential with mean 2. The failure times (T1, T2) in
Clayton model can be obtained from uniform (0, 1) variables using the transfor-
mation

T2 = − log(1 − U2), T1 = θ log{(1 − a) + a(1 − U1)−(1+θ)−1},

Estimating Bivariate Survival Function 373

where a = (1− U2)−θ−1
and U1, U2 are independent uniform (0,1) variables (see,

Prentice and Cai (1992)). In this simulation we compare the estimators DV, DB
and RV, 500 iterations were carried out with each sample size 100. The results
are summarized in Table 1.

From Table 1 we can see that all these three estimators perform quite well
even though they all underestimate the true values slightly. Since they are all
consistent estimators, they are asymptotically equivalent in theory. The differ-
ence among them is due to the roundoff errors and computational complexity.
The computational time costs for the these estimators could be quite different.
As we recorded in this simulation, the computational time costs for the DV, DB,
and RV are 1, 7703, and 489 seconds respectively. Therefore, the DV is the most
computationally efficient.

Table 1: Comparison between the Dynamic Volterra estimator (DV), the
Dabrowska estimator (DB), and the Recursive Volterra estimator (RV) based
on Clayton’s exponential model with θ = 0.25. The probability of ‘full obser-
vation’ is about 51.13%.

t1 t2 = 0 t2 = 0.2231 t2 = 0.5108 t2 = 0.9163
0 1.00000 0.80003 0.60001 0.39999

1.00000(0.0000) 0.79214(0.0421) 0.58543(0.0550) 0.38993(0.0590)
1.00000(0.0000) 0.79126(0.0421) 0.58459(0.0552) 0.38912(0.0592)
1.00000(0.0000) 0.79197(0.0421) 0.58518(0.0551) 0.38962(0.0591)

0.2231 0.80003 0.71242 0.57487 0.39639
0.78808(0.0423) 0.70010(0.0468) 0.56156(0.0532) 0.38892(0.0577)
0.78655(0.0430) 0.69687(0.0488) 0.55799(0.0549) 0.38542(0.0581)
0.78775(0.0425) 0.70208(0.0458) 0.56456(0.0518) 0.39226(0.0568)

0.5108 0.60001 0.57487 0.51307 0.38444
0.58446(0.0552) 0.55935(0.0554) 0.49819(0.0550) 0.37549(0.0569)
0.58308(0.0557) 0.55667(0.0568) 0.49542(0.0550) 0.37149(0.0563)
0.58401(0.0553) 0.56228(0.0540) 0.50347(0.0525) 0.38219(0.0550)

0.9163 0.39999 0.39639 0.38444 0.33744
0.38724(0.0583) 0.38267(0.0582) 0.37280(0.0577) 0.32682(0.0608)
0.38634(0.0582) 0.38110(0.0583) 0.36941(0.0568) 0.32343(0.0544)
0.38678(0.0583) 0.38591(0.0570) 0.37938(0.0556) 0.33695(0.0583)

The first row in each cell is the true value; the second, third and fourth rows are the mean
(standard deviation) of the estimates by DV, DB, and RV respectively, 500 samples, each
with size 100.

4.2 Univariate censoring

In this subsection, we consider an interesting censoring situation, that is,
univariate censoring. In univariate censoring, both failure times may be censored
by one censoring variable. Under univariate censoring, the Lin-Ying estimator is
of the simplest form and is of least computational complexity.

374 Jiantian Wang and Pablo Zafra

In the followed simulations, we still use the Clayton model for failure times.
We assume θ = 0.50 and the univariate censoring follows an exponential distribu-
tion with mean 2. Lin and Ying (1993) conducted a simulation to compare their
estimator with the Dabrowska estimator with sample size 60. In this simulation
study, we also choose sample size 60. 1000 iterations are performed and Table 2
summarizes the results.

Table 2: Comparison among the DV, LY and DB under univariate censoring
based on Clayton’s exponential model with θ = 0.50. Under such model, the
probability for ‘full observation’ is about 61.11%.

t1 t2 = 0 t2 = 0.2231 t2 = 0.5108 t2 = 0.9163
0 1.00000 0.80003 0.60001 0.39999

1.00000(0.0000) 0.80142(0.0524) 0.59859(0.0666) 0.39527(0.0758)
1.00000(0.0000) 0.80081(0.0536) 0.59759(0.0700) 0.39335(0.0790)
1.00000(0.0000) 0.80160(0.0523) 0.59858(0.0666) 0.39495(0.0757)

0.2231 0.80003 0.68603 0.54717 0.38313
0.79800(0.0544) 0.68547(0.0625) 0.54602(0.0671) 0.37944(0.0741)
0.79597(0.0557) 0.68477(0.0646) 0.54498(0.0715) 0.37754(0.0786)
0.79767(0.0546) 0.68420(0.0629) 0.54369(0.0679) 0.37603(0.0745)

0.5108 0.60001 0.54717 0.46853 0.35294
0.59351(0.0684) 0.54284(0.0689) 0.46388(0.0680) 0.34765(0.0729)
0.59213(0.0701) 0.54277(0.0734) 0.46319(0.0719) 0.34592(0.0779)
0.59283(0.0686) 0.54126(0.0696) 0.46205(0.0696) 0.34445(0.0736)

0.9163 0.39999 0.38313 0.35294 0.29488
0.39088(0.0749) 0.37429(0.0741) 0.34654(0.0711) 0.28858(0.0712)
0.39052(0.0786) 0.37530(0.0790) 0.34628(0.0758) 0.28712(0.0734)
0.39010(0.0751) 0.37238(0.0744) 0.34291(0.0711) 0.28317(0.0705)

The first row in each cell is the true value; the second, third and fourth rows are the mean
(standard deviation) of the estimates by the DV, LY, and DB respectively, 1000 samples,
each with size 60.

Under univariate censoring, the Lin-Ying (LY) estimator is of the simplest
form and is of least computational complexity, and thus can be expected to
perform the best. However, Table 2 shows that the DV outperforms the Lin-
Ying estimator almost everywhere, even at those marginal points. We notice
that ŜLY (t1, 0) is not the marginal Kaplan-Meier estimator for S(t1, 0), but the
DV is. Since the DV is a natural extension of the Kaplan-Meier estimator, and
from the optimality of the Kaplan-Meier estimator, we can expect the DV would
be the optimal one in bivariate data settings. This simulation supports such
speculation. Lin and Ying (1993) compared the Lin-Ying estimator and the
DB and concluded that Lin-Ying estimator performs better than the DB. Thus,
the DV performs better than DB consequently. The Table also indicates that
the Lin-Ying estimator outperforms the DB excluding those marginal points on
which DB reduces to the Kaplan-Meier estimator. Roughly, we can say that in
this simulation, the performance order for these three estimators is: the DV, the

Estimating Bivariate Survival Function 375

Lin-Ying, and the DB. The computational time costs for these estimators are 2,
1, and 2078 seconds, respectively, for the DV, LY, and DB.

4.3 Independent failure times

When failure times T1 and T2 are independent, the bivariate survival function
is S(t1, t2) = S1(t1)S2(t2). Thus, a ‘good’ estimator would be the ‘Independence’
estimator Ŝ(t1, t2) = Ŝ1(t1)Ŝ2(t2), where Ŝi(ti) is the corresponding Kaplan-
Meier marginal estimator for Si(ti), (i = 1, 2). In the simulation study below,
we compare the performances of the ‘Independence’ estimator, the DV and DB
when failure times are independent. The results are displayed in Table 3.

Table 3: Comparison among the ‘Independence’ estimator, the DV, and the DB
under independent failure times model. The probability for ‘full observation’
is about 54.08%.

t1 t2 = 0 t2 = 0.2231 t2 = 0.5108 t2 = 0.9163
0 1.00000 0.80003 0.60001 0.39999

1.00000(0.0000) 0.79666(0.0558) 0.59681(0.0682) 0.39298(0.0690)
1.00000(0.0000) 0.79789(0.0557) 0.59826(0.0683) 0.39555(0.0692)
1.00000(0.0000) 0.79670(0.0558) 0.59694(0.0681) 0.39320(0.0691)

0.2231 0.80003 0.64005 0.48003 0.32001
0.79780(0.0561) 0.63718(0.0663) 0.47738(0.0658) 0.31408(0.0590)
0.79859(0.0561) 0.63813(0.0687) 0.47816(0.0716) 0.31521(0.0676)
0.79796(0.0561) 0.63735(0.0688) 0.47719(0.0717) 0.31285(0.0669)

0.5108 0.60001 0.48003 0.36001 0.24000
0.59437(0.0697) 0.47477(0.0669) 0.35563(0.0594) 0.23397(0.0493)
0.59504(0.0697) 0.47510(0.0710) 0.35623(0.0687) 0.23417(0.0629)
0.59446(0.0696) 0.47504(0.0705) 0.35764(0.0684) 0.23371(0.0611)

0.9163 0.39999 0.32001 0.24000 0.15999
0.39199(0.0689) 0.31309(0.0605) 0.23430(0.0490) 0.15420(0.0383)
0.39358(0.0686) 0.31660(0.0679) 0.23886(0.0626) 0.15715(0.0611)
0.39210(0.0689) 0.31473(0.0676) 0.23717(0.0619) 0.15405(0.0553)

The first row in each cell is the true value; the second, third and fourth rows are the mean
(standard deviation) of the estimates by the ‘Independence’ estimator, the DV, and DB
respectively. 500 samples, each with size 60.

In this simulation, the pairs of failure times are unit exponential distributed,
while censoring times also follow independent exponential distributions with mean
2. 500 simulations were carried out with sample size 60 in each.

From Table 3 we can see that, except those marginal points, the standard
deviation of the ‘Independence’ estimator is less than those of the DV and the
DB. Therefore, the performance of the ‘Independence’ estimator would be more
stable.

Also, as we can see from the table that the estimated value from the DV
is closer to the true value than that from the ‘Independence’ estimator. This

376 Jiantian Wang and Pablo Zafra

strongly suggests that the DV is likely the optimal one, since the ‘Independence’
estimator is almost the best one from the optimality of the Kaplan-Meier es-
timator (Wellner, 1982). However, the product of optimal estimators may not
always be optimal. Clearly, when there is no censoring, Ŝ1(t1) and Ŝ2(t2) become
empirical, but their product is not necessary to be empirical for S(t1, t2). For
computational time cost, the ‘Independence’ estimator is 1 second, while those
for the DV and the DB are 2, and 1021 seconds respectively.

4.4 The Pareto model

Denote G as the distribution function of the censoring variable C = (C1, C2).
Assume that both the functions S(t1, t2) and G(c1, c2) are member of the family
of Pareto distribution, defined as Sa(t1, t2) = ((1 − t1)−1/a + (1 − t2)−1/a − 1)−a

and Gb(c1, c2) = (c−1/b
1 + c

−1/b
2 − 1)−b. The generation for these bivariate Pareto

distributions is described in Johnson(1987). Specifically, the generation for the
Pareto distribution with parameter 1 can be easily fulfilled as: Let Y1, Y2 and Y
be independent and exponentially distributed variables. Set T1 = Y/(Y + Y1),
T2 = Y/(Y + Y2), then (T1, T2) follows the Pareto distribution with parameter 1.
When a → ∞ and b → ∞, Sa(t1, t2) = (1 − t1)(1 − t2) and Gb(c1, c2) = c1c2. In
such a case, the components are independent. For conciseness, we just check the
Pareto distribution with (a, b) = (1, 1). Bakker (1990) compared the RV and DB
under Pareto models. He used sample size n = 100 and iteration 100. Here we
use the same sample size and the iteration number as Bakker (1990). The results
are displayed in Table 4.

Table 4: The estimated values and the mean standard deviation for the Dy-
namic Volterra (DV), the Dabrowska (DB), and the Recursive Volterra (RV)
estimator, based on 100 replicates with each sample size n = 100, both the
failure times and the censoring times follow Pareto(1).

Point True DV DB RV SD(DV) SD(DB) SD(RV)
(0.1,0.1) .818181 .820823 .738927 .823226 .041451 .262883 .041118
(0.25,0.25) .599999 .607002 .546726 .610586 .053955 .197185 .053952
(0.25,0.5) .428571 .434905 .393033 .441395 .057905 .147253 .059430
(0.25,0.75) .230769 .246639 .217276 .254100 .077464 .103619 .079034
(0.5,0.5) .333333 .342007 .307738 .354070 .060356 .118329 .062130
(0.5,0.75) .199999 .214823 .181800 .231701 .076353 .094270 .081113
(0.75,0.75) .142857 .144711 .110214 .173648 .113205 .094905 .116535
(0.1,0.9) .098901 .091908 .084291 .099271 .078897 .078039 .077617
(0.8,0.8) .111111 .048398 .100316 .161381 .079890 .047083 .056394
(0.9,0.9) .052631 -.002688 .003960 .039868 .170432 .051097 .204041

The column DV, DB, and RV are the estimate values from the Dynamic Volterra estimator,
the Dabrowska estimator and the Recursive Volterra estimator respectively. The SD columns
are the values of sample standard deviations for the corresponding estimators.

Estimating Bivariate Survival Function 377

Table 4 reveals that in general, a strict performance order among the three
estimators is elusive. We notice that in this model, censoring is quite heavy.
Actually, the probability of full observation is only about 30%. Under such heavy
censoring, desirable performance from these estimators may not be so likely, even
some anomaly (such as non-monotonicity, negativeness) may occur. It is not
so proper to make a conclusion that the Dabrowska estimator is better than the
Volterra estimator simply the former is positive while the latter could be negative.

Caution should be taken in the situation of ‘heavy censoring’. Fortunately, in
most applications, censoring may not be so heavy (see, McGilchrist and Aisbett
(1991)). The computational time costs for these estimators are < 1, 2587, and 23
seconds for the DV, DB and RV respectively. Thus, again, from the point of view
of computational time cost, the DV is the best among these three estimators in
term of computational time cost.

4.5 Computational time costs

As claimed, the computational complexity of the Dynamic Volterra estimator,
the Dabrowska estimator and the Recursive Volterra estimator are respectively
O(n2), O(n4), and NP. To confirm such a conclusion, we carry out the following
simulation, in which we record the time costs for executing these estimator when
T follows the bivariate Clayton distribution with parameter 0.25 and C follows
the bivariate independent exponential distribution with both means 2. The com-
putation is based on 100 iterations with different sample size n. The following
table lists the results.

Table 5: Computational time costs (in second, < 1 is recoreded as 0)

n 20 40 60 80 100 120 140 160 180 200

DV 0 0 0 0 0 1 2 4 4 5
DB 3 37 187 569 1353 2783 5240 8587 13598 21078
RV 0 0 5 39 182 797 3478 10175 39574 104397

From this table, we can see that the DV is extremely computationally efficient.
When simple size n is about 200, the computational cost for this estimator is only
0.023% of that for the DB and 0.005% of that for the RV. When n is less than
about 150, the DB is more computational time cost than the RV, whereas when
n become larger than about 150, the RV is more computational time cost than
the DB. When n increase from 180 to 200, the computational cost for the DB
increase from 13598 to 21078. This fact is well agreeable with the claim that the
computational complexity of the DB is O(n4), since (200/180)4×13598 = 20725,
which is quite close to 21078.

378 Jiantian Wang and Pablo Zafra

5. Conclusion

Estimating multivariate survival function under random censorship is a crucial
problem in multivariate analysis. The Volterra estimator has long been ignored
somehow. One reason, we believe, is due to its formidable computational com-
plexity by using the traditional recursive method. In this paper we show that by
using dynamic programming technique, the Volterra estimator (DV as we refer
to) turns out to be much computationally simpler even than the Dabrowska esti-
mator (DB), which has won the highest praise so far. Therefore, when assessing
an estimator, the computational complexity and the efficiency of the algorithm
also should be take into consideration.

As we can see from (2.2), the Volterra estimator is a natural generalization
of the Kaplan-Meier estimator to high dimension, and thus it would be optimal
as the Kaplan-Meier estimator. Our numerical studies show that the DV out-
performs DB and even the Lin-Ying estimator and the ‘Independence’ estimator
under special censoring settings. These observations strongly suggest the ‘opti-
mality’ of the DV. However, the theoretical proof for the optimality of the DV is
not so straightforward.

When censoring is heavy or data set is small, desirable estimation is not
easily attainable. But with moderate censoring, as shown in our numerical sim-
ulations, the Volterra estimator with dynamic programming would be the most
recommendable to applications due to its clear computational advantage over the
Dabrowska estimator, the Prentice-Cai estimator, and other proposed estimators.

Acknowledgment

The authors are very grateful to the referee for his/her valuable comments.
Also, the authors wish to thank the Editor for bringing a paper of Professor Lo
and Professor Wang (Lo and Wang (1989)) to our attention. This research was
supported by the UFRI award and the SpF award from Kean University.

References

Bakker, D. M. (1990). Two nonparametric estimators of the survival function of bivari-
ate right censored observations, report BS-R9035. Center for Mathematics and
Computer Science, Amsterdam.

Campbell, G. (1981). Nonparametric bivariate estimation with randomly censored data.
Biometrika 68, 417-422.

Campbell, G. and Földer, A. (1982). Large-sample properties of nonparametric bivari-
ate estimators with censored data. In Nonparametric Statistical Inference (Edited
by B. V. Gnedenko, M. L. Puri and I. Vincze, eds.) 103-122. North-Holland.

Estimating Bivariate Survival Function 379

Clayton, D. G. (1978). A model for association in bivariate life table and its applica-
tion in epidemiological studies of familial tendency in chronic disease incidence.
Biometrika 65, 141-51.

Dabrowska, D. M. (1988). Kaplan-Meier estimate on the plane. Ann. Statist. 16,
1475-89.

Efron, B. (1967). The two-sample problem with censored data. proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability 4, 831-853.

Gill, R. D. (1992). Multivariate survival analysis. Theory Prob. Applic. 37, 18-31.

Gill, R. D., van der Laan, Mark J. and Wellner, J. A. (1995). Inefficient estimators
of the bivariate survival function for three models. Annales de l’Institut Henri
Poincare, Section B, Calcul des Probabilities et Statistique 31, 545-597

Hanley, J. A. and Parnes. M. N. (1983). Nonparametric estimation of a multivariate
distribution in the presence of censoring. Biometrics 39, 129-139.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete obser-
vations. J. Am. Statist. Assoc. 53, 457-481.

Langberg, N. A. and Shaked. M. (1982). On the identifiability of multivariate life
distribution functions. Ann. Statist. 10, 773-779.

Lin, D, Y. and Ying, Z. (1993). A simple nonparametric estimator of the bivariate
survival function under univariate censoring. Biometrika 80, 573-581.

Lo, S. H. and Wang, J. L. (1989). I.I.D representations for the bivariate product limit
estimators and the bootstrap versions. J. Multivariate Analysis 28, 211-226.

McGilchrist, C. A. and Aisbett, C. W. (1991). Regression with frailty in survival
analysis. Biometrics 47, 461-466.

Mun̂oz, A. (1980). Nonparametric estimation from censored bivariate observations.
Technical Report, Dept. Statistics, Stanford Univ.

Oakes, D. (2001). Biometrika Centenary: Survival analysis. Biometrika 88, 90-142.

Prentice, R. L. and Cai, J. (1992). Covariance and survival function estimation using
censored multivariate failure time data. Biometrika 79, 495-512.

Sahni, S. (1997). Data Structures, Algorithms, and Applications in C++. McGraw-Hill.

Tsai, W-Y. and Crowley, J. (1998). A note on nonparametric estimators of the bivariate
survival function under univariate censoring. Biometrika 85, 573-580.

van der Laan, M. J. (1996). Efficient estimation in the bivariate censoring model and
repairing NPMLE. Ann. Statist. 24, 596-627.

Wang, W. and Wells, M. (1997). Nonparametric estimators of the bivariate survival
function under simplified censoring conditions. Biometrika 84, 863-880.

Wellner, J. A. (1982). Asymptotic optimality of the product limit estimator. Ann.
Statist. 10, 595-602.

380 Jiantian Wang and Pablo Zafra

Received November 21, 2007; accepted December 19, 2008.

Jiantian Wang
Mathematics Department
Kean University
Union, NJ 07083, USA
jwang@kean.edu

Pablo Zafra
Mathematics Department
Kean University
Union, NJ 07083, USA
pzafra@kean.edu

