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Abstract: Meta-analytic methods for diagnostic test performance, Bayesian
methods in particular, have not been well developed. The most commonly
used method for meta-analysis of diagnostic test performance is the Sum-
mary Receiver Operator Characteristic (SROC) curve approach of Moses,
Shapiro and Littenberg. In this paper, we provide a brief summary of the
SROC method, then present a case study of a Bayesian adaptation of their
SROC curve method that retains the simplicity of the original model while
additionally incorporating uncertainty in the parameters, and can also eas-
ily be extended to incorporate the effect of covariates. We further derive a
simple transformation which facilitates prior elicitation from clinicians. The
method is applied to two datasets: an assessment of computed tomography
for detecting metastases in non-small-cell lung cancer, and a novel dataset
to assess the diagnostic performance of endoscopic ultrasound (EUS) in the
detection of biliary obstructions relative to the current gold standard of
endoscopic retrograde cholangiopancreatography (ERCP).
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1. Introduction

Diagnostic tests are widely used in medicine to determine disease status, e.g.
to determine whether a disease is present or absent. Commonly the test is based
on an underlying (perhaps latent) continuous outcome for which values above a
specified threshold are regarded as indicative of disease. As the decision threshold
varies, there is a trade-off between sensitivity and specificity. To visualize the
effect of threshold on the estimated sensitivity and specificity, investigators often
plot a Receiver Operator Characteristic (ROC) curve, where the probability of
true positives (Sensitivity) is plotted on the y-axis vs the probability of false
positives (1-Specificity) on the x-axis.
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One way to summarize the performance of a diagnostic test from multiple
studies is by an average sensitivity and specificity. Such summaries can be mis-
leading, however, if there is heterogeneity among the studies, and, unfortunately,
tests used to detect heterogeneity lack power (Midgette et al., 1993). In addi-
tion, because the sensitivity and specificity within a study are inversely related
and depend on the threshold, using the average sensitivity and average specificity
as summary statistics is not likely to be an adequate representation of the data
(Irwig et al., 1995; Vamvakas, 1998; Pepe, 2003).

This dependence on the threshold used for the test remains a concern even
when the outcome is dichotomous, e.g. “present” or “absent.” Different studies
are likely to vary in what constitutes an abnormal reading, and failure to account
for this implicit difference may bias the results of any meta-analysis (Irwig et
al., 1995). To correct for this potential bias, Moses et al. (1993) developed the
technique of calculating a Summary ROC (SROC) curve, which relates the test
threshold to the test accuracy via a linear regression, as described in Section 2.2.

The Bayesian framework has a number of advantages for meta-analyses: prior
information is explicitly represented and included in inferences; uncertainty re-
sulting from both the prior and sampling distributions is duly propagated through
the model to posterior inferences; and the posterior predictive distribution pro-
vides a convenient summary of predictions for a new study considered exchange-
able with those in the meta-analysis. Rutter and Gatsonis (2001) proposed a
Bayesian Hierarchical SROC (HSROC) model that allows each study to have its
own accuracy and threshold; at the cost, however, of several additional parame-
ters, each of which requires a prior distribution.

While the Rutter and Gatsonis method may be preferable in more complex
settings, such as asymmetric SROC curves, or where inter-study heterogeneity
cannot be reasonably ignored, in this paper we propose a Bayesian adaptation
of the SROC curve approach of Moses et al. which retains the simplicity of the
their model for situations where it is appropriate. In Section 2, we summarize the
SROC method. In Section 3 we propose a Bayesian adaptation. In Section 4, we
apply the Bayesian approach to two examples and compare the results with those
from a traditional analysis. The first example is a dataset assessing computed
tomography in the detection of metastases in non-small-cell lung cancer. The
second example compares two diagnostic procedures in the detection of biliary
obstructions. We conclude with discussion in Section 5.

2. Summary ROC Model

2.1 Notation

We adopt notation similar to that of Moses et al. (1993), in which each of
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i = 1, 2, . . . ,m studies examining the same diagnostic procedure contributes a
vector of data in the form
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in the i-th study in which the diagnostic test outcome is indicated with j and the
true disease status of the subject by k, with j, k = 0 or 1 according to whether
the outcomes are negative or positive. The m studies and the subjects within
each study are assumed to be independent. Study-specific estimates of sensitivity
and specificity are computed from these data as Q̂i = y
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, respectively. To avoid the potential problem of zero cells,

Moses et al. recommend adding 0.5 to all cells in all studies prior to the calculation
of Q̂i and 1− P̂i. This empirical adjustment biases the results towards a Q∗ value
of 0.5; equivalent to a diagnostic test that is no better than chance. However,
this bias is typically small, even in studies with a small number of subjects and
high sensitivity and/or specificity (over 80%). For example, the underestimation
of Q∗ is approximately 2% for a study with 99% sensitivity in a simulation study
with moderate sample size (Mitchell, 2003).

2.2 The Summary ROC curve

First define the transformations

Ui = logit (1 − Specificity) = ln
[
P̂i/

(
1 − P̂i

)]
and

Vi = logit (Sensitivity) = ln
[
Q̂i/

(
1 − Q̂i

)]
.

The SROC method then defines two new variables, Si = Vi + Ui and Di =
Vi−Ui, where Si represents a measure of the threshold used, and Di the diagnostic
accuracy of the test, for the ith study. The SROC arises from a postulated linear
regression between Di and Si,

Di|Si = α + βSi + εi, (2.1)

with εi independently distributed normal random variables, i = 1, 2, . . . ,m. Es-
timates of the regression parameters α and β are obtained using either ordinary
least squares regression, with all studies weighted equally, or using weighted re-
gression, e.g. in which studies are assigned weights inversely proportional to the
variance of the log of the diagnostic odds ratio of the study.

Once the parameter estimates α̂ and β̂ are obtained, the corresponding SROC
curve can be generated from the fit to equation (2.1) by evaluating the transfor-
mation

Qi =
{

1 + e−α/(1−β) [(1 − Pi) /Pi]
(1+β)/(1−β)

}−1
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over Pi ∈ (0, 1) and then plotting Qi vs 1 − Pi

Moses et al. recommend that studies with false positive rates over 50% or
true positive rates under 50% be excluded from the regression, as these are likely
to exert undue influence on the regression coefficients, and, furthermore, these
studies failed to exhibit test results sufficiently accurate for clinical use. Such
exclusion has the effect of biasing the resulting SROC curve towards favorable
performance (i.e. the upper left quadrant) and has therefore drawn criticism
(Irwig et al., 1995).

Although the area under the curve (AUC) is a common method for summa-
rizing an ROC curve, its application to the SROC is controversial. Moses et al.
caution against evaluating the AUC of the SROC, noting that the SROC should
be evaluated only on the range supported by the underlying studies included
when fitting equation (2.1). Other authors also express concern about the valid-
ity of the AUC in this context (Walter, 2002; Walter, 2005). Those who question
the AUC propose another summary statistic, Q∗, which is defined as the point on
the SROC curve where the sensitivity and specificity are equal, with values closer
to one representing a better test. Moses et al. (1993) propose using a two-sample
z test to compare two different tests based on their Q∗ values.

The SROC model in equation (2.1) extends to allow for study-specific covari-
ates, Zi, that could potentially explain differences in test accuracy:

Di|Si, Zi = α + βSi + γZi + εi.

However, Vamvakas (1998) points out that, due to the small number of studies
in a typical meta-analysis, generally only 1 to 2 covariates should be included to
avoid over-fitting.

Note that in equation (2.1), if the choice of threshold does not impact sen-
sitivity and specificity, then β = 0 and α is the common diagnostic odds ratio
(DOR, i.e. the log odds ratio of the accuracy) of the test. In this situation, there
are other ways to estimate this common DOR, e.g. the Mantel-Haenszel method,
but these generally do not account for between-study variability and hence yield
narrower confidence intervals than is warranted (Moses et al., 1993).

3. Bayesian Formulation

The parameters in equation (2.1) are assumed to be normally distributed, so
a bivariate normal prior can be assigned to

(
α β

)
to implement the model in

a Bayesian setting.

Di|Si, σ
2
i ∼ N

(
α + βSi, σ

2
i

)
(3.1)

1/σ2
i ∼ Ga (0.001, 0.001)
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with the regression parameters assigned a bivariate normal distribution(
α β

)T ∼ N2 (µ, Σ)

where µ =
(

µα µβ

)T and Σ =
[

σ2
α σαβ

σαβ σ2
β

]
.

Clinical information could be incorporated into the prior for the intercept,
with the prior for the slope of the threshold effect centered at zero.

3.1 Covariate extension

The model can be easily extended to incorporate clinically relevant covariates
which could potentially improve the predictive ability of the test. For example, it
may be that there are differences between how the different studies incorporated
into the meta-analysis were designed, and some of these design differences may
affect the observed accuracy. Accounting for these covariates could result in an
improved estimate of the underlying accuracy of the diagnostic test.

Modifying equation (3.1) by adding the parameter(s) γ to represent the effect
of covariates yields

Di|Si, Zi, σ
2
i ∼ N

(
α + βSi + γZi, σ

2
i

)
The priors can then be modified by changing the bivariate normal distri-

bution used above by increasing the number of dimensions to the appropriate
multivariate normal distribution.

3.2 Prior elicitation

Bayesian implementation of this model requires prior distributions to be
placed on both the intercept and the slope of the SROC curve. For the in-
tercept, this requires the clinician to express a point estimate and some level of
certainty in terms of the log diagnostic odds ratio, which may not be an intuitive
scale for clinical investigators. A more intuitive method is to take advantage of
the fact that Q∗ is a 1:1 transformation of the intercept in the SROC method,
calculated via Q∗ =

[
1 + e−α̂/2

]−1
.

Rearranging to solve for α yields

α̂ = w (Q∗) = −2 ln
(
Q∗−1 − 1

)
(3.2)

The distribution of Q∗ can be shown to be

g (Q∗) =

{
2

Q∗(1−Q∗)σα

√
2π

exp
{

−1
2σ2

α

[
−2 ln

(
Q∗−1 − 1

)
− µα

]2
}

0 < Q∗ < 1

0 otherwise
(3.3)
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Having elicited the most likely value for Q∗ from clinicians, say Q∗∗, we set
the prior mean for α as µα = w (Q∗∗) from equation (3.2). We then further
elicit a series of upper percentiles for Q∗, e.g. Qp for p = 0.90, 0.95, and then
set priorthen set the prior standard deviation for α as approximately satisfying
σα = (w (Qp) − µα) /zp, where zp is the pth percentile of the standard normal
distribution.

As the SROC curve is a priori expected to be symmetric, β is a priori ex-
pected to be close to zero, so µβ would be set to zero with σ2

β selected such
that only values close to zero are likely. The regression parameters α and β are
assumed a priori to be independent. Covariates are easily accommodated by
incorporating them into the mean in equation (3.1) and adopting a multivariate
normal prior for the corresponding regression parameters. Again, prior clinical
information can be incorporated here.

3.3 Priors

Before examining the data, three priors (diffuse, skeptical and enthusiastic)
were selected in order to represent a range of clinically reasonable beliefs. All
three are normal distributions on the intercept (α) of the model, with mean and
variance (0,12.96), (0,0.5625) and (2.5,2.25), respectively. Using the distribution
of Q∗ in equation (3.3), the prior belief in terms of α can be transformed into
the corresponding clinical beliefs in terms of Q∗; these are presented graphically
in Figure 1.

−10 −5 0 5 10

Priors in terms of alpha

Alpha

Diffuse prior
Enthusiastic prior
Skeptical prior

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Priors in terms of Q*

Q*

Diffuse prior
Enthusiastic prior
Skeptical prior

Figure 1: Diffuse, skeptical and optimistic priors used in this analysis: Left
panel: in terms of α; right panel: corresponding priors in terms of Q∗.

Clearly, the distribution of Q∗ is skewed when not centered at 0.5, as would
be expected given the confinement to the unit interval. Interestingly, the dis-
tribution of Q∗ is sensitive to the variance used. Using a standard deviation of
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3.6 with a mean at 0.5 results in a fairly flat distribution over the whole range;
increasing the standard deviation beyond this value causes the distribution to
become increasingly bi-modal with most of the density at the extremes and little
in the center.

3.4 Implementation

The Bayesian analysis was implemented using WinBUGS version 1.4. Briefly,
a bivariate normal prior was assigned to the intercept and slope of the regression
model. Three over-dispersed chains were run for 5,000 iterations each. After
discarding the first 2,000 iterations from each chain, convergence was assessed
via examination of R̂, trace, history and quantiles, and the resulting data used
for inference. This process was sufficient to reach convergence for all three sets
of priors used in both of the examples examined.

The traditional approach (henceforth referred to as the frequentist approach)
was implemented using SAS version 9.1 using a macro written for this purpose.
Graphs were generated using R. Both the SAS macro as well as the WinBUGS
code are available from the first author upon request.

Table 1: Example 1: data from Inouye and Sox on computed tomography in
non-small-cell lung cancer. TP: true positives, FP: false positives, FN: false
negatives, TN: true negatives. *: Study 79 was omitted by Moses et al

Study TP FN FP TN
78 11 7 6 26
79* 2 5 15 13
80 15 2 2 32
81 4 1 4 13
82 22 21 1 6
83 17 1 9 15
84 29 10 1 54
85 8 6 4 23
86 7 6 12 25
87 20 1 10 18
88 19 1 9 19
89 18 6 8 65
90 18 1 9 13
91 17 3 6 49

4. Applications

We illustrate the proposed model via two examples: an analysis of 13 studies
examining computed tomography in the detection of metastases in non-small-cell
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lung cancer and an analysis of 35 studies examining the performance of endo-
scopic ultrasound relative to endoscopic retrograde cholangiopancreatography in
the context of detecting biliary obstructions. The first example is provided to
facilitate comparison of the proposed model with the results obtained in Moses et
al; the second example is the motivating dataset, and demonstrates the extension
of this method to include a covariate.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Point estimates and 95% intervals

Q*

Diffuse posterior

Diffuse prior

Enthusiastic posterior
Enthusiastic prior

Skeptical posterior
Skeptical prior

Frequentist

Figure 2: Graphical representation of the point estimates and 95% intervals for
each of the analyses conducted (Bayesian with diffuse, enthusiastic or skeptical
priors and frequentist) for detection of metastases in non-small-cell lung cancer
using computed tomography from Example 1

4.1 Example 1: Non-small-cell lung cancer

Moses et al. (1993) use as an example a dataset, first presented by Inouye and
Sox (1986), assessing computed tomography (CT) in the detection of metastases
in non-small-cell lung cancer. The data are presented in Table 1.

As can be seen in Figure 2, regardless of which prior is used, all three of
the posterior point estimates for Q∗ are pulled slightly toward 0.5 relative to the
frequentist intervals. However, despite the disparity in initial beliefs reflected in
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the three priors used, all three posteriors have relatively strong agreement on the
range of reasonable values for Q∗, indicating that the data are reasonably robust
to a broad range of possible clinical beliefs.

Despite the fact that the skeptical prior had the narrowest credible interval of
the three priors used, the corresponding posterior credible interval is the widest
of the three. This, combined with the observation that the skeptical posterior
point estimate for Q∗ is closer to the frequentist Q∗ than to the skeptical prior
point estimate, suggests that the skeptical prior is inconsistent with the observed
data.

4.2 Example 2: Biliary obstructions

The second example examines the detection of biliary obstructions with en-
doscopic ultrasound. 35 studies examining this question were identified using the
search criteria set forth by Irwig et al. (1994). Briefly, a MEDLINE search was
conducted to locate studies relevant to the detection of biliary obstructions using
EUS. The data were then extracted from these studies, and 2×2 tables generated
for each; for details, see Garrow et al. (2007).

The biliary system is the set of tubes connecting the gallbladder to the liver,
pancreas and the rest of the digestive system. Under certain circumstances,
obstructions can block the small tubes that compose the biliary system. These
obstructions can cause problems, such as pancreatitis, cholangitis or cholecystitis
(inflammation of the pancreas, bile ducts or gallbladder, respectively.)

Three main methods are commonly used to image the biliary system: endo-
scopic retrograde cholangiopancreatography (ERCP), considered the gold stan-
dard; magnetic resonance cholangiopancreatography (MRCP), a less invasive
method; and endoscopic ultrasound (EUS).

Although ERCP is currently considered the gold standard for biliary visual-
ization, and the rate of complications is low, around 5% (Lahmann et al., 2004),
several potentially serious and possibly life-threatening events are possible. As
a result, it would be preferable for certain subgroups of patients to undergo the
safer procedure of EUS and perform an ERCP only if needed therapeutically.

The purpose of this meta-analysis was to compare the diagnostic performance
of EUS to ERCP (MRCP has been compared to ERCP in a previous meta-
analysis.)

Table 2 displays the studies used in this analysis, as well as whether those
interpreting the second test were blinded as to the results from the first test.
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Table 2: Example 2 data for the meta-analysis of EUS performance in diag-
nosing the cause of biliary obstruction. TP: true positives, FP: false positives,
FN: false negatives and TN: true negatives. Blinded is an indicator set to 1 if
the reader of the second test was blinded to the results from the first test.

Study TP FP FN TN blinded
1 33 2 1 14 1
2 42 0 1 23 1
3 88 1 11 63 1
4 88 1 11 63 1
5 16 6 4 34 0
6 6 1 2 19 1
7 32 1 1 83 1
8 33 1 1 65 1
9 49 0 2 91 1
10 74 1 4 44 0
11 11 0 1 19 1
12 60 14 11 227 0
13 85 2 6 41 1
14 13 1 0 54 0
15 237 2 5 215 0
16 32 0 1 29 0
17 74 1 5 39 1
18 21 1 3 25 1
19 37 10 7 161 0
20 32 4 1 13 1
21 15 1 3 45 1
22 10 1 0 21 0
23 25 0 3 104 1
24 15 0 1 25 1
25 24 2 0 2 1
26 4 0 1 50 1
27 31 0 3 16 1
28 12 0 16 22 1
29 16 4 4 16 1
30 11 0 12 12 0
31 28 2 9 6 1
32 10 1 1 28 1
33 45 4 2 11 0
34 42 0 0 8 0
35 101 0 1 30 0

The results from each of the three priors used (diffuse, skeptical and enthu-
siastic) as well as the corresponding results from the traditional approach, are
displayed graphically in Figure 3. Despite an initial wide range of clinical opinions
reflected in the priors used, all three posteriors are in near total agreement.
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Figure 3: Graphical representation of the point estimates and 95% intervals for
each of the analyses conducted (Bayesian with diffuse, enthusiastic or skeptical
priors and frequentist) for detection of obstruction with EUS relative to ERCP
from Example 2.

5. Discussion

For both datasets examined, all three posterior intervals are in high agree-
ment with one another. The priors appear to have more influence on the results
from the CT data in example 1, presumably due to the smaller number of studies
included (11 vs 35 in the EUS example). The similarity between the posteriors for
both studies suggest that both datasets are sufficiently robust to a range of clin-
ically reasonable priors, and are pulling all observers into agreement. Clinically,
these results suggest that CT is moderately effective in detecting metastases in
non-small-cell lung cancer, and that EUS compares favorably with ERCP in the
detection of biliary obstruction.

We have presented a Bayesian adaptation of the SROC method of Moses et
al. (1993). The Bayesian adaptation converges quickly and yields results similar
to the frequentist method. A simple transformation of Q∗ was presented which
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Table 3: Results of 3 different priors for detection of obstruction data using
blinding of the second reader to the results of the first test result as a covariate.
Shown are the mean of the prior and corresponding posterior, as well as the
95% credible interval width.

Analysis Blinded Mean LB UB Width
Prior (diffuse) 0 0.483 0.030 0.975 0.945

1 0.505 0.006 0.994 0.988

Posterior (diffuse) 0 0.932 0.900 0.956 0.056
1 0.932 0.900 0.956 0.056

Prior (skeptical) 0 0.502 0.336 0.673 0.337
1 0.508 0.017 0.984 0.967

Posterior (skeptical) 0 0.932 0.900 0.957 0.057
1 0.938 0.915 0.957 0.042

Prior (enthusiastic) 0 0.756 0.449 0.945 0.496
1 0.676 0.052 0.996 0.944

Posterior (enthusiastic) 0 0.929 0.893 0.954 0.061
1 0.938 0.914 0.957 0.043

Frequentist 0 0.931 0.897 0.965 0.068
1 0.916 0.888 0.944 0.056

facilitates prior elicitation. Some suggestions on example priors for use in prior
sensitivity analysis were also presented.

An advantage of the proposed model is that it allows investigators to explicitly
model how strongly they believe that the SROC curve is symmetric. As the use of
the SROC method strongly implies this belief, the ability to quantify the strength
of this belief allows investigators to avoid moving from this method to a more
complicated one based solely on a single p-value from the hypothesis test of the
significance of the slope parameter β.

As the proposed model is a Bayesian adaptation of the SROC method, it
retains several of the limitations of SROC curves. Firstly, SROC curves of this
type implicitly assume that the best summary curve of the data will be symmetric;
there are cases where this assumption is invalid. However, the simplicity of the
model makes it preferable to more complex models.

A further issue is the use of the Q∗ as a summary statistic. As Q∗ represents
the point on the summary curve where the sensitivity and specificity are equal,
its use implies that the risks of a true and false positive test are of equal impor-
tance. This is perhaps less of a concern than it would first appear, as this can be
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expanded as follows.
Table 3 shows how the results of EUS detection of obstruction are affected

by including blinding as a covariate (studies were coded as 1 if the reader of the
second test result in the ith study was blinded to the results of the first test, and
0 if not.) Of the 35 studies, 23 (66%) were blinded and 12 were not.

The posterior distributions for all three priors for blinding as a covariate are
in agreement that blinded assessment of the second reader does not appear to
significantly impact the diagnostic accuracy of EUS in these studies.

Instead of writing Q∗, express this summary statistic as Qp, where the sub-
script p represents an angle from the bottom right corner of the SROC graph to
the upper left corner. In this notation, Q∗ would be Q45, which represents the
setting where both sensitivity and specificity are of equal importance. In settings
where one is more relevant, e.g. for a screening test, in which a lower specificity
might be tolerated in exchange for a higher sensitivity, this number could be
adjusted to reflect this change.

Future research on this model would include adapting it to allow for an Empir-
ical Bayes analysis approach. In addition, some tests are not categorized into two
groups, but three: e.g. “normal,” “abnormal” and “indeterminate”. Accounting
for this could also be of clinical interest. Finally, existing methods assume a
perfect gold standard; accounting for an imperfect gold standard could also be of
interest.

Appendix: Derivations

The following derivations of the equation for the SROC curve and Q∗ are
reproduced here from the paper by Moses et al. (1993). The formula for the
SROC curve is derived by Moses et al. in their Appendix, p1312-1313; it is
reproduced here for ease of reference.

Derivation of the SROC curve equation

Recall that the model defines the sum and difference of the logit-transformed
true and false positive rates;

U = ln [P/ (1 − P )] and V = ln [Q/ (1 − Q)]

D = V − U and S = V + U

Then fit the simple linear model

D = α + βS
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Their derivation of the SROC formula is then:

V − U = α + β (V + U)

rearranging to get like terms on the same side yields

V (1 − β) = α + U (1 + β)

V = α/ (1 − β) + U (1 + β) / (1 − β)

ln [Q/ (1 − Q)] = α/ (1 − β) + ln [P/ (1 − P )] (1 + β) / (1 − β)

[Q/ (1 − Q)] = exp [α/ (1 − β)] [P/ (1 − P )](1+β)/(1−β)

Q =
[
1 + exp [−α/ (1 − β)] [(1 − P ) /P ](1+β)/(1−β)

]−1

Derivation of Q∗

Start by noting that Q∗ is the location on the SROC curve which intersects
the diagonal P + Q = 1. Thus P = 1 − Q.

logit (P ) = logit (1 − Q) = −logit (Q)

Recall
U = ln [P/ (1 − P )] and V = ln [Q/ (1 − Q)]

Therefore, U = −V , so S = U + V = 0.
In (S,D) space, the relationship is linear, with D = α + βS. Plugging in

S = 0 and solving yields D = α, implying that D = V − U = α.
From above, we know that U = −V , so 2V = α, or, equivalently, ln [Q/ (1 − Q)] =

α/2.
Rearranging yields Q/ (1 − Q) = eα/2, leading to the formula for Q∗; Q∗ =[

1 + e−α/2
]−1

.
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