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Abstract: This paper proposes a parametric method for estimating animal
abundance using data from independent observer line transect surveys. This
method allows measurement errors in distance and size, and less than 100%
detection rates on the transect line. Based on data from southern bluefin
tuna surveys and data from a mike whale survey, simulation studies were
conducted and the results show that 1) the proposed estimates agree well
with the true values, 2) the effect of small measurement errors in distance
could still be large if measurements on size are biased, and 3) incorrectly as-
suming 100% detection rates on the transect line will greatly underestimate
the animal abundance.
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1. Introduction

A naturally important problem in the management of fishery resources is to
obtain a reliable estimate of fish abundance. Line transect (LT) surveys have
been widely employed in estimating fish abundance. The measurement errors
in LT surveys might naturally arise in two ways: rounding errors in observers’
estimates and natural limitations in observers’ ability to estimate covariates accu-
rately. Chen and Cowling (2001) therefore proposed estimators with corrections
of measurement errors. Their estimators are, however, based on another critical
assumption: All animals on the transect line are detected. Unfortunately, this
assumption is often violated, especially in a marine environment, because ani-
mals such as whales or tunas might be underwater when the observer passes over
them. Independent observer line transect (IOLT) surveys, using two observer
teams instead of one, have therefore been recommended and studied by many
researchers.

Borchers, Zucchini, and Fewster (1998) developed a general likelihood frame-
work for IOLT surveys. Borchers et al. (1998) provided the Horvitz-Thompson
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estimator of the animal abundance for IOLT surveys. Chen and Lloyd (2000)
proposed a non-parametric estimator of animal abundance for IOLT surveys.
Their estimators were, however, not corrected for measurement errors. More re-
cently, Hwang and Huang (2003) provided a regression method for estimation in
capture-recapture surveys, in which measurement errors were allowed. This work
can, however, be applied to IOLT surveys only when the measurement errors
follow normal distributions and the detection abilities of different observer teams
are identical. The aim of this paper is to provide estimators of animal abundance
with corrections for measurement errors in IOLT surveys when the distribution of
measurement errors are arbitrary and the detection abilities of the two observer
teams are allowed to differ.

A school is a relatively tight gathering of animals observed in a localized
region. Many animal populations aggregate naturally into schools such as minke
whales and southern bluefin tunas (SBT). In 1995, the Norwegian government
and the International Whaling Commission undertook an IOLT survey for minke
whales in the northeastern Atlantic. The participating vessel traversed a distance
and had two observer teams at two separate platforms to search for animals. A
third team (coordinate team) recorded the position of each detected signal (of the
presence of animals) and then calculated the perpendicular distance from each
detected school to the transect line using the positions of one or more detected
signals. Measurement calibration was not carried out in this survey to gain
information on measurement errors. This might be due to the lack of estimation
methods with corrections for measurement errors for IOLT surveys. Skaug and
Schweder (1999) used hazard models to analyze the data (without correction of
measurement errors). To make corrections for measurement errors more feasible,
we suggest that observer teams measure the covariates of their own detections
independently rather than having the coordinator team measure the covariates
for them. A simulation study for such a IOLT survey based on the minke whale
data was conducted and results will be reported in the simulation study section.

Another survey that motivates this paper is the SBT survey. Since 1991,
CSIRO in Australia and National Research Institute of Far Seas Fisheries in
Japan jointly conducted annual surveys for juvenile SBT. In 1994 to 1998, the
following LT survey with one observer team was adopted to measure the SBT
abundance. A plane flies along a transect line and experienced spotters in the
plane search for schools of SBT by eye. The perpendicular distance from the de-
tected school to the transect line is first calculated and then the spotter estimates
the total mass of the school by eye. Measurement errors cannot be avoided in
this way because of the natural limitation of human eyes. In addition, spotters
can only detect surfacing animals and thus the detection rate on the transect line
cannot be assumed as 100%. To assess the effects of measurement errors and the
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imperfect detection on the transect line, IOLT surveys were simulated based on
the data of SBT surveys in 1994 to 1998 and the results will be reported in the
simulation study sections.

In this paper, the covariate of each school is considered to be bivariate: the
perpendicular distance to a school and the weight of a school. Two main indices
of SBT abundance are the number of schools in the surveyed region (school
population size, N) and the biomass of SBT per square nautical mile (biomass
density, D). To estimate the two indices with corrections for measurement errors,
a parametric method is adopted. To reduce the influence caused by misspecified
models, moment estimators are chosen over maximum likelihood estimators (mle)
because moment estimators do not require the distributions of errors but only
their first few moments. In addition, a non-parametric method is incorporated to
estimate the indices in order to further reduce the sensitivity to model selection.
The proposed estimators not only correct for measurement errors but also allow
for less than 100% detection rates on the transect line. The same method can also
be applied to univariate covariate cases such as the minke whale survey, which
will be given in the simulation study section.

To evaluate the performance of the proposed estimators, simulation studies
were conducted based on the minke whale survey and the SBT surveys. They
were found to be quite accurate on average with small relative-root-mean-squared
errors (RMSE), the ratio of the square root of mean square error to the parame-
ter of estimate. The simulation results indicate that incorrectly assuming 100%
detection rates on the transect line will greatly underestimate the animal abun-
dance.

The structure of this paper is as follows. The parametric models used for
the measurement errors are introduced in Section 2 and moment estimators for
the model parameters are derived in Section 3. The estimators for the detection
probability on the transect line, biomass density, and school population size are
developed in Section 4. In addition, the simulation studies based on the data
from minke whale survey and the SBT surveys are reported in Section 5. These
data might be available from the organizations conducting these surveys. Finally,
Section 6 summarizes the paper and discusses possible extensions.

2. The Parametric Models

The conditional probability of detection given that a school is present for sampling
is called the detection probability. It may depend on covariates associated with
the school or with conditions at the time of survey. Here only the perpendicular
distance from the transect line to a school, X, and the size of that school, S, are
considered as covariates. In our model, the distance X can be negative, i.e. when
the detected school is on the left of the vessel or plane. The detection probability
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decreases with the magnitude of distance from the transect line and it increases
with the school size.

Let the index ij in the data be associated with the j-th school detected by
team i, i = 1, 2. Let Yij be the measurement of distance Xij and Tij be the
measurement of size Sij . In addition, let gi denote the detection probability for
team i and f denote the density function of (X,S) before taking into account
detection or non-detection. Then the probability that a school is detected by
team i is πi =

∫
gifdxds and the probability that a school is detected by both

teams is π12 =
∫

g1g2fdxds. The detection probability at x = 0 (transect line)
for team i is assumed to be constant and denoted by ci. Thus 0 < ci ≤ 1.

All pairs of distances and sizes of schools detected by team i, i.e. (Xij , Sij),
are assumed to be independently and identically distributed. In addition, the
detections by team 1 are assumed to be independent of the detections by team
2. For measurement errors, an additive model is used for errors in X and a
multiplicative model for errors in S:

Yij = Xij + εxij (2.1)
Tij = Sijεsij (2.2)

where εxij and εsij are measurement errors in Xij and Sij , respectively. Note that
εsij is positive. We also assume independence between (Xij , Sij) and εxij , between
(Xij , Sij) and εsij , and between εxij and εsij . In addition, the distribution of εxij

is assumed to be symmetric at 0. As the transect line is the center line of the
survey region of width 2w, the density function of X is assumed to be uniform
on (−w,w): funi(x) = (2w)−1I(−w ≤ x ≤ w), where w is a large value. Here the
size, S, is considered as a continuous random variable and is often the weight of
the school. The density function of S is assumed to be gamma with parameter
(v1, v2): fgamma(s) = sv1−1e−s/v2/{Γ(v1)vv1

2 }, and independent of X. Hence the
joint density of (X,S) is f(x, s) = sv1−1e−s/v2I(−w ≤ x ≤ w)/[2wΓ(v1)vv1

2 ]. Let
l be the total length of transect line searched. Then the biomass density D, which
is NE(S)/2lw by definition, is equal to Nv1v2/2lw.

The detection probability for team i adopted here is generalized from that of
Drummer and McDonald (1987),

gi(x, s) = ciexp[−| x

λisβi
|pi ], −∞ < x < ∞, 0 < s < ∞ (2.3)

where λi > 0 is a scale parameter, pi ≥ 0 is a shape parameter, and βi ≥ 0
describes the relationship between the weight S and the detection ability. Hence,
the density function of (X,S) for a school detected by team i can be derived as:

fi(x, s) =
gi(x, s)f(x, s)

πi
≈ e−|x/λis

βi |pi sv1−1e−s/v2

2λiΓ(1 + 1/pi)Γ(v1 + βi)v
v1+βi
2

,
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−w < x < w, 0 < s < ∞. It can be shown that the weight of a school detected
by team i has approximately a gamma distribution with parameters v1 + βi and
v2 as w approaches to ∞.

3. Moment Estimators for Parameters

The moment estimators for all parameters in the models, except ci’s, will be
derived in this section. The criterion of selecting moments for deriving moment
estimators is to use as low orders of moments as possible and equal numbers of
equations from both teams. To show the derivation of the proposed estimators
easily, the index j, denoting the jth detection, in all notations are omitted. For
example, Xi denotes the perpendicular distance of a detection by team i. As-
sume that the first two non-trivial moments of εxi and εsi, i = 1, 2 are known
and they are denoted as usi1 = E(εsi), usi2 = E(ε2si), uxi2 = E(ε2xi), and uxi4 =
E(ε4xi), for i = 1, 2. By models (1) and (2), an appropriate set of moments is
{E(Ti), E(T 2

2 ), E(Y 2
i ),E(Y 2

1 T1), E(Y 4
i ); i = 1, 2} and these moments can be ex-

pressed as:

E(Ti) = E(Si)usi1, i = 1, 2,

E(T 2
2 ) = E(S2

2)us22,

E(Y 2
i ) = E(X2

i ) + uxi2, i = 1, 2,

E(Y 2
1 T1) = {E(X2

1S1) + E(S1)ux12}us11,

E(Y 4
i ) = E(X4

i ) + 6E(X2
i )uxi2 + uxi4, i = 1, 2.

Let ni be the number of schools detected by team i and for convenience denote
the sample moments as follows:

T̄ik =
ni∑

j=1

T k
ij/ni,

Ȳik =
ni∑

j=1

Y k
ij/ni,

Y T ikh =
ni∑

j=1

Y k
ijT

h
ij/ni.

When w is large, it can be shown that for team i

E(Xk
i Sh

i ) ≈ λk
i Γ{(k + 1)/pi}Γ(v1 + βi + kβi + h)vkβi+h

2

Γ(1/pi)Γ(v1 + βi)
, (3.1)
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where k, h are non-negative integers and k is even. In an appropriate set of
moments, replace the moments of Yi and Ti by their sample moments and ap-
proximate the moments of Xi and Si using equation (4). Then the following
moment equations for estimating (v1, v2, λ1, λ2, p1, p2, β1, β2) are obtained:

T̄11 = (v1 + β1)v2us11,

T̄21 = (v1 + β2)v2us21,

T̄22 = (v1 + β2)(v1 + β2 + 1)v2
2us22,

Ȳ12 =
λ2

1Γ(3/p1)Γ(v1 + 3β1)v
2β1
2

Γ(1/p1)Γ(v1 + β1)
+ ux12,

Ȳ22 =
λ2

2Γ(3/p2)Γ(v1 + 3β2)v
2β2
2

Γ(1/p2)Γ(v1 + β2)
+ ux22,

Y T 121 =

{
λ2

1Γ(3/p1)Γ(v1 + 3β1 + 1)v2β1+1
2

Γ(1/p1)Γ(v1 + β1)
+ (v1 + β1)v2ux12

}
us11,

Ȳ14 =
λ4

1Γ(5/p1)Γ(v1 + 5β1)v
4β1
2

Γ(1/p1)Γ(v1 + β1)
+ 6ux12(Ȳ12 − ux12) + ux14,

Ȳ24 =
λ4

2Γ(5/p2)Γ(v1 + 5β2)v
4β2
2

Γ(1/p2)Γ(v1 + β2)
+ 6ux22(Ȳ22 − ux22) + ux24.

Solving these equations yields the following moment estimators:

v̂2 =
u2

s21T̄22 − us22T̄
2
21

us21us22T̄21
,

v̂1 =
us21us22T̄11T̄21(3Ȳ12 − 2ux12)

2us11(u2
s21T̄22 − us22T̄ 2

21)(Ȳ12 − ux12)
− Y T 121

2us11(Ȳ12 − ux12)v̂2
,

β̂1 =
1
2
[

Y T 121

us11(Ȳ12 − ux12)v̂2
− us21us22T̄11T̄21Ȳ12

us11(u2
s21T̄22 − us22T̄ 2

21)(Ȳ12 − ux12)
],

β̂2 =
us22T̄

2
21

(u2
s21T̄22 − us22T̄ 2

21)
− v̂1.

In addition, for i = 1, 2, the estimator for pi, p̂i, is found to be the solution of
equation

T (pi) =
Γ(v̂1 + 3β̂i)2[Ȳi4 − uxi4 − 6uxi2(Ȳi2 − uxi2)]

Γ(v̂1 + β̂i)Γ(v̂1 + 5β̂i)(Ȳi2 − uxi2)2

where T (pi) = Γ(1/pi)Γ(5/pi)
Γ(3/pi)2

. The solution of pi is unique since T (p) is strictly
decreasing Chen (1998). Finally, the estimator for λi is

λ̂i =

√√√√Γ(1/p̂i)Γ(v̂1 + β̂i)(Ȳi2 − uxi2)

Γ(3/p̂i)Γ(v̂1 + 3β̂i)v̂
2β̂i
2

, i = 1, 2.
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Moment estimators of all parameters except ci’s are now found.

4. Estimating Detection Rates and Biomass

For estimating the school population size N , a non-parametric approach proposed
by Chen and Lloyd (2000) is used here. The estimate of N depends on the level
of heterogeneity in the detection process, measured by α = π11/π1π2:

N̂(α) =
n1n2

n11
α,

where n11 is the number of schools detected by both teams. Note that α = 1
represents “homogeneity” and under homogeneity, the estimator becomes the
well-known Petersen estimator. Based on the model in Section 2, the α value can
be expressed explicitly as:

α ≈
wΓ(v1)

∫ ∞
0

∫ w
0 e−[(x/λ1sβ1 )p1+(x/λ2sβ2 )p2+s/v2]sv1−1dxds

λ1λ2Γ(1 + 1/p1)Γ(1 + 1/p2)Γ(v1 + β1)Γ(v1 + β2)v
v1+β1+β2
2

.

Its estimator, α̂, can be obtained by substituting the parameter estimates into
the right-hand side and then calculating the integral numerically. The school
population size N and biomass density D can therefore be estimated by

N̂ = N̂(α̂) and D̂ =
N̂

2lw
v̂1v̂2. (4.1)

The method of moments fails to estimate ci’s because they are missing in
the moment equations. We therefore use the relationship between ci and N to
estimate ci. For the LT surveys with a single observer team, Chen and Cowling
(2001) provided an estimator of N with corrections for measurement errors using
the same models (1), (2), detection probability (3) with ci = 1, and the method
of moments. Their estimator of N based on the data collected by team i therefore
estimates ciN and is denoted as N̂i. It can be expressed explicitly as:

N̂i =
niwΓ(v̂1)

λ̂iΓ(1 + 1/p̂i)Γ(v̂1 + α̂i)v̂α̂i
2

.

The estimator of D based on the data from team i with perfect detection ci = 1
is therefore

D̂i =
N̂i

2lw
v̂1v̂2.

Note that the parameter estimators on the right-hand side are our estimators in
Section 3, not Chen & Cowling’s estimators. The value of ci can therefore be
estimated by ĉi = N̂i/N̂ .
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The moment estimators in Section 3 are all asymptotically normally dis-
tributed and asymptotically unbiased for the corresponding parameters because
they are all smooth functions of independent and identically distributed means
(Serfling, 1980). Although the estimator N̂(α) is not asymptotically unbiased
(Chen and Lloyd, 2000), both the RB (relative bias) and the RMSE (relative
mean squared error) of N̂(α̂) approach zero as N gets larger. Their orders are
(shown in Appendix 1):

RB{N̂(α̂)} = O(
1
N

),

RMSE{N̂(α̂)} = O(
1√
N

).

As the variances of the estimators are difficult to derive theoretically, the boot-
strap method may be used to evaluate these variances and confidence intervals.

5. Simulation Studies

In this section, simulation studies are reported to assess the effects of mea-
surement errors and incorrectly assuming 100% detection rates on the transect
line. They are based on the data collected in the SBT surveys and in the minke
whale survey.

5.1 The SBT surveys

The parameter values were selected to be in the range of estimates from the
data collected in the (single team) SBT line transect surveys conducted between
1994 and 1998 (see Chen and Cowling, 2001 for the estimates). Because these
surveys used only one observer team, all parameters except ci in the models (1),
(2) and the detection probability (3) were set to be the same for the two observer
teams. Because the set of moments used to derive moment estimators depends
on which team is labeled as team 1, three sets of c1 and c2 were selected to study
the effect of labeling: c1 = 0.9, c2 = 0.7 (c1 > c2); c1 = 0.8, c2 = 0.8 (c1 = c2);
c1 = 0.7, c2 = 0.9 (c1 < c2).

The value of l was selected to be 2000 (meter), the value of w to be 20, the
value of D to be 0.9, and the value of N to be 1200. The (perpendicular) dis-
tances from 1200 schools to plane were generated from an uniform distribution
on (−20, 20) and weights of 1200 schools were generated from a gamma distribu-
tion with parameters (0.6, 100). The detection probability (3) with βi = 0.2, pi =
3.0, λi = 3.8 was used to determine whether or not a school was detected by a
team. In addition, for each detection, a N(0, ux2) measurement error was added
to the distance X as the observed X and a Gamma(vs1, vs2) measurement error
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was multiplied to the weight S as the observed S.

Table 1: Simulation results for unbiased weight measurements; D = 0.9.

c1 > c2 c1 = c2 c1 < c2
Mean 102RMSE 102 RB Mean 102RMSE 102RB Mean 102RMSE 102RB

σ2
x = 0.5

D̂ 0.90 8.6 0.4 0.91 9.7 1.0 0.91 10.5 1.1

D̂u 0.86 10.3 -4.9 0.86 10.9 -4.3 0.86 11.6 -4.2

D̂1 0.81 14.9 -9.5 0.73 21.8 -18.7 0.64 31.4 -29.3

D̂2 0.64 30.9 -29.2 0.73 21.7 -18.5 0.83 15.9 -8.0
ĉ1 0.90 7.7 0.5 0.80 8.9 0.6 0.70 9.4 -0.4
ĉ2 0.70 9.8 0.6 0.81 9.0 0.8 0.91 8.5 0.9

σ2
x = 1.0

D̂ 0.90 8.7 0.4 0.91 9.7 1.1 0.91 10.6 1.2

D̂u 0.85 10.6 -5.4 0.86 11.1 -4.9 0.86 11.8 -4.7

D̂1 0.81 15.0 -9.5 0.73 21.8 -18.5 0.64 31.4 -29.3

D̂2 0.64 30.9 -29.1 0.73 21.7 -18.4 0.83 16.0 -7.9
ĉ1 0.90 7.7 0.4 0.81 9.1 0.7 0.70 9.6 -0.4
ĉ2 0.70 9.9 0.6 0.81 9.1 0.8 0.91 8.7 1.0

Table 2: Simulation results for biased weight measurements; D = 0.9.

c1 > c2 c1 = c2 c1 < c2
Mean 102RMSE 102RB Mean 102RMSE 102RB Mean 102RMSE 102RB

σ2
x = 0.5

D̂ 0.90 8.4 -0.1 0.90 9.2 0.4 0.91 9.3 0.7

D̂u 1.35 51.5 49.8 1.36 52.5 50.6 1.36 53.0 51.0

D̂1 0.81 15.0 -10.3 0.73 22.2 -19.3 0.63 31.3 -29.8

D̂2 0.63 31.3 -29.8 0.73 22.3 -19.2 0.82 15.7 -8.7
ĉ1 0.90 7.6 0.4 0.80 8.4 0.3 0.70 8.2 -0.5
ĉ2 0.70 8.9 0.2 0.80 8.6 0.5 0.91 8.3 0.9

σ2
x = 1.0

D̂ 0.90 8.5 -0.0 0.90 9.2 0.5 0.91 9.4 0.7

D̂u 1.34 50.6 48.9 13.5 51.6 49.6 1.35 52.0 50.0

D̂1 0.81 15.1 -10.3 0.73 22.2 -19.2 0.63 31.4 -29.8

D̂2 0.63 31.3 -29.7 0.73 22.3 -19.2 0.82 15.8 -8.6
ĉ1 0.90 7.8 0.4 0.80 8.6 0.4 0.70 8.3 -0.5
ĉ2 0.70 9.1 0.2 0.80 8.8 0.4 0.91 8.3 0.9

In 1998, experiments were conducted to assess measurement errors in the SBT
surveys. In these experiments two planes independently estimated the location
and weight of each detected school. From these data, the measurement errors in
X were fitted well by a normal distribution and its variance (ux2) was estimated
to be 0.50. In addition, the first (us1) and second (us2) moments of the measure-
ment error in S were estimated to be 1.58 and 3.09, respectively. We therefore
assume that the measurement errors of both teams were independent and had the
same distributions: the distance errors followed N(0, ux2) and the weight errors
followed Gamma(vs1, vs2). Because us1 = vs1vs2 and us2 = vs1v

2
s2(1+vs1), the pa-

rameters vs1, vs2 were selected to be 4 and 0.4, respectively, such that us1 = 1.58
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and us2 = 3.09. In order to assess the interaction effect of measurement errors
in X and in S, a larger variance of the distance error: ux2 = 1.0 and a set of
parameters for an unbiased weight error: v1s = 2, v2s = 0.5 were also studied.

Table 3: Simulation results for unbiased weight measurements; N = 1200.

c1 > c2 c1 = c2 c1 < c2
Mean 102RMSE 102RB Mean 102RMSE 102RB Mean 102RMSE 102RB

σ2
x = 0.5

N̂ 1208 11.8 0.7 1223 18.9 1.9 1221 13.6 1.8

N̂u 1135 10.0 -5.4 1144 13.0 -4.7 1145 10.4 -4.6

N̂1 1083 13.1 -9.7 977 22.6 -18.6 846 30.6 -29.5

N̂2 847 30.4 -29.4 978 21.7 -18.5 1102 12.5 -8.1
σ2

x = 1.0

N̂ 1209 12.0 0.7 1224 19.6 2.0 1222 13.7 1.8

N̂u 1121 10.5 -6.6 1130 13.0 -5.8 1131 10.7 -5.7

N̂1 1083 13.4 -9.7 979 22.8 -18.4 847 30.6 -29.4

N̂2 847 30.4 -29.4 979 21.9 -18.4 1103 12.6 -8.1

Table 4: Simulation results for biased weight measurements; N = 1200.

c1 > c2 c1 = c2 c1 < c2
Mean 102RMSE 102RB Mean 102RMSE 102RB Mean 102RMSE 102RB

σ2
x = 0.5

N̂ 1206 9.2 0.5 1211 11.3 0.9 1210 10.6 0.8

N̂u 1122 9.7 -6.5 1125 10.7 -6.2 1125 10.3 -6.2

N̂1 1078 12.8 -10.2 967 21.0 -19.4 840 30.9 -30.0

N̂2 844 30.5 -29.7 968 20.9 -19.3 1090 12.2 -9.2
σ2

x = 1.0

N̂ 1206 9.2 0.5 1212 11.5 1.0 1211 11.0 0.9

N̂u 1107 10.4 -7.7 1112 11.2 -7.4 1111 10.9 -7.4

N̂1 1077 12.9 -10.2 968 21.0 -19.3 840 30.9 -30.0

N̂2 843 30.6 -29.7 968 20.9 -19.3 1091 12.3 -9.0

The simulation results are based on 500 simulations for each case and reported
in Tables 1 to 4, in which the subscript u represents the estimates with corrections
for imperfect detection rates on the transect line but without corrections for
measurement errors. For estimating biomass density, Tables 1 and 2 indicate
that incorrectly assuming 100% detection on the transect line will underestimate
the biomass density D even with the corrections for measurement errors (D̂1, D̂2

in tables). Recall that D̂i is obtained by assuming prefect detection of team i on
the transect line. The values of D̂1, D̂2 in Tables 1, 2 also reveal that the level
of underestimation depends on how close to 100% the true detection rate on the
transect line ci is. It is also observed that in Tables 1 and 2 the RMSE of D̂i

for the team i with the larger ci value is smaller than that of the other team.
This is expected since the team with the larger ci can detect any school with a
higher probability and thus the number of schools this team detects is larger on
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average. When imperfect detection rates on the transect line are allowed, if the
mean weight measurement is the exact weight (i.e. unbiased) then the correction
for measurement errors is not critical within the studied range of parameters. As
shown in Table 1, D̂u is slightly less accurate than D̂ on average and their RMSE’s
are comparable. However, if the weight measurement is biased, the correction for
measurement errors is significant: D̂ is 50% more accurate than D̂u on average
(in terms of RB) and the RMSE of D̂ is less than 20% of D̂u as seen in Table
1. For estimating school population size, the results in comparing estimators are
similar to those for estimating biomass density as seen in Tables 3 and 4. The
proposed estimators can precisely estimate ci as shown in the last two rows in
Tables 1 and 2: RB and RMSE are both very small for teams 1 and 2 for all
cases.

Which team is labeled as team 1 seems to be minor for estimation as shown in
Tables 1 to 4. The performances of D̂, N̂ , D̂u, and N̂u for c1 > c2 are similar to
those for c1 < c2. In addition, another interesting point observed in these tables
is that the effect of the size of measurement errors on X seems not important in
the performances of D̂, N̂ , D̂u, and N̂u either. The values of these estimators
for σ2

x = 0.5 are similar to those for σ2
x = 1.0. To further check this point, two

extreme cases, σ2
x = 0.1 and σ2

x = 3.0, were simulated (but not shown here). The
simulation results indicate that the corrected estimators D̂ and N̂ performed
almost the same while the uncorrected ones D̂u and N̂u performed slightly worse
as the size of measurement errors on X changed from tiny (σ2

x = 0.1) to huge
(σ2

x = 3.0).
Overall, incorrectly assuming 100% detection rates on the transect line will

seriously underestimate the animal abundance. The correction for measurement
errors is not significant if the weight measurements are unbiased. This correction
is, however, important even when the measurement errors on X are small, if the
weight measurements are biased.

5.2 The minke whale survey

To estimate the abundance of minke whale in the northeastern Atlantic, the
Norwegian government and the International Whaling Commission undertook an
IOLT survey in 1995 (Schweder et al., 1997). Each participating vessel had two
independent observer platforms A and B (teams 1 and 2 in our notation). A
total of 772 individual minke whales were detected by the two platforms. The
perpendicular distance X to the detected school was recorded by the third team
using the positions of the detected signals. The half width of the effective surveyed
region, w, was estimated to be 2,100 m (Skaug and Schweder, 1999).

Although the estimators demonstrated in Sections 3 and 4 are for the bivariate
covariate (X,S) case, the same estimation method can be easily applied to the
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univariate covariate X case as follows. The model (1) is used to model the errors
in X and the function (3) with βi = 0 is used to describe the detection probability.
Because the odd moments of X are zero, the second and fourth moments of X
are used to derive the moment estimators. Then the moment estimator of pi, p̂i,
is the solution of equation

T (pi) =
Ȳi4 − uxi4 − 6uxi2(Ȳi2 − uxi2)

(Ȳi2 − uxi2)2
, i = 1, 2.

Recall that T (pi) = Γ(1/pi)Γ(5/pi)
Γ(3/pi)2

. In addition, the moment estimator of λi is

λ̂i =

√
Γ(1/p̂i)(Ȳi2 − uxi2)

Γ(3/p̂i)
, i = 1, 2.

Similar to Section 4, the estimators α̂, N̂ , N̂i and ci are:

α̂ =
w

∫ w
0 e−[(x/λ̂1)p̂1+(x/λ̂2)p̂2 ]dx

λ̂1λ̂2Γ(1 + 1/p̂1)Γ(1 + 1/p̂2)

N̂ =
n1n2

n11
α̂

N̂i =
niw

λ̂iΓ(1 + 1/p̂i)

ĉi = N̂i/N̂.

If there were no measurement errors in X, then uxi2 = uxi4 = 0 for i = 1, 2.
Assuming no measurement errors, the parameter estimates for platform A (team
1) were found to be (ĉ1, p̂1, λ̂1) = (0.44, 1.82, 7.93) and for platform B (team 2)
to be (ĉ2, p̂2, λ̂2) = (0.42, 1.82, 6.80). For illustration purpose, the unit of X was
set as 100 m. The values of X were plotted on histograms by platforms, together
with their estimated densities, as shown in Figure 1. It can be seen from these
histograms that the density of detected X was lower in the interval [0,2) than in
the interval [2,4). This is a violation of the property derived from equation (3),
the detection probability, that the density of detected X is monotone decreasing
with x and thus it has peak on the transect line. This violation explains why the
estimated densities for the two platforms did not fit the data very well around
x = 0 as shown in Figure 1. Yet the Chi-square goodness-of-fit test gives a p-
value of 0.63 for platform A and a p-value of 0.32 for platform B, suggesting
acceptable overall fits for both platforms. In addition, the detection probability
on the transect line for platform A was estimated to be 0.44, slightly higher than
that for platform B, 0.42. This implies that platform A might be slightly more
efficient, but not significantly, in detection than platform B when animals were
around the transect line.
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Figure 1: Histograms and the estimated densities of X detected in the minke
whale survey. Left panel is from platform A and the right panel is from platform
B.

To demonstrate the effect of measurement errors, measurement errors for both
platforms were simulated and added to the X values in the data. Measurement
errors from the two platforms are assumed to follow the same distribution, normal
with mean 0 and variance σ2. In addition, because the side of the detected animal
was not recorded, a sign (+ for the right-hand side and - for the left-hand side)
is randomly assigned to each X in the data. The simulated observation of X is
therefore either X + error or −X + error. Two cases, σ2 = 0.5 and σ2 = 1, were
simulated. The corrected and uncorrected estimates based on the simulated data
are reported in Table 5.

Table 5: Estimates with and without corrections for measurement errors in X
for the minke whale survey.

p̂1 p̂2 λ̂1 λ̂2 ĉ1 ĉ2 N̂1 N̂2 N̂

σ2 = 0.5
corrected 1.78 1.85 7.77 6.89 0.45 0.41 1514 1390 3383
uncorrected 1.79 1.86 7.84 6.97 0.45 0.41 1500 1375 3354

σ2 = 1.0
corrected 1.77 1.87 7.70 6.92 0.45 0.41 1526 1383 3389
uncorrected 1.78 1.88 7.84 7.08 0.45 0.41 1499 1354 3330

The estimator N̂ with corrections was slightly larger than that without correc-
tions for both cases as seen in Table 5. When the error was not large (σ2 = 0.5),
the difference of N̂ with and without corrections (3383 − 3354 = 29) might be
minor. When the error was larger (σ2 = 1.0), the difference was also larger
(3389 − 3330 = 59). Yet these differences seem not significant. In contrast, the
effect of incorrecting assuming 100% detection rates on the transect line is quite
significant. As can been seen in Table 5, N̂i, i = 1, 2 were both less than half of N̂
regardless of corrections for measurement errors. This indicates that incorrectly
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assuming 100% detection rates on the transect line leads to underestimate the
value of N dramatically, even with correction for measurement errors.

6. Conclusion and Discussion

In this paper, a parametric method is provided for analyzing data from IOLT
surveys in which measurement errors are expected and the detection probability
on the transect line might not be 1.0. The proposed method assumes that the
covariate measurements from the two observer teams are independent. Therefore,
the method can be applied only for the IOLT surveys in which the two observer
teams measure covariates of their own detections independently.

We restrict our discussion to the case of a bivariate covariate, the distance and
weight of a school. In addition, two indices of animal abundance, school popula-
tion size and biomass density, are studied in this paper. To reduce the sensitivity
due to the misspecified model, the method of moments is selected to estimate
parameters and a non-parametric method is incorporated to estimate the two
indices. As found in the simulation study, the proposed estimators can estimate
animal abundance quite well. This study also suggests that if the weight mea-
surement could be biased, the correction for measurement errors is essential even
when the measurement errors in distance are small. In addition, the detection
probabilities on the transect line should not be assumed to be 1.0 as done in many
papers unless these probabilities are really very close to 1.0. Incorrectly assuming
these probabilities to be 1.0 will greatly underestimate the animal abundance.

For some animal species, such as minke whale, instead of biomass, the mean
number of animals per unit area might be of interest. The size of a school is
therefore not the weight but the number of animals in that school. The method
used in this paper can easily be adapted to abundance estimation for such animals,
if an appropriate discrete model for measurement errors on the school size is
provided.

In this paper, we relax the assumption of 100% detection probability on the
transect line, but we assume that the detection probability on the transect line is
a constant, independent of school size or other covariates. When this assumption
is not reasonable, allowing variable detection probability on the transect line
might be necessary to estimate the animal abundance. In addition, the peak of
the detection probability is always assumed to be on the transect line, but this
is often violated. For example, the data from the minke whale survey in year
1995 (see Figure 1) suggest that the peak for the detection probability was not
on the transect line. More research on further relaxing this assumption might be
necessary to further improve the estimation in animal abundance.
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Appendix

The relationship between N̂(α̂) = n1n2
n11

α̂ and N̂(α) = n1n2
n11

α is studied first. It
can be verified that the second derivatives of α̂ (with respect to these i.i.d. means)
are continuous, so α̂ is asymptotically normally distributed and asymptotically
unbiased with orders (Serfling, 1980):

E(α̂ − α|n1, n2) = O(
1
n1

) + O(
1
n2

),

Var(α̂|n1, n2) = O(
1
n1

) + O(
1
n2

).

Therefore,

E{N̂(α̂) − N̂(α)} = E[E{n1n2

n11
(α̂ − α)|n1, n2}]

= E{n1n2

n11
E(α̂ − α|n1, n2)}

= E[
n1n2

n11
{O(

1
n1

) + O(
1
n2

)}] = O(1);

Var{N̂(α̂)/N} = Var(
n1n2

Nn11
α̂)

= Var{ n1n2

Nn11
E(α̂|n1, n2)} + E{( n1n2

Nn11
)2Var(α̂|n1, n2)}

= Var[
n1n2

Nn11
{α + O(

1
n1

) + O(
1
n2

)}]

+ E[(
n1n2

Nn11
)2{O(

1
n1

) + O(
1
n2

)}]

= O[Var{N̂(α)/N}] + O(1/N).

As shown in Chen and Lloyd (2000), E{N̂(α)−N} = O(1) and Var{N̂(α)/N} =
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O(1/N). Therefore,

RB{N̂(α̂)} = E{N̂(α̂) − N}/N
= E{N̂(α̂) − N̂(α)}/N + E{N̂(α) − N}/N = O(1/N);

RMSE{N̂(α̂)} =
√

E[{N̂(α̂) − N}2]/N

=
√

Var{N̂(α̂)/N} + [E{N̂(α̂) − N}/N ]2

=
√

O(1/N) + O(1/N2) = O(1/
√

N).
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