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Abstract: Conceptually, a moderator is a variable that modifies the effect of
a predictor on a response. Analytically, a common approach as used in most
moderation analyses is to add analytic interactions involving the predictor
and moderator in the form of cross-variable products and test the significance
of such terms. The narrow scope of such a procedure is inconsistent with
the broader conceptual definition of moderation, leading to confusion in
interpretation of study findings. In this paper, we develop a new approach
to the analytic procedure that is consistent with the concept of moderation.
The proposed framework defines moderation as a process that modifies an
existing relationship between the predictor and the outcome, rather than
simply a test of a predictor by moderator interaction. The approach is
illustrated with data from a real study.
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1. Introduction

Moderation and mediation analyses are widely used in biomedical and psy-
chosocial research (Baron and Kenny, 1986; Chaplin, 1991; Cole and Maxwell,
2003; Crits-Christoph et al., 2003; Holmbeck, 1997; Kraemer et al., 2001; 2002;
Krull and MacKinnon, 2001; Rogosch et al., 1990; Rothman and Greenland,
1998). Although often implemented in correlational studies in social psychology
and other fields of inquiry, moderation and mediation analyses have become in-
creasingly popular and an integral part of data analysis in treatment research
(Kraemer et al., 2002). In intervention studies, moderation analysis helps de-
termine whether an intervention has a differential effect among subgroups that
are defined by baseline characteristics. Thus, moderators provide useful infor-
mation for treatment decisions and maximizing treatment effect. In contrast
to moderation analysis, mediation analysis helps identify mechanisms by which
an intervention achieves its effect. By identifying the correct mediation process
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through which treatment affects study outcomes, not only can we further our
understanding of the pathology of the disease and treatment, but also provide
information for developing new and alternative treatments to treat the disease
with efficient use of resources. Moderation and mediation analyses are also often
performed for epidemiologic studies to determine risk factors and elucidate the
causes of a disease.

In a seminal paper, Baron and Kenny (1986) proposed a general framework
for characterizing a moderation and mediation process. In particular, they laid
a theoretical foundation for conceptualizing such processes and for approaching
the underlying analytic problems. In addition, their work clarified the funda-
mental difference between the closely related, yet fundamentally distinct notion
of moderation and mediation. However, as recently pointed out by Kraemer et
al. (2001), the limited analytic strategies proposed in their paper have been
used and extrapolated to situations to which they often do not apply, leading to
confusion in interpreting analysis results and even conflict with the conceptual
definition of such processes. For example, their work showed that the presence
of analytic interaction between a moderator and a predictor (the product of the
two variables) is model-dependent; the same data may show zero or non-zero
moderator by predictor interactions depending on which analytic models (e.g.,
logistic or linear model) are used to fit the data. Thus, the popular approach
of simply looking for non-zero interactions as used in most moderation analyses
has limited applications and often leads to dubious and uninterpretable results.
Defining a general analytic definition consistent with the conceptual notion of
moderation is the focus of this paper.

In this paper we restrict our attention to moderation analysis and discuss a
new approach to address the limitations of current methods. More specifically,
our approach more broadly models the effect of a moderator so that its effect is
not limited to analytic interactions. For convenience, we mainly focus on mod-
eration analysis. We show how analytic interactions can become uninterpretable
as moderation effect and how one variable can be a moderator without assum-
ing the form of such interactions. After describing the new analytic framework
in Section 2, we illustrate the proposed approach with a real data example in
Section 3, followed by concluding remarks.

2. Moderation Analysis

In this section, we first review existing models for moderation analysis and
in the process outline the problems with such methods. We then propose our
approach to address these issues.
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2.1 Modeling moderation with interaction terms

For convenience, assume a relatively simple moderation process involving only
one predictor, x, a response, y, and a moderator, z. Assume that y is continuous
and consider the following linear model relating x to y:

yi = α0 + α1xi + εi, εi ∼ (0, σ2), 1 ≤ i ≤ n, (2.1)

where i indexes the subjects from a sample of size n and (0, σ2) denotes a random
variable with mean 0 and variance σ2. For robust inference, we only assume that
εi has a mean of and is uncorrelated with x. The latter is known as the pseudo-
isolation condition, which enables one to establish the influence of on isolated
from in a causal relationship (e.g. Bollen, 1989).

A moderator is a variable that affects or modifies the relationship between x
and y. In a conceptual sense, if z is a moderator, it interacts with the predictor
x to alter the effect of the latter variable on the response y. Because of such
an “interaction” interpretation, a popular approach as used in many moderation
analyses is to include the first-order (xz) or even higher-order (e.g. x2z) mod-
erator by predictor interactions to examine moderation effect. For example, by
including the first-order x by z interaction in (2.1), we obtain:

yi = α0 + α1xi + α2zixi + εi, εi ∼ (0, σ2), 1 ≤ i ≤ n. (2.2)

Under this model, the effect of x on y defined by α1 in (2.1) has been altered and
replaced by a function of z in the form of α1 +α2zi (Aiken and West, 1991; Neter
et al. 1990). Because of this, a moderator is also known as an effect modifier.

Although moderation does translate into analytic interactions in the case of
(2.2), it is a fundamentally different concept. Indeed, simply interpreting mod-
eration as analytic interactions can have serious ramifications. In particular, not
all interactions will have the moderation interpretation. For example, consider
the two scatter plots in Figure 1, in which the relationship between y and x is
plotted for the two levels of a binary variable z as indicated by circles (zi = 0)
and squares (zi = 1). The data in the left diagram is modeled by:

yi = (α0 + δ0zi) + (α1 + δ1zi)xi + εi, εi ∼ (0, σ2), 1 ≤ i ≤ n. (2.3)

In this model, the interaction zixi changes the slopes of the linear relations be-
tween x and y at the two levels of z and thus modifies the initial linear relationship
in (2.1) for the differential effect by z. Note that (2.3) has an extra term, δ0zi,
and is thus different from (2.2). This additional main effect of z in (2.3) is used
to accommodate the different intercepts corresponding to the two levels of z. The
data in the second diagram is modeled by a quadratic model:

yi = (α0 + δ0zi) + (α1 + δ1)xi + α2zix
2
i + εi, εi ∼ (0, σ2), 1 ≤ i ≤ n. (2.4)
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Although similar, the above is fundamentally different from (2.3) as a model for
moderation. Unlike (2.3), this model does not have a moderation interpretation
with respect to (2.1) since it does not merely modify the effect of x on y, but
rather it postulates quite a different relationship between x and y by adding a
quadratic term zix

2
i . Thus, z cannot be considered as a modifier for the linear

relationship between y and x as initially modeled in (2.1).
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Figure 1: Two patterns of treatment response and fitted regression lines as a
function of moderator z and treatment condition (circles for treatment 1 and
squares for treatment 2).

An obvious difference between (2.3) and (2.4) is that the latter involves a
higher-order interaction zix

2
i . However, a moderation model for (2.1) does not

have to involve only the first-order interaction. For example, although the model
below contains a higher-order interaction between x and z:

yi = α0 + α1xi + α2zixi + α3z
2
i xi + εi, εi ∼ (0, σ2), 1 ≤ i ≤ n. (2.5)

It is still a moderation model for (2.1) since the inclusion of the interaction z2
i xi

does not change the initial linear relationship between y and x. In comparison to
(2.2), it modifies the effect of x on y through a slightly more complex quadratic
form.

Note that although (2.4) is not a moderation model for (2.1), it may be viewed
as such a model for a different quadratic relationship between y and x:

yi = β0 + β1xi + β2x
2
i + εi, εi ∼ (0, σ2), 1 ≤ i ≤ n, (2.6)

since z in (2.4) modifies the effect of x on y by altering the coefficients associated
with the linear and quadratic terms. In general, any model we create by adding
certain analytic interactions to (2.1) can be viewed as a moderation model for
some model that relates y to x. However, a moderation model for (2.1) should
only alter the effect of x on y without changing the original linear relationship
between x on y. Thus, the essence of the definition of a moderator z is that
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the model form remains the same , but the coefficients may change and become
functions of z.

The examples above show that not all interactions have a moderation in-
terpretation. The reverse is also true. Interaction in a conceptual sense has a
broader interpretation, not just limited to analytic interactions in the form of
cross-variable product. Consider for example a non-linear model relating x to y
as given by:

yi = α0(e−xi)α1 + α2(e−xi)α3 + εi, εi ∼ (0, σ2), 1 ≤ I ≤ n. (2.7)

This bi-exponential model, which is not a linear model since y is not a linear
function of the coefficient α1, is widely used in modeling plasma concentration
y as a function of time x in biomedical research (Neter et al. 1990; Davidian
and Giltinan, 1995). Although non-linear, the effect of x on y is still defined by
αk, (0 ≤ k ≤ 3); if z alters the effect of x on y, it must do so through changes in
these coefficients. For example, if α2 is a linear function of z, it follows that:

yi = α0(e−xi)α1 + (α20 + α21z)(e−xi)α3 + εi, εi ∼ (0, σ2), 1 ≤ I ≤ n. (2.8)

The above model has the extra term α21z(e−xi)α3 in comparison to (2.7). Ob-
viously, this term is not an analytic interaction in the form of xz. Further, it is
not even possible to express it in the more general form of analytic interaction
as h(x)g(z) where h(x) and g(z) denote some functions of x and z, respectively.
However, z still modifies the effect of x on y and thus conforms to the conceptual
notion of moderation. As in the linear model case, if we literally add analytic
interactions to (2.8), we may end up with models with no moderation interpre-
tation. For example, if we simply add the analytic interaction xz to (2.8), we
obtain:

yi = α0(e−xi)α1 + α2(e−x2)α3 + α4zixi + εi, εi ∼ (0, σ2), 1 ≤ i ≤ n. (2.9)

As with (2.4), the above actually represents a new model for the relationship
between y and x, rather than a moderation model to account for the altered
effect of x on y by z based on the original model in (2.5).

Note that the problem with interpreting conceptual interaction as simply ana-
lytic interaction involving cross-variable products has also been noted by Kraemer
et al. (2001). By considering analytic interactions across different types of models
(e.g. linear, logistic etc.), they demonstrated that the presence of such interac-
tion effects depends on the type of models being fitted. Our considerations above
complement their findings by further elucidating the mechanism that causes such
model dependency when defining moderation through interactions.
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2.2 A varying-coefficient model based general framework for modera-
tion — moving beyond interactions

As illustrated in the preceding section, current methods for moderation anal-
ysis developed on the premise of analytic interactions are problematic. If used
without caution, they may give rise to models that do not have moderation inter-
pretation in the conceptual sense. In addition, such interaction-based strategies
generally do not work for non-linear models, as interactions between a predictor
and a moderator do not have to be in the form of cross-variable product. In this
section, we systematically address these issues simultaneously by proposing an
approach that does not rely on analytic interactions.

Let us start with the linear model (2.1) again. As we discussed earlier, this
model is determined by the coefficients or parameters, α0 and α1. Thus, if z
interacts with x to alter the relationship between x and y, these parameters
become a function of z, i.e.,

yi = α0(zi) + α1(zi)xi + εi, εi ∼ (0, σ2), 1 ≤ n. (2.10)

Unlike the models in (2.2) and (2.3), no specific form is assumed for αk(z) (k =
0, 1). Thus, it represents a general class of models for moderation effect derived
based on the original model (2.1). For example, if we know a priori that

α0(zi) = α0, α1)zi) = γ1 + γ2zi

then we immediately obtain the model in (2.2). The model in (2.10) automatically
excludes models that contain analytic interactions but do not have a moderation
interpretation such as the model in (2.4). The linear model in (2.10) with the
coefficients being a function of a variable is known as the varying-coefficient linear
model (Fan and Zhang, 1999; Hastie and Tibishirani, 1993).

Thus, our approach to defining the effect of a moderator z on the linear
model (2.1) is to change the definition of the coefficients so that they become
a function of z. This principle is readily applied to general models such as the
generalized linear and non-linear models (McCullagh and Nelder, 1989; Davidian
and Giltinan, 1995). For example, the generalized linear model for a binary
response is expressed as:

yi = Bin(h)α0 + α1xi), 1), 1 ≤ i ≤ n, (2.11)

where Bib(p, 1) denotes a Binomial (or Bernoulli) distribution with sample size
n = 1 and the probability of success p. Thus, in (2.11), the mean of yi is modeled
as a function of xi : h(α0 + α1x). The most popular choice is the logit function,

h(α0 + α1xi) = exp(α0 + α1xi)/[1 + exp(α0 + α1xi)], (2.12)
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though other link functions such as the probit link are also often used (McCullagh
and Nelder, 1989; Tu et al., 1999). Once a link function is chosen, the relationship
between y and x is determined by the parameters α0 and α1. Thus, as in the
linear model case, we define the effect of a moderator z by letting αk be a function
of z:

yi ∼ Bin(h)α0(zi) + α1(zi)xi, 1), 1 ≤ i ≤ n. (2.13)

In the logistic model case, αk in (2.12) becomes a function of z.
The definition also carries through in a straightforward fashion for non-linear

models. For example, by modeling the coefficients as a function of z in (2.6), we
obtain:

yi = α0(z)(e−x)α1(z) + α2(z)(e−x)α3(z) + εi, εi ∼ (0, σ2), 1 ≤ i ≤ n.

As in the linear model case of (2.10), the above includes (2.8) as a special case,
but excludes (2.9) as a model for moderation analysis.

Note that in semiparametric regression analysis, models are specified by the
conditional mean of the response given the predictor (Robins et al. 1995):

E(yi|xi) = h(xi, α), 1 ≤ i ≤ n, (2.14)

where α is the vector of parameters or coefficients and h(x, α) is a function of x
and α. When defined under the semi-parametric regression setup, a moderator z
can affect onlyα, without altering the functional form h(x, α), i.e.,

Ez(yi|xi) = h(xi, α(zi)), 1 ≤ i ≤ n.

For example, by expressing (2.1) in the form (2.14), we obtain:

E(yi|xi) = α0 + α1xi, 1 ≤ i ≤ n.

Thus, (2.2) and (2.3) are both moderation models for (2.1) since z alters only
the parameter vector. However, (2.4) is not a moderation model for (2.1) since
it also changes the functional form h(x, α).

2.3 Inference for varying-coefficient models

Procedures for fitting varying-coefficient models are based on the idea of “lo-
cal averaging.” For example, for the linear varying-coefficient model in (2.10),
first we fix z and use data close to z (window) to fit the model by treating z as
a constant. By moving z over the range of z in the data, we obtain estimates of
αk(z) as a function of z. This approach will enable us to determine the appro-
priate form for as well as make inference about αk(z) (e.g. Carroll et al., 1998;
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Fan and Zhang, 1999; Hart, 1997; Hastie and Tibishirani, 1993). To overcome
the difficulty with varying degrees of sparseness and gaps in the distribution of
z, methods have been developed to utilize all data in the estimation of αk(z) by
employing varying window size and weighted averaging (with more weights at-
tached to observations closer to z). This so-called “kernel smoothing” approach
produces smooth functions of αk(z) that can be used to test whether αk(z) is a
function of z and to suggest appropriate functional form for their modeling. Since
inference for general varying-coefficient models is an area of on-going methodolog-
ical research, we will not pursue estimation for general varying-coefficient models
in this paper. Rather, we discuss several special cases of the varying-coefficient
linear model and illustrate how such specific models can be fitted using standard
procedures.

Binary and Categorical Moderator

Since the case with a binary z can be subsumed into the discussion of a
categorical moderator, we consider only a categorical z and assume that z has a
total of K categories.

For such a moderator, (2.10) becomes:

yki = α0k + α1kxki + εi, εi ∼ (0, σ2), 1 ≤ i ≤ nk, 1 ≤ k ≤ K. (2.15)

In this case, the original sample is partitioned into K sub-samples, each of size
nk, and a different linear relationship is postulated for each sub-sample as char-
acterized by the different coefficients or parameters α0k and α1k (1 ≤ k ≤ K).
Least squares or estimating equations can be used to estimate the parameters
(McCullagh and Nelder, 1989). If z is truly a moderator, then at least two of the
α1k’s will be different. Thus, we can ascertain the mediation role of z by testing
the following hypothesis:

H0 : α1k = α1 for all 1 ≤ k ≤ K vs. Ha : α1j 6= α1k, for some 1 ≤ j, k ≤ K.
(2.16)

Note that sometimes it may happen that z changes only the intercepts without
affecting the slope, i.e., α1k = α1 for all 1 ≤ k ≤ K. In this case, z becomes a
covariate, since a moderator must change the effect of x on y.

Binary and categorical predictor

As in the preceding section, we consider only a categorical predictor x withK
levels. Let nk denote the sub-sample size for the kth level of x (1 ≤ k ≤ K). The
varying-coefficient model in (2.10) reduces to:

yki = αk(zki) + εki, εki ∼ (0, σ2), 1 ≤ i ≤ nk; 1 ≤ k ≤ K. (2.17)
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As a special case, if αk(zki) = αk, we immediately obtain from (2.17) an analysis
of variance model (ANOVA) with αk interpreted as the cell mean of the kth sub-
sample or group. Thus, the variable z in (2.17) can be viewed as modifying the
cell or group means of an ANOVA.

Now, consider a linear αk(zki) = γ0k + γ1kzki, in which case (2.17) becomes:

yki = γ0k + γ1kzki, εki ∼ (0, σ2), 1 ≤ i ≤ nk; 1 ≤ k ≤ K. (2.18)

In this case, the difference between the means of two groups, k and r, is given
by:

∆kr = (γ0k − γ0,r) + (γ1k − γ1r)z. (2.19)

The second term in (2.19) represents the differential effect of z on the means of
the two groups and constitutes the moderation effect. If the slopes, γ1k (2.18)
equal to a constant across all groups, i.e., γ1k ≡ γ1 (1 ≤ k ≤ K), then this
differential effect will be zero and the model in (2.18) reduces to:

yki = γ0k + γ1zki + εki, εki ∼ (0, σ2), 1 ≤ i ≤ nk; 1 ≤ k ≤ K. (2.20)

The above is an analysis of covariance (ANCOVA) model and γ1zki is the adjust-
ment factor for the effect of zki on the mean response (e.g. Neter et al., 1990).
Unlike (2.18), zin (2.20) exerts the same effect on the mean response across all
the groups. Thus, in (2.20), z still modifies the effect of x on y (in the form
of group means defined by the levels of x), but it does so uniformly across the
groups (or there is no x by z interaction).

In real study applications, one or more αk(z) in (2.17) may be non-linear or
other more complex functions. For example, if K = 2, (2.17) with αk)z) given
by:

α1(z) = γ0, α2(z) = γ0 + γ1I[z≤c], (2.21)

can be used to model the scenario where the effect of the dichotomous variable
x on y is through a step function defined by some cut-off c of the moderator z
as depicted in Figure 2 of Baron and Kenny (1986), where I[z≤c] denotes the set
indicator with I[z≤x] = 1 if z ≤ c and 0 if otherwise. Note that the advantage of
formulating the model using the vary-coefficient model (2.17) is that we can use
smoothing techniques to estimate the functional form of αk(z) so that it is not
necessary to specify a priori the value of the cut-off c as in (2.20). We illustrate
how such an approach works for a real study example in Section 3.
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Figure 2: Scatter plots with fitted Lowess curves for each of the four treatment
conditions.

Relationship to linear mixed-effects model

The linear varying-coefficient model (2.10) is also closely related to a linear
mixed-effects (LMM) or hierarchical linear model (HLM) (Laird and Ware, 1982;
Gibbons et al., 1994; Raudenbush, 1994). In particular, the varying-coefficients,
αk(z), can be viewed as the mean of random individual coefficients given the
value of the moderator at z. In this sense, we can derive the model in (2.10) from
the perspective of this popular modeling framework.

As in the usual derivation of the linear mixed-effects model, at the first level,
we assume a linear model with random individual effects as follows:

yi = α0i + α1ixi + εi, εi ∼ (0, σ2), 1 ≤ i ≤ n, (2.22)

In the above model, α0i and α1i are random variables and are assumed to be
uncorrelated with εi (k = 0, 1). In the usual linear mixed-effects model, α0i and
α1i are assumed to have a joint normal distribution and εi is also assumed to
be normal. In (2.22), we do not assume such parametric distributions. At the
second level, we model the conditional distribution of each αki given zi as:

αki = αk(zi) + eki, eki ∼ (0, σ2
k), k = 0, 1, (2.23)

where eki is assumed to have a mean of 0 and to be uncorrelated with both zi

and xi. It follows from the assumption of αki that eki is also uncorrelated with εi

for k = 0, 1. By combining the two models in (2.22) and (2.23), we immediately
obtain the following mixed-effects model:

yi = α0(zi) + α1(zi)xi + ε̃i, ε̃i ∼ (0, σ2
mix(x2

i )), (2.24)
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where ε̃i = e0i +e1ixi +εi. As the random effects eki are not of interest, they have
been combined with εi to form the model error in (2.24). It is readily shown that
ε̃i is uncorrelated with zi and xi, and thus satisfies the pseudo-isolation condition.
Thus, (2.24) defines the same linear varying-coefficient model as (2.10), except
that the error variance is a function of x2 rather than a constant as in (2.10).
Note that if e1i = 0 in (2.23), we obtain the same model as in (2.10).

2.4 Longitudinal data analysis

The extension to longitudinal data analysis is straightforward. As before, we
only consider a continuous response y with a predictor x and moderator z. For
convenience, we consider modeling such a response using the linear mixed-effects
model, as this approach is widely used in modeling longitudinal data (e.g. Laird
and Ware, 1982; Gibbons et al., 1994; Raudenbush, 1994).

Consider a longitudinal study with n subjects and m assessment points. For
illustration purposes, we only consider linear growth-curve analysis in which the
trajectory of each subject is modeled as a linear function of time as follows:

yit = α0 +α1xi +α2t+α3txi + b0 + b1xi + b2t+ b3txi + εi, 1 ≤ i ≤ n, 1 ≤ t ≤ m,
(2.25)

where t denotes time, αk the fixed-effects for the population mean, and bk the
random-effects to account for individual differences (0 ≤ k ≤ 3). As in the
literature, we assume that εi follows a normal distribution with mean 0 and
variance σ2, and bk (0 ≤ k ≤ 3) follow a joint normal with mean 0 and variance
Σb. We define moderation to be the effect of z on the fixed-effects αk, i.e., αk(z)
is a function of z.

In most applications, interest lies in whether z moderates treatment differ-
ences. For example, suppose that x is a binary indicator for two treatment
conditions. The vary-coefficient linear model in this case is given by:

If xi = 0 : yit = α0(zi) + α2(zi)t + b0 + b2t + εi,

If xi = 1 : yit = [α0(zi) + α1(zi)] + [α2(zi) + α3(zi)]t
+ b0 + (b2 + b3)t + εi. (2.26)

In this model, α0(zi) moderates the within-treatment effect, α2(zi) the change
over time due to the within-treatment effect, α1(zi) the between-treatment effect
at baseline, and α3(zi) the change over time due to between-treatment difference.

If all the varying-coefficients are a linear function of z, αk(z) = γk0 + γk1z,
then (2.26) gives rise to the usual approach for modeling moderation effect by
including analytic interactions involving x and z. In this case, (2.26) simplifies
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to:

If xi = 0 : yit = γ00 + γ01zi + γ20t + γ21zit + b0 + b2t + εi,

If xi = 1 : yit = (γ00 + γ10) + (γ01 + γ11)zi + (γ20 + γ30)t
+ (γ21 + γ31)zit + b0 + (b2 + b3)t + εi. (2.27)

In most randomized trials, the mean response does not differ between treatment
conditions at baseline so that γ10 = 0. In addition, if randomization works
effectively, z should not have a differential effect at baseline, which implies that
γ11 = 0. So, (2.27) further simplifies to:

If xi = 0 : yit = γ00 + γ01zi + γ20t + γ21zit + b0 + b2t + εi,

If xi = 1 : yit = γ00 + γ01zi + (γ20 + γ30)t + (γ21 + γ31)zit

+ b0 + (b2 + b3)t + εi. (2.28)

In the above model, the treatment by time interaction, γ30, represents treatment
difference over time in the absence of the moderator z (when z = 0), while the
treatment by time by moderator interaction, γ31, represents the moderation effect
of z on the treatment difference. The model in (2.28) and its generalizations for
multiple treatment conditions are widely used in testing moderation effect in
longitudinal studies.

As in the case of cross-sectional study designs, inference for varying-coefficient
models can still be made using the usual estimation procedures when z or x or
both are categorical variables. For example, we can use standard estimation
procedures to fit the model in (2.28). When both z and x are continuous, infer-
ence becomes much more complex and smoothing methods may be used. Again,
this issue will not be pursued here. Fortunately, in many randomized studies,
treatment differences are modeled by binary indicators, in which case standard
procedures can be used to fit linear mixed-effects models with varying-coefficients.

3. A Real Study Data Application

We illustrate the proposed methodology with real study data from the Na-
tional Institute on Drug Abuse Collaborative Cocaine Treatment Study (Crits-
Christoph et al., 1999). This randomized and multi-center project investigated
the efficacy of psychosocial treatment for cocaine dependence, with a sample of
487 patients who were randomized to one of four treatment conditions: cog-
nitive therapy (CT) plus group drug counseling (GDC), supportive-expressive
(SE) plus group drug counseling (GDC), individual drug counseling (IDC) plus
group drug counseling (GDC), and GDC alone. Primary outcome analyses fo-
cused on the intent-to-treat sample and examined several measures of drug use
(Crits-Christoph et al., 1999).
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For illustration purposes, we applied the proposed methodology to data at six
month post-treatment using the Addiction Severity Drug Use composite variable
(ASI; McLellan et al., 1992) as the response variable. As a significant treatment
difference was found among the four treatment groups, it was of interest to exam-
ine if the treatment differences were moderated by baseline alcohol consumption
as measured by the ASI alcohol use composite.

Let y denote the drug use composite variable at six month post-treatment
and z the pre-treatment alcohol use composite variable. We applied the ANOVA
model with varying coefficients in (2.17) to examine the effect of moderation by
z. To determine the appropriate analytic form for modeling the mean response
of each group αk(zki) (1 ≤ k ≤ 4), we applied a smoothing procedure, LOWESS
(locally weighted scatter plot smoother), to data from each treatment condition
(e.g. Fox 2000; Loader 1999). Shown in Figure 2 are the scatter plots together
with the fitted LOWESS curves for each of the four treatment groups.

Table 1: Estimates of model parameters, standard errors and p-values for the
varying coefficient ANOVA model (20) with linear and quadratic mean re-
sponse. The γk0 represent the main effect of group k, γ1 and γ2 are the coef-
ficients for the first- and second-order main effect of moderator z, δ’s denote
coefficients for the first-order moderator by group interactions and η’s denote
the second-order moderator by group interactions.

Quadratic

Coefficient γ10 γ20 γ30 γ40 γ1 γ2

Estimate 0.4594 0.4049 0.7076 0.4274 0.3743 0.0599
Std Errors 0.1543 0.1503 0.1475 0.2137 0.2085 0.0405
p-value 0.8357 0.8810 0.0582 0.0461 0.0733 0.1399

Coefficient δ1 δ2 δ3 eta1 η2 eta3

Estimate -0.0258 -0.0554 0.2978 -0.0129 -0.0116 0.0571
Std Errors 0.1465 0.1482 0.1459 0.0280 0.0286 0.0286
p-value 0.8600 0.7090 0.0417 0.6448 0.6852 0.0464

Linear

Coefficient γ10 γ20 γ30 γ40 γ1 δ1 δ2 δ3

Estimate 0.2844 0.2249 0.2588 0.1973 0.0874 0.0395 0.0036 0.0246
Std Errors 0.0933 0.0910 0.0904 0.1300 0.0503 0.0354 0.0348 0.0357
p-value 0.3509 0.7620 0.4965 0.1298 0.0832 0.2654 0.9185 0.4901

The fitted LOWESS curves indicated a quadratic mean response for the SE
group, but a linear response for each of the other three groups. Thus, to formally
test for moderation by z, we fitted the following quadratic response model:

yki = γk0 + γ1zki + γ2z
2
ki +

3∑
l=1

δlzkiIkil +
3∑

l=1

ηlz
2
kiIkil + εki, 1 ≤ k ≤ 4, (3.1)
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where γ’s, δ’s and eta’s are model parameters, and k = 1, 2, 3, 4 denote the IDC,
CT, SE and GDC treatment groups, respectively. For robust inference, we did not
assume normality for and estimated the parameters using estimating equations
or quasi-likelihood (e.g. McCullagh and Nelder, 1989).

Shown in Table 1 are the estimated parameters and the associated p-values.
The estimated coefficients for the first- and second-order interactions are statis-
tically significant only for the SE group (see estimates of δ2 and η3 and their
associated p-values), indicating that unlike the other groups, the response for SE
had a quadratic relationship with the moderator. Thus, pre-treatment alcohol
use was a moderator, as it affects treatment response differentially between this
and the other three treatment conditions.

It is interesting to note that when we applied the linear coefficient model (2.18)
without the second-order interactions, none of the coefficients were significantly
different from 0 (see estimates and associated p-values in Table 1). Thus, by
looking only at the first-order interactions as in the traditional way, we would not
be able to detect any moderation effect in this case. In this particular application,
the use of the varying-coefficient model (2.17) helped identify the correct analytic
interactions to model the effect of moderation by z.

4. Discussion

In this paper, we discussed a general analytic framework for moderation anal-
ysis by defining moderation as a process that modifies an existing relationship
between the predictor and outcome. As illustrated by both theoretical consid-
erations and real data analyses, moderation can follow quite a complex process,
which may not be modeled by simply including analytic interactions involving the
moderator and predictor as in most moderation analyses. Since the relationship
between the response and predictor is defined by the coefficients or parameters
of a given model, it is logical to define the effect of a moderator through such
model parameters. Thus, the proposed approach is consistent with the conceptual
definition of a moderation process.

Although moderation effect often exhibits in the form of analytic interaction,
especially for linear regression models, not all such interactions can be interpreted
as moderation effect. By defining moderation effect using the varying-coefficient
model, we are able to delineate the types of analytic interaction that have a mod-
eration interpretation from those that do not. Also, since moderation models are
defined based on the original model relating the response and predictor, they are
consistent and well-interpreted. Thus, the model-dependent issue as pointed out
in Kraemer et al. (2001) does not arise. For example, if the original relationship
between the response and predictor is a linear model, the effect of a moderator is
limited to modifying the coefficients of the linear model, ruling out other types
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of models, such as the logistic model, as potential candidates for moderation
analysis.

Since our goal in this paper was to present an appropriate analytic framework
for moderation analysis, we did not get into technical details about inference for
general varying-coefficient regression models. When there are multiple continuous
predictors and moderators, inference for such models may become quite complex,
especially with longitudinal study data. We will address these issues in future
research.
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