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Abstract: Recently, Yoo and Cook (2007) developed an optimal version
of Cook and Setodji (2003). When predictors are not highly skewed, the
Yoo-Cook approach can be improved, especially with small samples, by it-
eratively estimating the inner product matrix used in their method without
changing their asymptotic results. Since highly skewed predictors are often
transformed for normality in sufficient dimension reduction literature, the
proposed method can have more useful application in practice than Yoo and
Cook (2007).
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1. Introduction

High-dimensional data has become common and inevitable in this current
world. In most situations useful information needs to be extracted from such
high-dimensional data. That is why dimension reduction ideas have been get-
ting more important and many methodologies for dimension reduction has been
developed so far. For example, methods such as principal component analysis,
factor analysis, and canonical correlation analysis are in a long list of dimension
reduction methodologies.

In the past decade sufficient dimension reduction (SDR) for regression has
rapidly grown up. The basic idea of SDR is to replace the predictors X ∈ Rp with
a lower-dimensional linearly transformed predictor ηTX without loss of informa-
tion on selected aspects of the conditional distribution of Y |X, where η ∈ Rp×d

and d ≤ p. SDR methods are nonparametric in the sense that they do not re-
quire a model for Y |X, but unlike many local nonparametric approaches they can
often avoid the curse of dimensionality, since estimates of dimension reduction
subspaces are “global” and converge at the usual

√
n rate.
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When the conditional mean E(Y |X) is of special interest (Cook and Li, 2002),
the goal of an SDR inquiry might be usefully restricted to finding η such that

E(Y |X) = E(Y |ηTX). (1.1)

Statement (1.1) implies that the d-dimensional linearly transformed predictor
ηTX has the same amount of information about E(Y |X) as the original p-
dimensional predictor X has. If d < p and such η can exist, a dimension reduction
for X is attained without loss of information about E(Y |X).

Our main interest is to recovering η satisfying (1.1) in multivariate regression
of Y = (Y1, . . . , Yr)T ∈ Rr|X ∈ Rp, where r ≥ 2. Recently Cook and Setodji
(2003) proposed a SDR method in this context. Yoo and Cook (2007) developed
an optimal version of the former

The main goal of this article is to improve Yoo and Cook (2007) in both the
estimation of η and predictor effect tests with no highly skewed predictors.

2. Dimension Reduction

2.1 Population structure of η

Let β = (β1, . . . , βr), where βk = Σ−1cov(X, Yk) is the population OLS co-
efficient vector of each coordinate regression Yk|X, and Σ = cov(X). We define
the following relationship between β and η:

R1. rank(β) = rank(η) and β = ηγ, where γ ∈ Rd×r.

The relation R1 between β and η indicates that β has the full information about
η and holds under a multivariate linear regression of

Y = α + βTX + δ, (2.1)

where α ∈ Rr is an intercept vector, and δ ∈ Rr is an error vector that is
independent of X and has mean 0 ∈ Rr.

According to Yoo and Cook (2007), the relation R1 also holds under the
following two conditions:

Condition 1. Either (a) E(X|βT
k X = ν1) is is linear in ν1 ∈ R1 for all ks

or (b) E(X|βTX = νr) is is linear in νr ∈ Rr.

Condition 2. rank(ηk) ≤ rank(β) and ηk = βγk, where each ηk ∈ Rp×dk

satisfies that E(Yk|X) = E(Yk|ηT
k X) and γk ∈ Rdk×r.



Iterative Optimal Sufficient Dimension Reduction Methodology 269

Condition 1, which is called linearity condition, is common in sufficient dimension
reduction literature. If it does not hold, the predictors are often transformed to
have normality in practice. The two statements of Condition 1 do not necessarily
imply each other. Condition 1 implies that β can be expressed by a linear com-
bination of η and Condition 2 indicates the reverse. For more about Conditions
1-2, readers can refer Yoo and Cook (2007).

Conditions 1-2 is to enable us to infer unknown parameter η without assuming
any models via β whose estimator is known. Let β̂ be the usual moment estimator
of β. We will denote d as the true rank of η. Emphasizing Conditions 1-2
for model-free approach, we explain Yoo and Cook (2007), which will be called
optimal approach, with brief discussion about Cook and Setodji (2003) in the
next section.

2.2 Optimal approach

The relation R1 enables us to estimate η and γ with arguments B̂ and Ĉ
that minimize the following minimum discrepancy function over B and C:

Fd(B,C) = {β̂v − (BC)v}TVn{β̂v − (BC)v}, (2.2)

where B ∈ Rp×d, C ∈ Rd×r, Vn > 0 is a pr × pr inner-product matrix and
for a p × r matrix A = (a1, . . . , ar), a notation of Av indicates a pr × 1 vector
constructed by stacking its columns: Av = (aT

1 , . . . , aT
r )T.

Any solution B̂ provides a consistent estimator of η for any choice of Vn >
0, in the sense that B̂ converges to η̂. According to Yoo and Cook (2007),
a best asymptotic choice for Vn is any consistent estimator of the inverse of
the covariance matrix from the asymptotic distribution of

√
n(β̂v − βv), whose

asymptotic distribution is a multivariate normal distribution with mean 0 ∈ Rpr

and covariance V ˆβ
. To explain a form of V ˆβ

we define a pr × pr matrix of Γ:

Γ =

 Γ(1,1) . . . Γ(1,r)
...

. . .
...

Γ(p,1) . . . Γ(p,r)

 (2.3)

where Γ(i,j) is a p × p matrix.
Then V ˆβ

has the same form as Γ in (2.3) with Γ(i,j) = E[εiεjΣ−1{X −

E(X)}{X − E(X)}TΣ−1], where εi = Yi − E(Yi) − βT{X − E(X)}.
We replace Vn in (2.2) with V̂−1

ˆβ
, a consistent estimator of V−1

ˆβ
, to obtain

the optimal discrepancy function

F opt
d (B,C) = {β̂v − (BC)v}TV̂−1

ˆβ
{β̂v − (BC)v}. (2.4)
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The estimation of η first requires the determination of its true rank d. It is
done via a sequence of hypothesis tests (Li, 1991): Beginning with m = 0, test
H0 : d = m vs. H1 : d > m. If H0 : d = m is rejected, increment m by 1 and
repeat the test, stopping the first time H0 is not rejected and setting d̂ = m.

Define that (η̂, γ̂) = argB,C minF opt
d (B,C) and that F̂ opt

d = F opt
d (η̂, γ̂). The

optimal approach proposed nF̂ opt
d as a statistic for testing hypotheses of H0 :

d = m versus H1 : d > m. Then, under H0, the statistic nF̂ opt
d is distributed

asymptotically as χ2
{(p−d)(r−d)}, and the estimator η̂ is an efficient and consistent

estimator of η. The asymptotic efficiency of η̂ means that η̂v has minimum
asymptotic variance within family (2.2).

The method by Cook and Setodji (2003) falls into family (2.2) with an inner-
product matrix Γ in (2.3) with Γ(i,j) = E(εiεj)Σ, and Cook and Setodji (2003)
is optimal under model (2.1). Its asymptotic distribution under H0 is either a
weighted sum of independent χ2

1 variables or χ2
{(p−d)(r−d)}.

2.3 Tests of predictor effects

Suppose that X is partitioned as (Xh,X−h). Yoo and Cook (2007) tested the
following three hypotheses related to E(Y|X) = E(Y|X−h).
Marginal predictor hypotheses:
H0 : E(Y|X) = E(Y|X−h) vs. H1 : E(Y|X) 6= E(Y|X−h)
Joint dimension-predictor hypotheses:
H0 : E(Y|X) = E(Y|X−h) and d = m vs. H1 : E(Y|X) 6= E(Y|X−h) or d > m
Conditional predictor hypotheses:
H0 : E(Y|X) = E(Y|X−h) given d = m vs. H1 : E(Y|X) 6= E(Y|X−h) given
d = m.

If the statement of E(Y|X) = E(Y|X−h) holds, then a subset Xh does not
contribute to E(Y|X). One of typical choices for Xh is an individual coordinate
Xi of X. Yoo and Cook (2007) shows that statistics for testing the three hy-
potheses are constructed by (2.4) and that all their asymptotic distributions are
χ2s.

3. Iterative Optimal Approach

We now consider choosing a consistent estimator of V ˆβ
. Any consistent

estimator of V ˆβ
would give the same asymptotic results, but non asymptotic

behavior can be affected by the choice. A first consistent estimator of V ˆβ
can be

constructed by using its sample version V̂ ˆβ
, substituting the usual estimates –

Σ̂, X̄, Ȳ, and β̂ – for the corresponding population quantities. Under the hypoth-
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esis d = m, β = ηγ with η ∈ Rp×m and thus εi = Yi−E(Yi)−γTηT{X−E(X)}.
Given an estimate η̂ of η we can then estimate ε using the vector of residuals ε̃i

from the OLS fit of Yi on η̂TX. Substituting ε̃i for εi, Σ̂ for Σ, and X̄ for E(X),
leads to an alternative consistent estimate Ṽ ˆβ

of V ˆβ
and to a new estimate of η.

According to Carroll and Ruppert (1988), the number of such iterations should
be two or more. Our simulation experience suggests that three iterations work
well in the present context. We next present an algorithm for an iterative optimal
method. During iteration, Ṽ ˆβ

and the estimate of η are updated.
Algorithm for the iterative optimal approach

1. V̂ ˆβ
is obtained as described above. Set Ṽ0

ˆβ
← V̂ ˆβ

.

2. Estimate η and γ by minimizing (2.4) with Ṽ0
ˆβ
. Set η̂0 ← η̂ and γ̂0 ← γ̂.

3. Estimate Ṽ ˆβ
using η̂0 as an estimate of η. Set Ṽ1

ˆβ
← Ṽ ˆβ

.

4. Estimate η and γ by minimizing (2.4) with Ṽ1
ˆβ
. Set η̂1 ← η̂ and γ̂1 ← γ̂.

5. Repeat steps 3 and 4 two more times.

Since this algorithm requires a specification of d > 0, it is available for the es-
timation of d and tests of the joint dimension-predictor and conditional predictor
hypotheses.

4. Simulation and Case Studies

For illustration, we provide two examples; (1) a multivariate linear regression;
(2) a regression with linear conditional means and heteroscedasticity. Example 2
mimicked what Cook and Setodji (2003, Table 4) used. In simulations, the total
number of replication was 1000 and level α = 5% was used for all tests. For
notational conveniences, the proposed iterative optimal method and the Yoo-
Cook method will be denoted as IOPT. and Y.C. respectively in tables and
figures.

4.1 Example 1

We generate independently X = (X1, . . . , X5) and ε = (ε1, . . . , ε4) from stan-
dard normal distribution. And, Yk =

∑4
i=1 Xi+εk for k = 1, . . . , 4. The hypothe-

sis H0 : d = 0 was always rejected by the two methods. In percentages of decision
that d̂ = 1, with 100 sample sizes, the iterative optimal method (97.1%) outper-
formed the Yoo-Cook (67.3%), the former being slightly conservative in small
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samples, while the latter is quite liberal. The two methods behaved similarly for
the larger samples.

We next report simulation results from coordinate effect tests. We tested the
statement of E(Y|X) = E(Y|X−i) jointly with d = 1, and conditionally given
d = 1 for i = 1, . . . , 5, where X−i indicates a set of all predictors except the
ith coordinate Xi. If the statement is not rejected, then it can be concluded
that the ith coordinate Xi does not provide significant effect to E(Y|X). For
X1, . . . , X4, all hypotheses were rejected at least 99.7% of time with any sample
sizes considered. For X5, the results are summarized in Table 2. The results here
reflect the characteristic behavior in our other simulations. The iterative joint
and conditional predictor tests were better than the same tests by the Yoo-Cook
method. The iterative conditional predictor test showed the best small sample
behavior than the others. These differences in performance can be larger when
there is curvature and heteroscedasticity in the simulation models. The iterative
conditional predictor test was quite accurate even with relatively small samples.

Table 1: Estimated levels of 5% predictor effect tests for X5 in Example 1;
Joint dimension-predictor test with d = 1, Joint.; Conditional predictor test
given d = 1, Cond.

Y.C. IOPT.

n Joint. Cond. Joint. Cond.

100 34.8 14.7 2.7 5.5
200 18.2 8.4 4.8 4.8

4.2 Example 2

For Example 2, we generated V1 and V2 independently from t6 and V3, W1, and
W2 independently from t5. Define that X1 = W1, X2 = V1 + W2/2, X3 = −V1 +
W2/2, X4 = V2+V3, and X5 = −V2+V3. Similar predictor configuration has been
used in Cook and Setodji (2003) and Yoo and Cook (2007). This predictor config-
uration satisfies the linearity condition C1 for η = {(1, 0, 0, 0, 0)T, (0, 1, 1, 0, 0)T}.
Define that Y1 = 1+X1+0.5X1ε1, Y2 = X2+X3+0.5(X2+X3)ε2, Y3 = 0.5X3ε3,
Y4 = 0.5X4ε4 and Y5 = 0.5X5ε5, with the εi’s being independent standard normal
random variables and independent of Vis and Wis.

Table 2: Estimated level of 5% tests of d = 2 for Example 2

n Y.C. IOPT.

100 17.5 3.3
400 13.3 3.9
800 9.9 4.5
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Table 2 represents the qualitative behavior of the estimated size of the nominal
5% dimension test in our all of simulations with no highly skewed predictors. The
Yoo-Cook method were generally liberal, and sometimes greatly so, while the
iterative optimal method was observed to be slightly conservative with observed
levels varying generally between 3 and 5%. A general message is that the Yoo-
Cook method can be impacted easily by heteroscedasticity with smaller sample
sizes. The small p-values for this method suggest that in such situations it will
tend to overestimate d. Nevertheless, these results do not necessarily reflect the
behavior of the three methods in estimating d, which is perhaps the primary use
of tests on d.

Figure 1, which was constructed by computing the percentage of time that
d̂ = 2, exhibits the characteristic performance of dimension estimation. A solid
horizontal line in Figure 1 represent the true percentage of correct decisions,
which converges to 95% as n → ∞. With the smaller sample sizes the iterative
optimal method underestimated the true dimension, but in brief, the iterative
optimal method was always observed to yield the higher frequency of correct
estimated d̂ = d.

Sample size

P
er

ce
n
t

d̂
=

2

0 200 400 600 800

50
60

70
80

90
10

0

IOPT.

Y.C.

Figure 1: Percentage of runs in which d̂ = 2 versus sample size for Example 2

4.3 Case study-Minneapolis school data

To illustrate a methodology introduced in the previous sections, we use data
on the performance of students in n = 63 Minneapolis schools studied by Cook
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(1998) and Cook and Setdoji (2003). The r = 4 dimensional response vector Y
consists of the percentages P(·) of students in a school scoring above (A) and below
(B) average on standardized fourth and sixth grade reading comprehension tests,
Y = (PA4, PB4, PA6, PB6)T. Subtracting either pair of grade specific percentages
from 100 gives the percentage of students scoring about average on the test.
We used the same five predictors used by Cook and Setodji (2003): (1) the pupil
teacher ratio (PT), and the square roots of (2) the percentage of children receiving
Aid to Families with Dependent Children (AFDC), (3) the percentage of children
not living with both biological parents (B), (4) the percentage of adults in the
school area who completed high school (HS), (5) the percentage of persons in the
area below the federal poverty level (PL).

With level 0.05 tests, the iterative optimal method gives d̂ = 1 (p-value 0.00
for H0 : d = 0; p-value 0.15 for H0 : d = 1), but the Yoo-Cook method decides
d̂ = 2 (p-value 0.00 for H0 : d = 0; p-value 0.02 for H0 : d = 1; p-value 0.53 for
H0 : d = 2).

To gain useful information for deciding between d̂ = 1 and d̂ = 2, we con-
struct a simulation as follows. Letting X0 = η̂TX be the estimated sufficient
predictor from the iterative optimal method with d = 1, we generated new data
sets from the model Y ∗

ki
= fk(X0i) + σkεki

, i = 1, 2, . . . , 63, k = 1, 2, 3, 4, where
fk is a LOWESS smooth of Yk against X0 using 0.7 as the tuning parameter,
σ2

k = 62−1
∑63

i=1{Yki
− fk(X0i)}2 and the εki

’s are independent standard normal
random variables. For each of 1000 data sets generated in this way, we tested the
true null hypothesis d = 1 at nominal level 5% using each of the two methods
under consideration. The rejection rates were 61.7% for the Yoo-Cook method
and 5.6% for the iterative optimal method. Clearly, the Yoo-Cook method over-
estimates the true dimension, probably, because of the heteroscedasticity from
a scatter plot matrix of the four responses and X0 (not shown), leading us to
conclude that d = 1. Since the predictors in these data are not highly skewed
and heteroscedasticity is present, the results agree with our previous observation
that the iterative optimal method is best in such cases and generally performs
well in smaller samples.

Next, we tested each coordinate effect conditionally given d = 1 using the
iterative optimal method. The test results are given in Table 3. Row 2 in Ta-
ble 3 indicates that PL1/2 and PT contribute little to the mean function given
the remaining predictors. However, as in linear regression, a sufficiently high
correlation between PL1/2 and PT might produce masking, and deleting either
PL1/2 or PT might cause the p-value for the remaining predictor to become sig-
nificantly small. Row 3 in Table 3 gives the p-values for the same hypotheses
after removing PT from the regression. Again we reach the same conclusion, and
hence it can be determined that the mean function does depend on AFDC and
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HS, and might also depend on B. Eliminating PL1/2 and PT from the regression
and marginally standardizing each of the remaining predictors to have a sample
standard deviation of 1, the analysis might now be continued by plotting each of
the four responses against the estimated sufficient predictor

X0 = 0.832AFDC1/2 − 0.382B1/2 − 0.403HS1/2.

Table 3: p-values of the iterative conditional coordinate tests given d = 1.

AFDC1/2 B1/2 HS1/2 PL1/2 PT

Conditional 0.00 0.06 0.01 0.64 0.49
Conditional (without PT) 0.00 0.11 0.00 0.48 –

5. Discussions

Throughout this article, we have considered no highly skewed predictors.
With highly skewed predictors, simulation studies showed that the iterative op-
timal method often underestimated the true dimension of the multivariate con-
ditional mean subspace with smaller samples, while the Yoo-Cook method was
quite robust to skewness of the predictors, so it produced better results. With
larger samples, however, the iterative optimal method often yielded the best per-
formances. One remarkable result is that the iterative conditional predictor test
showed the best performance among predictor effect tests regardless of predictor
distributions.

In sufficient dimension reduction literature, predictors are often transformed
for normality to satisfy linearity condition required. Therefore, the restriction of
no highly skewed predictors in the proposed iterative optimal method does not
seem heavy, and hence we expect that it has advantage over Yoo and Cook (2007)
in many multivariate regression problems in practice. The code for the iterative
optimal approach is available upon request from the author.
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