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Abstract: The primary advantage of panel over cross-sectional regression
stems from its control for the effects of omitted variables or ”unobserved
heterogeneity”. However, panel regression is based on the strong assump-
tions that measurement errors are independently identically ( i.i.d.) and
normal. These assumptions are evaded by design-based regression, which
dispenses with measurement errors altogether by regarding the response as
a fixed real number.

The present paper establishes a middle ground between these extreme
interpretations of longitudinal data. The individual is now represented as a
panel of responses containing dependently non-identically distributed (d.n.d)
measurement errors. Modeling the expectations of these responses preserves
the Neyman randomization theory, rendering panel regression slopes ap-
proximately unbiased and normal in the presence of arbitrarily distributed
measurement error. The generality of this reinterpretation is illustrated
with German Socio-Economic Panel (GSOEP) responses that are discretely
distributed on a 3-point scale.

Key words: Longitudinal weights, panel deviations, population of panels,
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1. Random Individual-Wave Variables

Design-based sampling postulates the respondent in a fixed observable state
that s(he) reports as a discrete rating, such as 0 1 2, or recalls on a continu-
ous monetary scale. Thus, the value recorded on an opinion poll or economic
survey is regarded as a real number in waiting. More realistically, however, the
survey response may be viewed as a random variable containing measurement
error (cf. Diggle, Liang, and Zeger, 1994). The present paper favors this more
plausible interpretation and extends Bechtel’s (2007) treatment of cross-sectional
regressions to longitudinal regressions involving repeated measurements. These
measurements make up a panel of random variables, which may be dependently
non-identically distributed (d.n.d) within each respondent. A finite population of
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these panels then gives rise to a finite population of realized random individual-
wave variables. Each realization is a momentary numerical value governed by an
individual-wave-specific mean and variance. This approach retains and enhances
design-based regression, whose slopes are still normally distributed (over samples)
for any stochastic distributions (over realizations) that prevail for individual-
wave-specific responses.

Section 2 describes an unbalanced longitudinal population along with a single-
stage sample of panels. Section 3 regresses response expectations over this popu-
lation, defining new target parameters as functions of these expectations. Using
the Horvitz-Thompson theorem, Sections 4, 5, and 6 show that these new pa-
rameters are estimated by the well-known design-based coefficients. Section 7
describes a user-friendly computation of these coefficients with STATA software.
Section 8 uses this software to evaluate predictors of environmental concern in
the German Socio-Economic Panel. The final section summarizes distribution-
free panel regression and reemphasizes its applicability to arbitrarily distributed
survey responses.

2. The Population and Sample of Panels

The term panel is used here to denote an intra-individual sequence of wave
measures Yit . This sequence is illustrated by a single row in Table 1, where
t = 1 for individual i’s first appearance. A population of panels is a finite set of
panels exemplified by the seven rows in Table 1. This population is ”unbalanced”
because different individuals make different numbers of wave appearances. An
unbalanced population of panels is also a series of incomplete censuses, such as
the four columns in Table 1.

Table 1: An unbalanced longitudinal population of panels

Panel Wave 1 Wave 2 Wave 3 Wave 4

Individual 1 Y11 Y12 Y13 Y14

Individual 2 Y21 Y22 Y23

Individual 3 Y31 Y32 Y33

Individual 4 Y41 Y42

Individual 5 Y51

Individual 6 Y61 Y62

Individual 7 Y71 Y72 Y73

The boldface rows in Table 1 exhibit an unbalanced sample of three panels
drawn without replacement from our population of seven panels. Because every
wave appearance in each sampled panel is measured, Table 1 illustrates single-
stage cluster sampling (Lohr, 1999, pp. 136-145), which is called single-stage
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panel sampling in the sequel. In this example a sample of eight individual-wave
measures are drawn from a population of eighteen individual-wave values by single
stage panel sampling.

In the sequel Yit in Table 1 plays three roles: a realizable random variable,
its realized value which is a real number, and an observed (i.e. sampled) realized
value. A panel can be viewed, therefore, as a cluster of random variables or as a
cluster of fixed realizations. The following sections emphasize the importance of
stochastic measurement error in these distinctions.

3. Regressing Expectations in the Population of Panels

3.1 Stochastic measurement error

The present paper uses survey data that sharply departs from the (usually
assumed) continuity, normality, and homoscedasticity of the panel response vari-
able (cf. Baltagi, 2001; Hsiao, 2003). Here Yit = 0, 1, 2 denotes a rating of
environmental concern by German panelist i on wave t. The response options
and coding for the GSOEP’s three-point scale are:

Not concerned at all (0) Somewhat concerned (1) Very concerned (2)

This score is a discrete random variable that may be decomposed as

Yit = Hit + Eit

= α∗
i + β∗

1X1it + · · · + β∗
kXkit + γ∗

it + Eit, (3.1)

where
E(Yit) = Hit = α∗

i + β∗
1X1it + · · · + β∗

kXkit + γ∗
it,

α∗
i is a fixed individual intercept, X1it, . . . , Xkit are fixed individual-wave-specific

predictors, γ∗
it is a fixed individual-wave effect on Hit , and Eit = Yit − Hit is a

measurement error for individual i on wave t, with E(Eit) = 0 and Var(Eit) = σ2
it.

In (3.1) our unit of interest, individual i on wave t, is represented by a pair
of parameters; namely, a mean it and variance σ2

it that determine an idiosyn-
cratic, wave specific probability distribution on the scale 0 1 2. The mean Hit

is continuous in the interval [0, 2] and is composed of an individual intercept,
individual-wave-specific predictors, and an effect that is unique to individual i on
wave t. This latter effect γ∗

it saturates the linear model for the Hit in (3.1), i.e.
the structure

α∗
i + β∗

1X1it + · · · + β∗
kXkit + γ∗

it

fits the Hit exactly without constraining these expectations.
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The Eit in (3.1) may be dependently non-identically distributed (d.n.d.) over
waves within individuals. Fixing individual i and wave t, the random variable
Eit can be displayed as follows:

p0it p1it p2it

0 – Hit 1 – Hit 2 – Hit

The (unknown) response probabilities p0it, p1it , and p2it for not concerned at
all, somewhat concerned, and very concerned are arbitrarily distributed over the
points 0 – Hit ,1 – Hit , and 2 – Hit . The standard deviation σit on this 3-point
error scale denotes uncertainty in i’s rating of environmental concern. A small
σit represents a precisely reporting individual with a narrow error distribution.
A broad error distribution has a large σit characterizing an individual with less
consistent ratings over repeated realizations of the random variable Yit .

3.2 New target parameters for design-based regression

In equation (3.1) the intercept α∗
i , the slopes β∗

1 , . . . , β∗
k, and the effects γ∗

it will
be uniquely identified by the ordinary-least-squares (OLS) condition that

∑
it γ∗2

it

is minimal when the population of expectations Hit is regressed on the population
of predictors X1it, . . . , Xkit . This OLS identification of β∗ = (β∗

1 , . . . , β∗
k)T is

given by the following function of these expectations:

β = [
∑
it

xitx
T
it]

−1
∑
it

xitηit (3.2)

for i = 1, . . . , N ; t = 1, . . . , Ti, where xit = Xit − Xi·, ηit = Hit. − Hi·.
In (3.2) Xit = (X1it, . . . , Xkit), and Xi··· and Hi· are the means of Xit and Hit

within panel i (StataCorp. 2001, p. 437 ; Hsiao 2003, pp. 30-33). Thus β in (3.2)
is expressed in terms of the deviations of response expectations and predictors
from their panel means. Equation (3.2) selects the unique parameterization αi ,
β1, . . . , βk, γit from an infinite set {α∗

i , β
∗
1 , . . . , β∗

k, γ∗
it} of exact characterizations

of the Hit. This defines the new target parameters of design-based regression as
β1, . . . , βk .

4. Sampling from a Realized Population of Panels

4.1 Single-stage panel sampling

Our clustered population of individuals, each containing Ti survey waves for
i = 1, . . . , N , is anchored by

∑
i Ti expectations Hit. In Table 1, for example, i =

1, . . . , 7 panels and
∑

i Ti = 18 individual-waves. Now let the random variable Yit

be realized for every individual-wave in the population of panels. This population
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realization occurs in a hypothetical (but possible) series of incomplete censuses. A
single-stage cluster sample of n panels is then drawn without replacement from
this population of N panels. The sample consists of

∑
i Ti ratings Yit for i =

1, . . . , n. In Table 1
∑

i Ti = 8 individual-waves are drawn from i = 1, 2, 3 sampled
panels. This setup reinterprets conventional design-based sampling which treats
the Yit as constants rather than realizations of random variables.

4.2 Longitudinal weights

The sample inclusion probability for a panel is the cross-sectional inclusion
probability of its initial wave multiplied by the retention probabilities for its sub-
sequent waves. These retention probabilities are ”the conditional probabilities of
remaining in the panel” over these remaining waves (Haisken-DeNew and Frick
2005, p. 171). For example, the sample inclusion probability π3 for individual 3
in Table 1 is her (his) cross-sectional inclusion probability in wave 2 multiplied
by her (his) retention probabilities for waves 3 and 4. The sample inclusion prob-
ability π5 for individual 5, however, is simply her (his) cross-sectional inclusion
probability in wave 2. The final longitudinal weights for individuals 3 and 5 are
the reciprocals of their inclusion probabilities, i.e. w3 = 1/π3 and w5 = 1/π5 .

In the German Socio-Economic Panel each respondent is assigned a cross-
sectional weight and a longitudinal weight for each wave. The cross-sectional
weight for panel i’s first participating year is multiplied by the longitudinal
weights for her (his) subsequent participating years. Each longidudinal weight
is the reciprocal of i’s ”staying” probability for that subsequent year, i.e. the
conditional probability s(he) participates in that wave and in the previous waves
of her (his) panel (Haisken-DeNew and Frick 2005, p. 180). The product of panel
i’s initial cross-sectional weight and subsequent longitudinal weights produces
i’s final longitudinal weight wi . This weight wi covers the sequence of years
individual i is monitored within the time span 1999-2005.

5. Estimating Panel Regression Coefficients

5.1 The conventional moving target

Each element of the k × k matrix
∑

it xitx
T
it is a population sum of products,

as is each element of the k × 1 vector
∑

it xityit (Lohr, 1999, p. 360). Each sum
of products contains panel deviation scores

xit = Xit − Xi·

yit = Yit − Yi·

for t = 1, . . . , Ti , where Xi· and Yi· are the means of Xit and Yit within panel



260 Gordon G. Bechtel

i for i = 1, . . . , N . Due to Horvitz and Thompson (1952), unbiased estimates
of the matrix

∑
it xitx

T
it and the vector

∑
it xityit are given by

∑
it wixitx

T
it and∑

it wixityit for i = 1, . . . , n; t = 1, . . . , Ti . The weight wi is individual i’s final
longitudinal weight described in Section 4.2. When the sample size n is large,
the Horvitz-Thompson (HT) estimator

B = [
∑
it

wixitx
T
it]

−1
∑
it

wixityit (5.1)

for i = 1, . . . , n; t = 1, . . . , Ti , is consistent and almost unbiased for the conven-
tional target parameter

θ = [
∑
it

xitx
T
it]

−1
∑
it

xityit (5.2)

for i = 1, . . . , N ; t = 1, . . . , Ti.
The unbiasedness of B is approximate because it is the product of matrix and

vector estimators (Binder, 1983; Nathan, 1988, pp. 255-256; Thompson, 1997,
pp. 106-107; Valliant, Dorfman, and Royall, 1999, pp. 40-41; Lohr, 1999, pp.
354-361; StataCorp. 2001, Volume 4, pp. 29-30; Chaudhuri and Stenger 2005,
pp. 264-265.) The parameter θ in (5.2) is called a moving target because it is a
function of the transient deviations yit = Yit − Yi· .

5.2 The new stationary target

The important result here is that the conventional formula (5.1) also estimates
the more profound and anchored target parameter (3.2), which is a function of
constant expectations Hit rather than momentary realizations Yit. To obtain
this result we take the expected value of (5.2) over realizations of the stochastic
ratings Yit:

E(θ) = [
∑
it

xitx
T
it]

−1
∑
it

xitE(yit)

= [
∑
it

xitx
T
it]

−1
∑
it

xitηit = β

for i = 1, . . . , N ; t = 1, . . . , Ti. Because E(θj) = βj and Var(θj) → 0 as the
number of panels N → ∞, the differences θj −βj for j = 1, . . . , k are infinitesimal
for a given large population realization. Thus B in (5.1), which is almost unbiased
for θ in (5.2), is almost unbiased for β in (3.2) as well.
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6. Normality and Variances of the Estimated Coefficients

Fixing the momentary population realizations Yit for i = 1, . . . , N and t =
1, . . . , Ti , the resulting reals θ1, . . . , θk in (5.2) become the classic target param-
eters of design-based regression. Therefore, a strict design-based argument using
the θj can be given for the normality over large samples of each element Bj in B.
This provides a statistic for testing hypotheses about the new target parameter
βj against the conventional estimate Bj .

First, given the population realizations Yit , the coefficient θj for j = 1, . . . , k
can be written as a smooth function of cross-product totals in the population

{yit, x1it, . . . , xkit : i = 1, . . . , N ; t = 1, . . . , Ti}

of deviation scores. Then, from the sample

{yit, x1it, . . . , xkit : i = 1, . . . , n; t = 1, . . . , Ti}

the estimate Bj can be written as the same function of HT estimators of these
population totals. The HT estimators are corresponding sample totals of cross
products with each term weighted by wi . For example, the sample total∑

it

wix1ityit for i = 1, . . . , n; t = 1, . . . , Ti

is an HT estimator of the population total
∑

it x1ityit for i = 1, . . . , N ; t =
1, . . . , Ti (cf. Lohr, 1999, pp. 352-360; Thompson, 1997, pp. 106-108).

The asymptotic normality of HT estimators (Sen, 1988, pp. 313-328) may
now be used to justify the asymptotic normality of Bj , which is a nonlinear
function of these estimators. A “linearization” of the error Bj − θj is provided
by the first-order approximation Bj − θj ≈ εj , where εj is the linear term in a
Taylor series expansion of this error. Asymptotic multivariate normality of the
HT estimators then implies that (Bj − θj)/

√
Var(εj) is asymptotically N(0, 1)

(Lehmann, 1999, pp. 253-269, 309-315; Lohr, 1999, pp. 290-293, 310, 352-360;
Thompson, 1997, pp. 58-64, 106-111). The estimate V ar(εj) of Var(εj) is given
by the j-th diagonal element of the matrix V ar(B) in (6.2) and is computed by
software described in Section 7. Due to the infinitesimal difference between θj

and βj , the statistic

t =
Bj − βj0√

V ar(εj)
(6.1)

may be used to test an hypothesis H : βj = βj0 about our target coefficient βj .
This test for βj0 = 0 is illustrated for the regression coefficients in Table 2 below.
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Table 2: Regression coefficients for predicting environmental concern (R2 = .28)

Concern predictor Coefficient Standard error t-statistic

General economic development .045 .011 4.28
Your health .133 .011 12.26
Maintaining peace .214 .012 17.55
Crime in Germany .111 .011 10.13
Hostility toward foreigners .072 .010 6.88
or minorities in Germany
Age -.007 .002 2.93

Finally, again using “linearization”, an estimate of the entire covariance ma-
trix of B is

V ar(B) = (
∑
it

wixitx
T
it)

−1V ar[
∑
it

wix
T
it(yit − xT

itB)](
∑
it

wixitx
T
it)

−1, (6.2)

where i = 1, . . . , n and t = 1, . . . , Ti (Lohr, 1999, pp. 359-361; StataCorp., 2001,
Volume 4, pp. 29-30). As described in Section 4.2, the longitudinal weight wi

in (6.2) is fixed over the Ti waves in individual i’s panel. The j-th diagonal of
V ar(B) is the estimated variance of Bj in the denominator of (6.1). Again note
that the covariance estimator in (6.2) is expressed in panel deviation scores.

7. Software

The estimated regression coefficients, along with their standard errors and
test statistics, are easily calculated with the STATA commands:

svyset pweight longitudinal weight (7.1)
svyset psu panel (7.2)
svyreg devY devX1 ... devXk , noconstant (7.3)

(StataCorp. 2001, Volume 4, pp. 18- 31). In (7.1) longitudinal weight is the vari-
able containing the longitidunal weights. In (7.2) panel is the variable containing
the panel identifications. The definitions of the deviation variables in (7.3) are:

devY = Yit − Yi· = yit

devX1 = X1it − X1i· = x1it

· · · · · ·
devXk = Xkit − Xki· = xkit

The option noconstant in (7.3) suppresses the intercept because the response
variable and its predictors are deviations from their panel means.
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For large samples these three STATA commands return (approximately) nor-
mal and unbiased estimates B1, . . . , Bk in the presence any distributions of the
measurement errors Eit in (3.1). The standard errors of the estimated coefficients
reflect the effects of these measurement errors on coefficient variance.

8. Environmental Concern in Germany

8.1 The GSOEP for 1999-2005

Because Germany has been at the forefront of environmental protection, the
present investigation of environmental concern relies upon the well-established
German Socio-Economic Panel. The first wave of the GSOEP was carried out
in 1984 in the Federal Republic of Germany. The panelists studied here are
residents of the former Federal Republic living in private households whose head
is not Turkish, Greek, Yugoslavian, Spanish, or Italian. These respondents are
known as the ”west German sample” of the GSOEP (Haisken-DeNew and Frick
2005, p. 19).

The GSOEP interviews are conducted face-to-face with all persons in a house-
hold aged 16 and over. Our west German sample consists of 6634 respondents
measured within the seven years of the present study, i.e. 1999-2005. Further
details on the English Language Public Use File of the GSOEP, including in-
structions for obtaining the data, have been given by Wagner, Burkhauser, and
Behringer (1993).

The survey firm Infratest Burke Sozialforschung in Munich carries out the
fieldwork for the GSOEP. In addition to demographic information, the GSOEP
questionnaire contains “objective” measures such as income and unemployment,
as well as “subjective” ratings of satisfactions, worries and fears of the German
population.

8.2 The GSOEP items for rating worry

The GSOEP contains ratings of concern, or worry, about various living con-
ditions in Germany, Europe, and the world. These items are prefaced with the
question:
What is your attitude toward the following areas - are you concerned about them?

The areas of concern studied here are:
Environmental protection; General economic development; Your health;
Maintaining peace; Crime in Germany; Hostility toward foreigners or minorities
in Germany

The response scale and coding for these items were described in Section 3.1
as:
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Not concerned at all (0) Somewhat concerned (1) Very concerned (2)

8.3 The weighted panel regression

Using the STATA commands (7.1), (7.2), and (7.3), equation (3.1) is esti-
mated as

Ŷit = Ai + B1X1it + · · · + B6X6it.

Five significant predictors of environmental concern, along with age, are exhibited
in Table 2. This west German regression was run over 34269 individual-wave
measures generated by 6634 panels from 1999 to 2005. These panels ranged from
one to seven waves, with an average of 5.2 waves. The estimates A1, . . . , A6634 of
the individual effects are not included in this report.

The five concern coefficients in Table 2 are commensurate because they share
the three-point rating scale in Section 6.2. The strongest predictor of environ-
mental concern is worry about maintaining peace, followed by worries about your
health and crime in Germany. The negative age coefficient reveals that younger
Germans have greater environmental concern.

The predictors in Table 2, except for your health, suggest that German en-
vironmental concern has an altruistic societal, rather than selfish individualistic,
orientation. This is supported by the finding that potential regressors, such as
personal dwelling satisfaction, and concern with your own economic situation,
failed to reach statistical significance in predicting environmental concern.

9. Summary

An unbalanced longitudinal population of real numbers is reinterpreted as
a set of momentary realizations of random variables Yit , each governed by the
parameters Hit and σ2

it for individual i on wave t. (See Table 1.) This reinter-
pretation better justifies the usual design-based regression estimates and their
standard errors. It opens up panel regression to design-based theory, response
weighting, and arbitrary stochastic responding without reference to an abstract
superpopulation (cf. Skinner, Holt, and Smith 1989).

The primary advantage of panel over cross-sectional regression lies in the pos-
sibility of bringing variable intercepts α∗

i into the model. These individual effects,
which reside in the error term of a cross-sectional model, bias regression coeffi-
cients if they are related to both the response and its predictors. This potential
bias is removed by (3.1) which contains α∗

i as an estimable effect. However, this
individual effect, and the non-estimable individual-wave effect γ∗

it in (3.1), are
not needed in defining our target β in (3.2) and its estimate B in (5.1).

The present panel extension of Bechtel (2007) differs from model-based sam-
pling, where the finite population of realizations is itself a sample from a “su-
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perpopulation” with assumed distribution and covariance properties (cf. Binder
1983; Nathan 1988; Skinner, Holt, and Smith 1989; Thompson 1997; Valliant,
Dorfman, and Royall 1999; Binder and Roberts 2003). Here this “superpop-
ulation” is simply a finite set of arbitrarily distributed wave variables that are
clustered by individuals. These random variables are realized as responses to a
hypothetical (but possible) sequence of incomplete censuses. The targets of infer-
ence are population regression coefficients that are functions of the expectations
of individual-wave realizations. This longitudinal population, and its limited tar-
get parameters, establish a plausible bridge between design- and model-based
regression theory.

Finally, the estimate B in (5.1) of the target β in (3.2) is asymptotically
normal and almost unbiased (over samples) whatever the distribution (over re-
alizations) of Yit in the panel population. Thus, the reinterpretation of Yit as
a stochastic response rather than a fixed real number is a step forward in the
Neyman paradigm (Bellhouse, 1988). By allowing this response to be arbitrarily
stochastic, formulas (3.2) and (5.1) also strip away the distribution assumptions
thought to be necessary for panel regression (cf. Baltagi, 2001; Hsiao, 2003).
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