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Abstract: Simultaneous tests of a huge number of hypotheses is a core issue
in high flow experimental methods such as microarray for transcriptomic
data. In the central debate about the type I error rate, Benjamini and
Hochberg (1995) have proposed a procedure that is shown to control the
now popular False Discovery Rate (FDR) under assumption of independence
between the test statistics. These results have been extended to a larger
class of dependency by Benjamini and Yekutieli (2001) and improvements
have emerged in recent years, among which step-up procedures have shown
desirable properties.

The present paper focuses on the type II error rate. The proposed
method improves the power by means of double-sampling test statistics in-
tegrating external information available both on the sample for which the
outcomes are measured and also on additional items. The small sample dis-
tribution of the test statistics is provided and simulation studies are used to
show the beneficial impact of introducing relevant covariates in the testing
strategy. Finally, the present method is implemented in a situation where
microarray data are used to select the genes that affect the degree of muscle
destructuration in pigs. A phenotypic covariate is introduced in the analysis
to improve the search for differentially expressed genes.

Key words: Auxiliary covariate, double-sampling, false discovery rate, mul-
tiple tests, non-discovery rate.

1. Introduction

Although multiple testing issues have been widely discussed in the statistical
literature for a long time, novel approaches have emerged in recent years to face
situations where the number of tests is especially huge. Simultaneous tests have
for instance become one of the core issues of the analysis of gene expression data
measured in microarray experiments. In this situation, the main goal is to identify
the genes that show good evidence of being differentially expressed under two or
more conditions (eg. treatments, genotypes or times in kinetic studies).
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The first approaches, among which Bonferroni’s strategy is probably the most
famous, aim at controlling the probability of a single false discovery, also called
Family-Wise Error Rate and denoted FWER. As shown in Dudoit, Shaffer and
Boldrick (2003), the power of such procedures can be improved by means of ap-
proximations of the distribution of the test statistics based on permutation or
bootstrap methods. In the recent discussions about an alternative type I error
rate that would yield to less conservative decision rules, a major innovation has
come from Benjamini and Hochberg (1995), who define the false discovery rate
(FDR) as the proportion of true H0 among the tests for which H0 is rejected.
Benjamini and Hochberg (1995) also provide a decision rule that is shown by
Benjamini and Yekutieli (2001) to control the FDR under a large class of posi-
tive dependency between the test statistics. Statistical properties of the former
methodology have been explored by many authors (see for instance Storey, Taylor
and Siegmund (2004)) under quite wide distributional assumptions.

As mentioned above, either for the FWER or the FDR, attempts to improve
the existing methods involve a better knowledge of the responses’ dependency
structure. Unfortunately, the high dimensionality of the data usually prohibits
the modelling of the whole set of variables’ joint distribution. As mentioned
by Kendziorski et al. (2003), treating variables as independent tend to be less
efficient than some Bayesian approaches which take advantage of the shared in-
formation between variables. Similarly, some authors (see for instance Lönnstedt
and Speed (2002); Smyth (2004)) proposed moderated versions of the t-statistic
where the variable-specific variance estimator that appears in the denominator is
augmented by a constant that is derived from the data of all variables.

In many situations, relating the responses to auxiliary variables can also give
insight into the correlation structure of sets of variables. For instance, in the case
of transcriptomic data, phenotypic variables, often much easier to measure than
microarray data, can help interpreting the correlation between gene expressions.
As mentioned by von Heydebreck, Huber and Gentleman (2004), integrating bio-
logical relevant knowledge and gene expressions in the differential analysis is not
usual, though usually handled by canonical analysis in multivariate exploratory
data analyses.

The aim of our paper is to propose a testing method, based on double-
sampling t-statistics that integrates external information to improve the power of
the existing testing strategies. This external information is supposed to be avail-
able in the sample for which the responses are measured but also on additional
items for which the responses are not measured. Improving inference by use of
auxiliary variables in such a double-sampling framework is not novel in some ar-
eas of statistics, although multiple sampling strategies are usually dedicated to
improvements of estimation procedures and more rarely to testing issues.
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Origins of such designs are probably to be found in Cochran (1963) that shows
how to reduce the variance of the estimation of a mean by use of an auxiliary
variable. The same idea can be found, for instance in Conniffe (1985), transposed
to the estimation of the parameters of a multivariate normal regression model.
In this situation, most of the papers have dealt with the optimal allocation of
the measurements of the outcome and of the auxiliary variable (see Causeur
and Dhorne (1998), Causeur (2005)). Analogous ideas can also be found in
Breslow, McNeney and Wellner (2003), where the properties of estimation in
non-parametric models are also investigated in a double-sampling framework.
The starting point of the present paper comes from Causeur and Husson (2007)
that adapted the methodology to testing issues.

In section 2, some basics about multiple testing are recalled and the impact of
a high correlation on the distribution of the error rates is discussed. Section 3 is
dedicated to the definition of double-sampling t-statistics and section 4 addresses
the statistical properties of a double-sampling Benjamini-Hochberg procedure. In
section 5, the method is illustrated by microarray data used to select the genes
that affect the degree of muscle destructuration in pigs.

2. Simultaneous Test of a Large Number of Hypotheses

Let Y
(k)
ij be the jth replicate, j = 1, . . . , n

(k)
i of the kth variable, k = 1, . . . ,K,

for the ith level of a factor. Hereafter, the case of a factor with only two levels
will be considered. Usually, for example in the case of microarray data, K is very
large and n

(k)
i can be quite small. For gene expression data, the sample sizes n

(k)
i

are most often the same for a given i since it corresponds to the number of slides
under condition i. However, missing data can occur, resulting for instance from
technical concerns that have led to flag some spots on the microarray. The usual
framework, in most situations where such kind of problems arise, is assumed,
namely Y

(k)
ij ∼ N (µ(k)

i ; σ2
k). The main goal is to point out the variables Y (k) for

which the null hypothesis H
(k)
0 : µ

(k)
1 = µ

(k)
2 , k = 1, . . . ,K, has to be rejected in

favor of the alternative hypothesis H
(k)
1 : µ

(k)
1 6= µ

(k)
2 .

2.1 The false discovery rate

Most of the multiple testing strategies are based on the ranked p-values p1 ≤
p2 ≤ . . . ≤ pK of the t-tests used to compare the mean levels of the K variables
under both conditions. Basically, procedures rely on the choice of a cut-off t such
that, if pk ≤ t, H

(k)
0 is rejected. For each cut-off t, call Vt the number of false

discoveries (or false positives), namely the number of variables for which H
(k)
0

is rejected although it is true. Call also Rt the observable number of variables
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for which H
(k)
0 is rejected. The False Discovery Rate for the cut-off t (FDRt) is

defined as the expected rate of false discoveries among the variables for which
the null hypothesis is rejected:

FDRt = E
[

Vt

Rt
|Rt > 0

]
P(Rt > 0).

Benjamini and Hochberg (1995) suggest to choose t among the ordered p-values
pk. Suppose first that the number m0 of true H

(k)
0 is known. If t = pk, then

Rt = k and, assuming the p-values are independently and uniformly distributed,
an intuitive estimator of FDRt is given by F̂DRpk

= m0pk/k. Now, if k∗ denotes
the largest k such that F̂DRpk

≤ α, then the cut-off is pk∗ . Usually, K − m0

is negligible with respect to K which allows the replacement of m0 by K in the
former procedure. Significant improvements have emerged from central discus-
sions about a better estimation of m0, for instance, by step-up strategies, as in a
recent paper by Benjamini, Krieger and Yekutieli (2006). Under a quite general
assumption of positive dependency between the test statistics, Benjamini and
Yekutieli (2001) show that such a procedure controls the FDR at level α.

2.2 The non-discovery rate

The discussions about simultaneously testing many hypotheses have so far
focused on the Type I error rate. Dudoit et al. (2003) have however explored
different definitions of the power of a multiple testing strategy. Among these
definitions, 1−E(Tt/m1) has been widely used (see Storey et al. (2004), Li et al.
(2005)), where m1 is the number of true H

(k)
1 and Tt the number of non-rejected

H
(k)
0 that should have been rejected (false negatives). From a mathematical point

of view, measuring the type II error rate by the Non-Discovery Rate NDRt =
E(Tt/m1) is however not consistent with the choice of FDRt as a type I error
rate. This have led Genovese and Wasserman (2002) to propose an alternative
type II error rate, the False Non-discovery Rate FNRt = E(Tt/(K − Rt)|Rt <
K)P(Rt < K). As it seems that NDRt makes more sense for practitioners, it will
hereafter be preferred to FNRt.

2.3 Impact of a high correlation on the distribution of the error rates

Due to the variable-by-variable approach in the procedures cited above, the
basic framework for studying their statistical properties has often been indepen-
dence between the variables. However, in many situations such as microarray
experiments, it is well-known that this assumption is far from true. This have led
many authors to propose corrections of the initial procedures that better accounts
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for dependency to control the type I error rate. Moreover, Owen (2005) showed
that dependencies between the hypothesis tests greatly affect the variance of the
number of false discoveries and provided an estimator for this variance taking
into account the correlations between test statistics.

The following simulation study is intended to evaluate the impact of a high
correlation on the distribution of both error rates. First, in 1000 datasets with
two groups of n = 10 rows, 100 independent variables are simulated according
to a normal distribution with standard deviation 1 and expectation 0 for half of
the variables. For the remaining 50 variables, µ

(k)
2 − µ

(k)
1 is set to 1.25. In 1000

other datasets, the same feature is reproduced except that each pair of variables
has the same intra-group correlation ρ = 0.90. For each dataset, a Benjamini-
Hochberg procedure is performed with a control of the FDR at level α = 0.05
and the proportions of false negatives and false positives are calculated.
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Figure 1: Distributions of the rates of false negatives and false positives

Figure 1, displaying the histograms of the error rates, shows a much larger
dispersion of the error rates when the variables are highly correlated. In other
words, in the case of a high correlation, the type II error rate is much more



224 Maela Kloareg and David Causeur

unstable than in the opposite case of independence. Note that the expected rate
of false negatives, namely the NDR, is however, roughly speaking, the same.

3. Testing in the Presence of an Auxiliary Covariate

Although there is no methodological concern considering the case of many
auxiliary covariates, the present paper focuses on the situation of only one co-
variate Z.

3.1 Double-sampling t-statistics

Suppose that measurements Zij , j = 1, . . . , Ni, of Z are available on a sample
containing the n(k) = n

(k)
1 +n

(k)
2 items on which Y (k) is measured. In the following,

Zij is assumed to be normally distributed with mean µi and standard deviation
σ. Hereafter N = N1 +N2 denotes the size of the wider sample. Call Y

(k)

n(k) (resp.
Zn(k)) the n(k)−vectors of the observations of Y (k) (resp. Z) on the sample of
size n(k). Call also ZN the N−vector of the observations of the covariate Z on
the whole sample of size N .

A useful way of defining the model in a double-sampling context consists in
considering the (n(k)+N)−vector obtained by concatenating Y

(k)
n and ZN . Under

the assumptions mentioned above, U (k) = (Y (k)′

n
(k)
1

, Y
(k)′

n
(k)
2

, Z ′
N1

, Z ′
N2

)′ is normally

distributed with the following expectation and variance:

E(U (k)) =


1

n
(k)
1 ,1

0
n

(k)
1 ,1

0
n

(k)
1 ,1

0
n

(k)
1 ,1

0
n

(k)
2 ,1

1
n

(k)
2 ,1

0
n

(k)
2 ,1

0
n

(k)
2 ,1

0N1,1 0N1,1 1N1,1 0N1,1

0N2,1 0N2,1 0N2,1 1N2,1




µ
(k)
1

µ
(k)
2

µ1

µ2

 ,

Var(U (k)) =

 σ2
kIn(k) ρkσσkIn(k) 0n(k),N−n(k)

ρkσσkIn(k)

0N−n(k),n(k)
σ2IN

 , (3.1)

where ρk is the intra-condition correlation between Y (k) and Z and 0m,p (resp.
1m,p) stands for the m × p matrix which all elements are 0 (resp. 1).

The above double-sampling context is a particular case of the general situ-
ation where the test of a General Linear Hypothesis, here H

(k)
0 : µ

(k)
1 = µ

(k)
2

against H
(k)
1 : µ

(k)
1 6= µ

(k)
2 , is considered under the assumption of a non-diagonal

covariance structure. If the variance parameters are assumed to be known, the
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likelihood ratio-test statistic T (k) can be expressed as follows:

T (k)(ρk, σk, σ) =

[
Ȳ

(k)
1 − Ȳ

(k)
2

]
+ ρk

σk
σ

{[
Z̄1 − Z̄2

]
− [z̄1 − z̄2]

}
σk

√
1

n
(k)
1

+ 1

n
(k)
2

√
1 + ρ2

k

[
f
(k)
1 f

(k)
2

f (k) − 1
] , (3.2)

where f
(k)
i = n

(k)
i /Ni, f (k) = n(k)/N are respectively the intra-condition and

global sampling fractions, Z̄i and z̄i are the intra-condition means of Z on the
samples of size Ni and n

(k)
i respectively. Note that, if ρk = 0 or if the sampling

fractions are 1, T (k) coincides with the usual t-statistic derived on the small
sample, which means that no improvement is to be expected from the covariate.

According to Causeur (2005), the maximum-likelihood estimators of the vari-
ance parameters are given by the following expressions:

σ̂2 =
{
σ̂2

}(N)
,

σ̂2
k =

{
σ̂2

k

}(n) +

[
σ̂

(n)
kz

{σ̂2}(n)

]2 [{
σ̂2

}(N) −
{
σ̂2

}(n)
]
,

ρ̂k =
σ̂

(n)
kz

{σ̂2}(n)

σ̂

σ̂k
.

where σ̂
(n)
kz ,

{
σ̂2

k

}(n)
,

{
σ̂2

}(n) and
{
σ̂2

}(N) are the usual maximum-likelihood
estimators of the intra-group covariance σkz between Y (k) and Z and the intra-
group variances σ2

k and σ2, based on the residual sum-of-squares on the sample
of size N or on the sub-sample of size n(k). The double-sampling t-statistics,
T̂k = T (k)(ρ̂k, σ̂k, σ̂), integrating the measurements of the covariates, are obtained
by plugging in the ML estimators of the variance parameters in expression (3.2).

3.2 Small-sample distribution

In some traditional fields of application of the multiple testing methods, a very
small number of replications in each group is rather frequent. Therefore, there
is an actual need in a non-asymptotic approximation of the double-sampling test
statistics’ distribution. It is straightforward deduced from Causeur and Husson
(2007) that the distribution of T̂k can be approximated by Tn(k),N (ρ2

k), defined as
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follows:

Tn(k),N (ρ2
k) =

√
n

(k)
1 + n

(k)
2 − 2

√
1 +

ρ2
k

1 − ρ2
k

f
(k)
1 f

(k)
2

f (k)

× T1√
T2 + n1+n2−2

N1+N2−2
f
(k)
1 f

(k)
2

f (k) T3

, (3.3)

where T1, T2 and T3 are mutually independent. In addition, if δ
(k)
n = (µ(k)

2 −
µ

(k)
1 )/σk, T1 is distributed according to a normal distribution with expectation

δn,N (ρk) = δ(k)
n /

{√
ρ2

k [(1/N1) + (1/N2)] + (1 − ρ2
k)

[
(1/n

(k)
1 ) + (1/n

(k)
2 )

]}

and standard deviation 1. T2 is distributed according to a χ2
n1+n2−3 distribu-

tion. Suppose now that B and S are independent random variates following
respectively a B([n(k)

1 + n
(k)
2 − 2]/2, [N1 + N2 − n

(k)
1 − n

(k)
2 ]/2) and a χ2

N1+N2−2,
then T3 is conditionally distributed, given B and S, as the ratio between a non-
central chi-square variable with 1 degree of freedom and non-centrality parameter
[ρ2

k/(1 − ρ2
k)]BS and B.
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Figure 2: Quantile-quantile plots for the distribution of the moderated t-
statistics. The empirical quantiles are derived from 5000 simulations whereas
the quantiles of the approximate distribution are deduced from 3.3 by Monte-
Carlo methods.

Even in small-sample conditions, Tn,N (ρ2
k) is a good approximation of the

distribution of T̂k. In order to illustrate the former result, the empirical quantiles
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of the test statistic based on 5000 simulations are derived and compared to the
theoretical quantiles of the approximate distribution under two schemes: n =
6, N = 10, ρk = 0.3 and n = 20, N = 40, ρk = 0.3. The quantile-quantile plot
assessing the closeness of the two distributions is displayed in Figure 2.

3.3 Power of the double-sampling test

First, let us consider that the variance parameters are known. It is straight-
forward checked that the distribution of T (k)(ρk, σk, σ) is then normal with mean
δn,N (ρk) where δ−2

n,N (ρk) can be expressed as a convex linear combination of
δ−2
n = δ−2

n,N (0) and δ−2
N = δ−2

n,N (1):

δ−2
n,N (ρk) = (1 − ρ2

k)δ
−2
n + ρ2

kδ
−2
N . (3.4)
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Figure 3: Power functions for the double-sampling test. On the left plot,
n

(k)
1 = n

(k)
2 = 3 and N1 = N2 = 20. On the right plot, n

(k)
1 = n

(k)
2 = 5 and

N1 = N2 = 20.

Note that δn and δN are the expectations of the test statistics calculated on
the sample of size n(k) and N respectively. Therefore, expression (3.4) implies
that the power of the double-sampling test is always larger than the power of
the test based on the small sample only (equality holds if ρk = 0) and always
smaller than the test that would be based on the sample of size N (equality holds
if ρk = 1).

When the variance parameters are no longer assumed to be known, the pre-
ceding result remains true asymptotically. However, in the case of a small value
of ρ2

k and a small sample size n(k), the usual single-sampling test on the small
sample shall be preferred to the double-sampling strategy. This is particularly
obvious in the left plot of Figure 3 displaying the power functions for various
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values of ρk together with the power function of the t-test on the small-sample
in the case n

(k)
1 = n

(k)
2 = 3 and N1 = N2 = 20. On the right plot, showing the

same functions with n
(k)
1 = n

(k)
2 = 5, the difference between the power function

of the single-sampling t-test and the double-sampling t-test for values of ρk close
to zero is much thinner.

4. Double-sampling Benjamini-Hochberg Procedure

Obviously, the testing method described above show desirable properties when
the double-sampling scheme can take advantage of an auxiliary variable that is
well correlated with the response. In the studies of high flow experimental data, it
is of course most probably impossible to find relevant auxiliary covariates that can
exhaustively be used to improve the power of each test. However, as illustrated
in the next section, a pre-filtering of the variables with respect to their high
correlation with some auxiliary covariates points out sets of variables for which
the double-sampling tests can be beneficial.
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Figure 4: Left plot: NDR for various values of ρ. Right plot: Histograms of
the rates of false negatives for the single-sampling and the double-sampling
approaches (ρ = 0.6)

The multiple tests procedure focusing on these particular sets of variables
only differs from the Benjamini-Hochberg approach described in section 2 by the
variable-by-variable tests on which it is based. Let us denote p̃1 ≤ p̃2 ≤ . . . ≤ p̃K

the p-values of the double-sampling t-tests used to compare the mean levels of
the K variables under both conditions. For a given cut-off t = p̃k, such that,
if p̃k ≤ t, H

(k)
0 is rejected, the proposed estimator of FDRt is now given by

F̃DRp̃k
= m0p̃k/k. By analogy with the Benjamini-Hochberg procedure, if k∗

denotes the largest k such that F̃DRp̃k
≤ α, then the chosen cut-off is p̃k∗ .



Double Sampling Designs to Reduce the NDR 229

The following simulation study aims at showing the impact of the above
modification on the power of the procedure. For various values ρ, 1000 datasets
are simulated, with two groups of n1 = n2 = 10 rows and 100 variables, normally
distributed with a null difference between the means in both groups for half of the
variables and a difference of 1.25 for the second half of the variables, standard
deviation 1 and an equal intra-group correlation ρ with an auxiliary covariate
Z. Z is itself normally distributed with standard deviation 1 and µ2 − µ1 = 2.
N1 = N2 = 75 observations of Z are available in each group, among which the
n1 = n2 = 10 rows for which the responses are observed. For each dataset, both
the usual Benjamini-Hochberg procedure based on the single-sampling t-tests
and the modified Benjamini-Hochberg based on the double sampling-scheme are
performed with a control of the FDR at level α = 0.05.

Figure 4 shows the decrease of the mean NDR of the double-sampling proce-
dure when ρ increases. It also shows that the mean NDR of the single-sampling
strategy remains quite unchanged for all the values of ρ. In fact, the perturbed
form of the plot is due to the high dispersion, already mentioned above, in the
distribution of the rate of false negatives. Figure 4 also displays histograms of
the rates of false negatives for the two approaches for ρ = 0.6 and shows that the
double-sampling method reduces the dispersion of the error rates.

5. Application to Microarray Data

The above double-sampling method is implemented in a situation where mi-
croarray data (n1 = n2 = 7) containing information on K = 3442 genes are
analyzed to select the genes that affect the degree of muscle destructuration in
pigs. The two groups are coded as 1 for high quality and 2 for structureless
meat. The original gene expressions were normalized in two steps: a logarithmic
transformation and a global mean normalization (same mean for each microar-
ray) were performed. The auxiliary variable Z introduced in the double-sampling
scheme is the pH, measured for N = 163 pigs (N1 = 87, N2 = 76). This covari-
ate is indeed known to play a role in the destructuration of meat, which explains
the highly significant difference between the mean values of Z in the two groups
(p-value < 10−10).

Hereafter, two Benjamini-Hochberg procedures, with a control of the FDR at
level α = 0.05, are compared:

• BHss, the usual single-sampling method based on the p-values pk of the
t-tests,

• BHds, the method based on the p-values p̃k of the double-sampling t-statistics
integrating Z. In fact, only 202 gene expressions, which squared intra-group
correlation with Z is larger than 0.25 are subject to the double-sampling
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correction while the remaining test statistics are left unchanged. The re-
sults of a Principal Component Analysis performed on the gene expressions
show the correlation structure in this set of genes (see Figure 5).
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Figure 5: Principal Components Analysis on the set of selected gene expressions
(for convenience, only the variables for which the correlation with the 2D factor
map is higher than 0.6 are represented).

Figure 6 displays the scatterplot of pk versus p̃k for these 202 gene expres-
sions and point out some disagreements between the single-sampling and the
double-sampling approaches. As pointed out by Causeur and Dhorne (1998), a
statistical property of the double-sampling inference can help interpreting such
disagreements. Indeed, the numerator of the test statistics defined by expression
(3.2) is the difference between the double-sampling estimators of µ

(k)
1 and µ

(k)
2 .

Furthermore, these estimators are also the intra-group means of the N values of
Y (k) obtained by appending the n(k) observed values and the N − n(k) predicted
values from Z by the analysis of covariance model fitted on the small sample.
The double-sampling test-statistics is therefore similar to a classical t-statistics
derived on the whole sample with imputed values. However, the variance that
appears in the denominator of expression (3.2) accounts for the dispersion due to
the imputations of N − n(k) values.
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Figure 6: Plot of the single-sampling versus the double-sampling p-values for
the set of gene expressions correlated to Z.
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Figure 7: Two examples of disagreements between the single-sampling approach
(test based on the observed values identified by black dots) and the double-
sampling strategy (test based on both observed and predicted values identified
by white dots)
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In an illustrative purpose, the results for two gene expressions, say Y (1) and
Y (2), are detailed here. For Y (1), H

(1)
0 is rejected with the double-sampling

method (p-value = 0.007) whereas it is not with the t-test (p-value = 0.89),
and for Y (2) the situation is opposite (p-values of 0.035 vs. 0.65). For both
genes, Figure 7 plots the observed values of the responses together with the
imputed values. The plots reveal that the 7 observed values in each group are
not representative of the expected distribution regarding their pH, which explains
the large difference between the p-values.

Finally, Table 1 gives the 2 × 2 table summarizing the number of genes
declared as differentially observed with both methods. In this particular case,
increasing the power of the test by use of the pH have resulted in declaring more
genes as differentially expressed.

Table 1: Number of positive and negative genes in the selected set of genes for
both methods

BHss : single-sampling tests
BHds : double-sampling tests Positive Negative Sum
Positive 8 58 66
Negative 0 3376 3376

6. Concluding Remarks

In the present paper, a new method for simultaneous tests of a large number
of hypotheses is presented and shown to improve the power of existing methods
by integrating external information. Enhancements are made possible by an aux-
iliary variable which measurements are available together with the other variables
on a small sample and also on additional items. First, a variable-specific double-
sampling test statistics is proposed and its small-sample distribution is provided.
This enables precise calculations of the power function for a given intra-group
correlation. By analogy with the Benjamini-Hochberg procedure in the single-
sampling case, a procedure for multiple tests is deduced in a double-sampling
scheme. For a relevant choice of an auxiliary variable, as highly correlated with
the responses as possible, the type II error rate is shown to be reduced. Moreover,
integrating external information also stabilizes the dispersion of the error rates.

For convenience, it has been chosen to focus on the case of only one covari-
ate while Causeur and Husson (2007) provide the statistical tools to extend the
present results to a multivariate situation. Although this extension is not neces-
sary to understand how auxiliary information can be used to improve the power
of the tests, it is however necessary for most applications of multiple testing since
it allows a more comprehensive approach of high dimensional data. It also raises
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the issue of the selection of covariates in order to give insight to the joint distribu-
tion of the test statistics, at least within blocks of variables. This idea is probably
not far from the suggestion made by von Heydebreck et al. (2004), in the context
of the analysis of microarray experiments, of a preliminary filtering of the genes
by use of metadata before the actual multiple testing method is applied.

The small-sample distribution of the double-sampling test statistics that is
given above gives numerical tools to study the impact of the intra-condition
correlation on the distribution of the error rates. However, further mathematical
developments are needed to derive closed-form expressions for the moments of
these error rates. First, this would assess the control of the False Discovery
Rate in a double-sampling framework. Moreover, this would yield tools to derive
the optimal allocation for the numbers of observations of the responses and the
covariates for a target expected non-discovery rate.
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