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Abstract: Testosterone levels decline as men age. There is little consensus
on what testosterone levels are normal for aging men. In this paper, we
estimate age-specific prevalence of testosterone deficiency in men using nor-
mal mixture models when no generally agreed on cut-off value for defining
testosterone deficiency is available. The Box-Cox power transformation is
used to determine which transformation is most appropriate for correcting
skewness in data and best suits normal mixture distributions. Parametric
bootstrap tests are used to determine the number of components in a normal
mixture.
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1. Introduction

Testosterone is a male sex hormone that helps maintain bone mass, fat dis-
tribution, male hair patterns, muscle mass and strength, sex drive and sperm
production throughout male adult life. Testosterone levels decline as men age.
Harman et al.(2001) reported that most of change in male testosterone levels
occurs before age 50. Some reported effects of testosterone deficiency in men
include decreased energy, reduced muscle mass and strength, decreased cognitive
function, less sexual interest or potency, increased breast size, and a depressed
mood.

What are normal testosterone levels for healthy older men? There is no gen-
eral agreement on what testosterone levels are normal for healthy aging men. A
recent endocrine society annual andropause consensus meeting suggested that 300
nanograms per deciliter (ng/dl) is the lower limit for normal testosterone levels,
and total testosterone levels less than 200 ng/dl clearly indicate hypogonadism
in healthy young men. Harman et al.(2001) reported age-specific prevalences of
hypogonadism of 12, 19, 28, and 49 percent for men in their 50s, 60s 70s, and
80s, respectively. They defined hypogonadism as total testosterone levels < 325
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ng/dl. Mohr et al.(2005) used data from men aged 40 to 79 years to aid in the
diagnosis of testosterone deficiency. They defined total testosterone levels less
than the age-specific 2.5th percentile as abnormally low testosterone levels; thus
about 2.5 % of men would have abnormally low testosterone in their male aging
study. The corresponding age-specific cut-off values are 251, 216, 196, and 156
ng/dl for men in their 40s, 50s, 60s, and 70s, respectively.

The prevalence of testosterone deficiency is conventionally estimated using a
pre-specified cut-off value to classify each serum total testosterone. When there
is a gold standard for defining or determining testosterone deficiency, the conven-
tional approach will in general give a good estimate of the testosterone deficiency
prevalence. When there is no gold standard, prevalence estimates obtained us-
ing the conventional approach to define deficiency status will often vary with
the definition used. Establishing cut-offs that are generally agreed is difficult or
impossible when there is no clear separation between normal testosterone lev-
els and abnormal testosterone levels. As testosterone levels decline gradually
with age in men, a subgroup of men will have testosterone deficiency and have
signs and symptoms related to hypogonadism whereas a subgroup will still have
testosterone levels within the normal range throughout their lifetimes causing no
significant problems at all. If we assume that serum total testosterone samples
are taken from a mixture of men who have testosterone deficiency and those
who do not have testosterone deficiency, the prevalence of testosterone deficiency
can be estimated through fitting a two-component mixture model to the total
testosterone levels. Unlike the conventional approach for estimating prevalence,
mixture models do not need a pre-specified cut-off value to classify each serum
total testosterone. Mixture models have been used to estimate the disease preva-
lence in other studies in the absence of a gold standard measure for a definitive
diagnosis of disease status; see, for example, Gay (1996), Pfeiffer, Gail and Brown
(2000), and Pfeiffer et al.(2008).

In this paper, we use mixture models to account for individual testosterone
levels that can arise either from a subpopulation with testosterone deficiency or
from a subpopulation without testosterone deficiency, and to estimate the age-
specific rate of testosterone deficiency in men in a particular age group when
no generally agreed on cut-off value for that age group is available. Mixture
models are often used to model data that arise from heterogeneous populations
where the subpopulation to which an individual observation belongs is unknown.
The component distributions can arise either from the same or different para-
metric families. For examples of applications of mixture models, see Everitt and
Hand (1981), Titterington, Smith and Makov (1985), McLachlan and Basford
(1988), and McLachlan and Peel (2000). The Box-Cox family of power trans-
formation is used to transform data to a mixture of normal distributions (Box
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and Cox, 1964). The maximum likelihood estimators of the unknown parameters
are obtained through application of the EM algorithm and a grid search over
a range of possible power transformations (Dempster, Laird and Rubin, 1977).
We illustrate the use of the Box-Cox power transformation in mixture models to
estimate age-specific prevalence of testosterone deficiency with a sample of serum
total testosterone levels obtained from an HIV at-risk aging men’s prospective
study. Data and model description are given in Section 2. Parametric bootstrap
tests for determining the number of components in a normal mixture distribu-
tion are given in Section 3. In Section 4, we adjust effects of covariates on total
testosterone levels. Discussions and concluding remarks are presented in Section
5.

Figure 1: Histogram of total testosterone levels from 404 men in their 50s

2. Data and Model Description

Serum total testosterone levels were measured in duplicate using time-resolved
immunofluorometric assays (DELFIA; Pharmacia) in 404 men who were 50 to 59
years of age and currently not taking androgens from a cohort of HIV at-risk
aging men’s prospective study; details on the study design are given in Klein et
al.(2005). We wish to estimate the age-specific rate of testosterone deficiency in
men aged 50 to 59 with or at risk for HIV infection using a two-component normal
mixture model when no generally agreed on cut-off for testosterone deficiency
exists. The mean (± standard error) total testosterone level was 304.94 ± 10.81
ng/dl with a median (range) value of 273.5 (2 - 2070) ng/dl. Of these 404 men, 180
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(44.6%) had total testosterone levels greater than 300 ng/dl, 91(22.5%) between
200 and 300 ng/dl, and 133 (32.9%) less than 200 ng/dl. The histogram of total
testosterone levels is given in Figure 1.

From inspection of Figure 1, it appears that the distribution of total testos-
terone levels is skewed to the right and does not seem to suggest a bimodal
distribution that may support using a mixture of two normal distributions to fit
the data and estimate proportion of men with testosterone deficiency. It is noted
that skewness is an inherent part of mixture distributions, in particular, when the
component distributions are not well separated. If evidence for a mixture of two
normal distributions is confounded by skewness, an appropriate transformation
on total testosterone levels is often sufficient to make the normal mixture distri-
bution appropriate for the transformed data. As conventional transformations
such as logarithms or square roots are not sufficient to provide an appropriate
adjustment for skewness in the data, the Box-Cox power transformation is used
to determine which transformation is most appropriate for correcting skewness
and best suits normal mixture distributions. Mixture models of transformed nor-
mal components by the Box-Cox power transformation have been used in other
studies (MacLean, Morton and Elston, 1976; Schork and Schork, 1988; Gray,
1994; Gutierrez et al., 1995).

Let Yi denote the total testosterone level obtained from subject i and n = 404
be the number of men in this study. Assume that there exists a real number λ

such that the Box-Cox power transformation on Yi denoted as Y
(λ)
i is distributed

as a two-component normal mixture distribution, the probability density function
of Yi is given as follows

f(yi; θ) = {πf1(y
(λ)
i ; µ1, σ

2
1) + (1 − π)f2(y

(λ)
i ; µ2, σ

2
2)}yλ−1

i , (2.1)
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y
(λ)
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i − 1)/λ if λ 6= 0,
log yi if λ = 0,

λ is the unknown Box-Cox power transformation parameter, θ = (π, µ1, µ2, σ
2
1, σ

2
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is a vector of unknown parameters, fi(·) is the normal density function with mean
µi and variance σ2

i , π > 0 is the mixing proportion, and the last term on the right-
hand side of (2.1) corresponds to the Jacobian of the transformation from yi to
y

(λ)
i . To ensure identifiability of θ for a given value of λ, we assume without loss

of generality that µ1 < µ2. Kiefer and Wolfowitz (1956) noted that the likelihood
function of a normal mixture with unequal variances is unbounded above. Day
(1969) argued that spurious maximizers may occur if some component distribu-
tion has a very small variance relative to others when the corresponding cluster
contains few data points sufficient close together. Hathaway (1985) suggested
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using the constraint that mini,j(σi/σj) ≥ c > 0, c ∈ (0, 1] to rule out spurious
maximizers and showed that there exists a constrained global maximizer of the
likelihood function on the constrained parameter space. To cope with unbounded-
ness of the likelihood function and avoid spurious maximizers, we further assume
that min(σ1/σ2, σ2/σ1) ≥ c > 0, for some c in the unit interval. The mixing pro-
portion π represents that a subgroup π of these men have testosterone deficiency
whereas a subgroup 1 − π of these men do not have testosterone deficiency.

The log-likelihood function of y1, . . . yn is given by

L(λ, θ;y) =
n∑

i=1

[log{πf1(y
(λ)
i ; µ1, σ

2
1) + (1 − π)f2(y

(λ)
i ; µ2, σ

2
2)} + (λ − 1) log yi].

(2.2)
For a fixed λ, the last term on the right-hand side of (2.2),

∑
(λ − 1) log yi, is

just a constant and maximization of L can be achieved by maximizing the log-
likelihood function of the transformed data, y

(λ)
1 , . . . y

(λ)
n given in the first two

terms on the right-hand side of (2.2) through application of the EM algorithm
with some modification subject to the constraint min(σ1/σ2, σ2/σ1) ≥ c. Thus,
the maximizer of L can be found through use of the EM algorithm and a grid
search over a range of possible λ values. It can be shown that the maximum
likelihood estimator λ̂ is that value of λ that maximizes (2.2). Alternatively, the
maximum likelihood estimator for λ can be found using Newton’s method in the
M step of the EM algorithm to maximize L.

A grid of λ ∈ [−2, 2] were used in our attempt to determine which trans-
formation is most appropriate for the normal mixture distribution. Since the
likelihood of mixture distributions often has multiple modes, there is no guaran-
tee that one or few starting values will find the correct root. Thode, Finch and
Mendell (1988) suggested using several starting values to search for all possible
modes. It is noted that problems associated with the likelihood function on the
unconstrained parameter space can occur when c is small. How small can c be
to ensure that the constrained parameter space contains the true values of the
parameters. Lo (2005) reported based on a simulation study that c = 0.25 ap-
pears to work well for normal mixture distributions with unequal variances. In
this study, we set the lower bound for the constraint on the component variances
c = 0.25. For each λ value, one hundred sets of starting values for θ were used in
our search for the global rather than local maximizer through application of the
EM algorithm subject to the constraint that min(σ1/σ2, σ2/σ1) ≥ 0.25. For the
selection of starting values, See, for example, Thode, Finch and Mendell (1988).

Fitting model (2.1) to our n = 404 measurements on total testosterone levels
yielded the maximum likelihood estimates (± standard error) λ̂ = 0.3, π̂ =
0.185 ± 0.09, µ̂1 = 13.19 ± 0.97, µ̂2 = 14.57 ± 0.23, σ̂1 = 4.06 ± 0.69 and σ̂2 =
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3.00 ± 0.24,. The approximate 95% confidence interval for the Box-Cox power
transformation parameter is given by 0.05 ≤ λ ≤ 0.65. The estimated mixing
proportion π̂ = 0.185 gave an estimated 18.5% of men aged 50 to 59 with or at
risk of acquiring HIV having testosterone deficiency, and an estimated 81.5% of
these men with normal testosterone levels. Mean total testosterone levels were
207.67 ng/dl in men from the first component distribution and 271.32 ng/dl in
men from the second component distribution after transforming Yi back to its
original scale, Yi = (1 + λY

(λ)
i )1/λ. The histogram and density curve of Y (λ̂=0.3)

are given in Figure 2. The figure shows that the two-component normal mixture
distribution fits the data well.

Figure 2: Histogram of Y λ̂=0.3 with a fitted density for the two-component
normal mixture distribution

3. Testing for the Number of Components

The Box-Cox power transformation may remove skewness from the data such
that a single normal distribution may be appropriate for the data. On the other
hand, there may exist a Box-Cox power transformation such that a mixture
of three normal distributions (for example, among men in the low testosterone
group, some have very low testosterone levels) may give a better fit to the data.
We wish to test whether a mixture of two transformed normal distributions fits
the data significantly better than a single transformed normal distribution or to
test whether a mixture of three transformed normal distributions fits the data
better than a mixture of two transformed normal distributions. Note that the
value of the Box-Cox power transformation λ for the null model is, in general,
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different from that for the alternative model. As the null model is, in general, not
nested within the alternative model, the likelihood ratio statistic for testing the
number of components does not have the classic χ2 reference distribution. Even
if both null and alternative models have the same value of λ, the asymptotic χ2

theory does not hold as under the null hypothesis, the mixing proportion is on the
boundary of the parameter space and the parameters are not identifiable under
the null model. For a thorough account of breakdown in regularity conditions
under which classic asymptotic theory holds for the likelihood ratio test, refer to
Titterington, Smith and Makov (1985) and McLachlan and Basford (1988).

Several studies have been conducted to investigate the asymptotic distribution
of the likelihood ratio statistic for testing the number of components in a mixture
model, see, for example, Dacunha-Castelle and Gassiat (1999), Lemdani and Pons
(1999), Chen, Chen and Kalbfeisch (2001), and Lo, Mendell and Rubin (2001).
These approaches can be used to determine the number of components when both
null and alternative models have the same power transformation. When power
transformation under the null model is different from that under the alternative
model, these approaches may not be suitable for determining the number of
mixture components without appropriate modification to account for Box-Cox
power transformation parameters. Parametric bootstrap tests are hence used to
test whether total testosterone levels after a Box-Cox power transformation have
arisen from a single normal distribution, a mixture of two normal distributions, or
a mixture of three normal distributions. The likelihood ratio statistic is defined
as

LR = −2(L0 − L1)

where L0 and L1 are the log likelihood functions maximized under the null and
alternative hypotheses, respectively. Inferences are drawn based on the observed
bootstrap p-value that is defined as the proportion of replicates of LR that are
as extreme as or more extreme than the value of LR obtained from the observed
data. The null hypothesis will be rejected if the observed bootstrap p-value is less
than or equal to a pre-specified significance level. For each bootstrap sample, the
maximum likelihood estimates of the parameters under the null and alternative
models are obtained in turn through a grid search of λ ∈ [−1, 1] and the EM
algorithm, using 100 sets of starting values, subject to the constraint on the
component variances.

We first tested the null hypothesis that data have arisen from a single nor-
mal distribution after a Box-Cox power transformation against the alternative
hypothesis that the data have arisen from a mixture of two normal distributions
after another Box-Cox power transformation. One thousand bootstrap samples
of size n = 404 were generated from a random variable Y such that

Y (λ) ∼ N(µ, σ2)
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where λ, µ, and σ were estimated by the maximum likelihood estimates λ̂ = 0.4,
µ̂ = 20.815, and σ̂ = 6.548 obtained from the observed data. Among 1000
replicates of LR, there was none in excess of 19.24, the observed value of LR, so
the observed bootstrap p-value was 0.0. Thus, there is strong evidence that there
are at least two subpopulations. The histogram of 1000 bootstrap replicates of
the likelihood ratio statistic is given in Figure 3(a).

Figure 3: Histograms of 1000 bootstrap replicates of LR for testing (a) a sin-
gle normal versus a two-component normal mixture and (b) a two-component
normal mixture versus a three-component normal mixture. The vertical line is
the observed value of LR.

We then tested the null hypothesis that data have been drawn from a mixture
of two normal distributions after a Box-Cox power transformation against the
alternative hypothesis that the data have been drawn from a mixture of three
normal distributions after another Box-Cox power transformation. One thousand
bootstrap samples of size n = 404 were generated from a random variable Y such
that

Y (λ) ∼ πN(µ1, σ
2
1) + (1 − π)N(µ2, σ

2
2)

where λ, π, µ1, µ2, σ1, and σ2 were estimated by the maximum likelihood esti-
mates λ̂ = 0.3, π̂ = 0.185, µ̂1 = 13.19, µ̂2 = 14.57, σ̂1 = 4.06, and σ̂2 = 3.00
obtained from the observed data. Among 1000 replicates of the test statistic
LR, there were 80 in excess of 8.72, the observed value of LR, so the observed
bootstrap p-value was 0.08. Thus, there is no significant evidence that more than
two subpopulations are required. The histogram of 1000 bootstrap replicates of
the likelihood ratio statistic is given in Figure 3(b).
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4. Adjustment for Covariates

Of 404 men aged 50 to 59, 231 were black, 224 had human immunodefi-
ciency virus (HIV) infection, 295 had hepatitis C virus (HCV) infection, 168 had
both HIV infection and HCV infection, 48 were injection drug users, 291 smoked
cigarettes, and 128 used psychotropic medications. The median (range) body
mass index (BMI) was 26.3 (16.7 - 56.7) kg/m2; 157 men were overweight with a
BMI beteen 25 and 30 kg/m2, and 87 men were obese with a BMI greater than 30
kg/m2. To adjust effects of these factors on total testosterone levels, the mixture
model given in (2.1) can be easily extended to a mixture of two normal linear
regression models by letting

Y (λ) = xT β1 + ε1 with probability π,

Y (λ) = xT β2 + ε2 with probability 1 − π

where x is a vector of predictors, β1 and β2 are vectors of unknown parameters,
and the error terms εk ∼ N(0, σ2

k) for k =1 and 2. The log-likelihood function of
y1, . . . yn is then given as follows:

L(λ, θ;y) =
n∑

i=1

[log{πf1(y
(λ)
i ; µ1i, σ

2
1) + (1 − π)f2(y

(λ)
i ; µ2i, σ

2
2)} + (λ − 1) log yi],

(4.1)
where µ1i = xT β1 and µ2i = xT β2. Similarly, for a fixed value of λ, the maximum
likelihood estimators for π, β1, β2, σ2

1, and σ2
2 can be obtained by maximizing the

log-likelihood function in (4.1) through application of the EM algorithm subject
to the constraint on the component variances. The covariance matrix of the
model parameters can be estimated by the method proposed by Louis (1982).
Details on derivation of the covariance matrix can be found in Thompson, Smith
and Boyle (1998) and Turner (2000) when using the EM algorithm to find the
maximum likelihood estimators.

We began our modeling with a model including all the covariates and an
interaction between HIV infection and HCV infection, and an interaction between
HIV infection and injection drug use in the first component distribution and in
the second component distribution. A stepwise approach along with the Bayesian
information criterion (BIC) and likelihood ratio tests was used for model selection.
The parameter estimates and their corresponding standard errors for the final
model are given in Table 1. The estimated mixing proportion π̂ = 0.29 was
different from that in the model without adjustment for covariates given in (2.1).
The regression model for µ1i included terms for black, BMI, injection drug use,
and use of psychotropic medications. This suggests that among men in the first
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component population, African American men were likely to have higher total
testosterone levels; increased BMI, injection drug use, and use of psychotropic
medications were associated with lower total testosterone levels. The regression
model for µ2i included terms for BMI, cigarette smoking, HCV infection, HIV
infection, and an interaction between HCV infection and HIV infection. Among
men in the second component population, increased BMI and smoking cigarettes
were associated with decreased total testosterone levels. Both HCV infection
and HIV infection were associated with lower total testosterone levels. However,
there was a significant interaction between HCV and HIV; the effect of HCV
infection on testosterone was modified by HIV infection. Age was not significantly
associated with total testosterone levels. Compared to the mixture regression
model, the estimated means of two components in (1) appear to be very close
when the covariates were not included.

Table 1: Parameter estimates and standard errors for the mixture of two normal
linear regression models fitted to the testosterone data with λ̂ = 0.3

Variable Estimate Estimated Z-value p-value
standard error

π 0.29 0.06 4.56
Intercept 13.76 0.75 18.45
Black 2.34 0.73 3.21 0.001
BMI∗ -0.51 0.25 -2.07 0.039
Injection drug use -5.81 0.91 -6.40 < 0.001
Use of psychotropic medications -2.11 0.69 -3.06 0.002
σ1 1.73 0.21 8.19
Intercept 18.36 0.78 23.44
BMI∗ -0.86 0.26 -3.34 < 0.001
Smoking -1.26 0.56 -2.25 0.025
HCV -3.95 0.78 -5.05 < 0.001
HIV -2.23 0.96 -2.32 0.021
HCV x HIV 2.73 1.08 2.52 0.012
σ2 3.74 0.19 19.92

5. Discussion

We have demonstrated the use of a mixture distribution with two normal
components for estimating age-specific prevalence of testosterone deficiency in
men and the use of a mixture of two normal linear regression models for ad-
justing effects of covariates on testosterone levels. The age-specific prevalence of
testosterone deficiency in men aged 50 to 59 with or at risk for HIV infection
was estimated to be about 29% after adjusting for covariates. This estimated
prevalence rate is lower than 61.9% estimated by using the cut-off point 325
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ng/dl suggested by Harmen et al. (2001), 55.4% using the cut-off point 300 ng/dl
suggested by the recent endocrine society annual andropause consensus meeting,
or 37.6% using the cut-off point 216 ng/dl suggested by Mohr et al. (2005) for
men in their 50s as the lower limit of the normal range for testosterone levels in
these HIV at risk men. Due to study design, only the age-specific prevalence in
men aged 50 to 59 can be estimated in this study. However, the mixture model
can be used to estimate age-specific prevalence in men, for example, in their 60s
and 70s, respectively when there are a sufficient number of men in these two age
groups.

In this study, we found that injection drug use and use of psychotropic med-
ications were associated with decreased total testosterone levels. Low testos-
terone levels have been reported in opiate addicts (Cicero, 1980). Opiates may
act by suppressing the hypothalamic-pituitary-gonadal axis, a reproductive hor-
monal axis in men that consists of hypothalamus, pituitary gland, and testis
(Cicero, 1980). Use of psychotropic medications may lead to sexual dysfunction,
including testosterone deficiency resulting from hyperprolactinemia (Dobs et al.,
1988). Early in the HIV/AIDS epidemic, hypogonadism was common in men
with AIDS (Ferri, Bertozzi and Zignego, 2002). Low testosterone levels in men
with HIV infection have been correlated with advanced immunodeficiency. We
observed an association between lower testosterone levels and HIV infection in
HCV uninfected men. Hepatitis C virus infection had the strongest association
with lower total testosterone levels in the second component population. This
may suggest that severe liver disease is associated with low testosterone levels.
Ferri et al. (2002) reported that plasma levels of total and free testosterone were
generally lower in 207 patients with hepatitis C than in 2010 Italian men pre-
viously evaluated for erectile dysfunction. Increased body mass was associated
with lower total testosterone levels in this study. Obesity associated with low to-
tal testosterone levels has been reported by Gapstur et al. (2002) in their study
of associations of age, obesity, and race with serum androgen concentrations in
young men. Glass et al. (1977) reported that serum total testosterone levels
decrease with increasing body mass because of decreasing sex hormone-binding
globulin. Higher testosterone levels in African American men than in white men
have been reported by Ellis and Nyborg (1992) and Winters et al. (2001), but
participants were generally younger than the sample of men studies here. We
found smoking cigarettes was significantly associated with decreased testosterone
levels. A literature review on cigarette smoking and male reproduction found
reports variously suggesting that testosterone may be unchanged, or significantly
elevated or decreased in smokers (Vine, 1996). We did not find age significantly
associated with testosterone levels. Perhaps, this is because most of change in
male testosterone levels occurs before age 50 (Harman et al., 2001). At only ten
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years, the range is not great enough to provide power to detect associations with
age. A further investigation of these seems warranted.

After estimating the unknown parameters and testing for the number of com-
ponents, mixture models can be used to cluster individuals into one of two sub-
populations. The classification can be achieved by making use of posterior prob-
abilities of population membership of each observation as calculated in the E
step of the EM algorithm. Individual observations will be assigned to the com-
ponent distribution to which it has the highest estimated posterior probability
of belonging. As these estimated posterior probabilities may have limited re-
liability in small samples, they may not give a satisfactory assignment of the
data. When sample sizes are large, mixture models can also be used to aid in
determination of cut-off points for identifying men with testosterone deficiency.
A cut-off point can be chosen to attain, for example, a specificity rate in the
range of 90% to 99% to limit the number of false positive results as treatment
of older HIV and HCV infected men with testosterone may be associated with
greater risk than treatment of younger patients. Both sensitivity and specificity
are calculated based on the selected mixture model under the assumption that
the model correctly identifies two distinct populations and the component popu-
lation with lower testosterone levels represents men with testosterone deficiency;
see Thompson, Smith, and Boyle (1998) for details and related references. For
example, among injection drug and psychotropic medication users, respective
cut-off points to have a specificity of 90% for detecting testosterone deficiency,
are 104 ng/dl for black non-smoking men aged 50 to 59 with HIV infection and
HCV infection, and 223 ng/dl for black non-smoking men aged 50 to 59 without
HIV infection and HCV infection. The corresponding sensitivity rates are 87%
and 99%, respectively. An average value was used for BMI.

We have used mixture models assuming that the mixing proportion is inde-
pendent of covariates as we are interested in estimating the age-specific prevalence
rate in a particular age group. If subject-specific probabilities of having testos-
terone deficiency are of interest instead, a logistic link function that allows mixing
proportions depending on individual characteristics and some predictors can be
incorporated into mixture models.
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