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Abstract: This paper is motivated by an investigation into the growth of
pigs, which studied among other things the effect of short–term feed with-
drawal on live weight. This treatment was thought to reduce the variability
in the weights of the pigs. We represent this reduction as an attenuation
in an animal–specific random effect. Given data on each pig before and
after treatment, we consider the problems of testing for a treatment effect
and measuring the strength of the effect, if significant. These problems are
related to those of testing the homogeneity of correlated variances, and re-
gression with errors in variables. We compare three different estimates of the
attenuation factor using data on the live weights of pigs, and by simulation.

Key words: Homogeneity of variances, hierarchical model, measurement er-
ror, orthogonal regression.

1. Introduction

This paper is motivated by an investigation into factors influencing variability
in live pig weights in the North Island, New Zealand. Part of this study included
an investigation into the effect of short-term feed withdrawal on live weight, for a
period of approximately twelve hours from the evening until the morning of the
next day. It was conjectured that part of the variability in live weight between
pigs was due to differences in gut fill, and that a short period of feed withdrawal
would eliminate this factor, leading to a slightly less variable, and more useful,
measure of pig live weight. (Gut fill is defined as the weight of contents of the
stomach, small and large intestine, which represents 3% to 10% of live body
weight. See Kyriazakis et al., 2006).

Testing for a reduction in variance with paired data can be regarded as testing
the equality of the diagonal elements in a bivariate covariance matrix. This prob-
lem was solved for a bivariate normal distribution by Pitman (1939) and Morgan
(1939). The Pitman-Morgan method involves testing the correlation between the
sum and difference of the two responses, with zero correlation corresponding to
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equality of the two variances. Later authors (Bhoj, 1984; Harris, 1985; Shapiro
and Cohen, 1990) have extended this work to include missing values, multiple re-
peated measures, or robustness to non-normality. A thorough review, and further
references, are given by Piepho (1996).

To measure the size of the treatment effect, if any, we could consider the
proportional reduction in variance. Pitman (1939) describes the calculation of
fiducial limits for the ratio of the two variances, before and after treatment. How-
ever these variances will typically include a within-subject component, which if
present will lead to a reduction in the apparent treatment effect, biasing any com-
parison of treatment effect between different groups with different error variances.
Our proposed solution is to model the treatment effect directly as a proportional
reduction in an individual-specific random effect. Section 2 presents the gen-
eral modeling and estimation framework, with the application to pig live weight
illustrated in Section 3. In Section 4 we investigate the performance of alterna-
tive estimators of the treatment effect using simulation. Finally, the results and
methodology are discussed in Section 5.

2. Hierarchical Model

Denote the observed measurements on individual i before and after treatment
as Y1i and Y2i respectively. We wish to model the reduction in variance due to
treatment, allowing for correlation between Y1i and Y2i. To do this we write

Y1i = µ1 + θi + e1i (2.1)
Y2i = µ2 + kθi + e2i, (2.2)

where θi is assumed to be normally distributed with zero mean and variance
σ2

θ and e1i, e2i are independent and identically normally distributed with mean
zero and variance σ2

e . This decomposes the observed variation into a between-
individuals component σ2

θ and a within-individual component σ2
e . The treatment

effect k is thus represented as a proportional reduction in an individual-specific
random effect, reducing the first component to k2σ2

θ but not affecting the second
component. This can be regarded as a definition of the treatment effect, in which
the covariance matrix of (Y1i, Y2i)′ is parameterized as

Σ =
[

σ11 σ12

σ12 σ22

]
=

[
σ2

θ + σ2
e kσ2

θ

kσ2
θ k2σ2

θ + σ2
e

]
(2.3)

so that the ratio of variances of the observed data is (k2σ2
θ+σ2

e)/(σ2
θ+σ2

e). The use
of this variance ratio as a measure of the treatment effect ignores the influence of
the within-individual variation. If this variation is large it will tend to understate
the actual effectiveness of the treatment in reducing between-individual variance.



Attenuation in a Random Effect with Paired Data 181

We suggest using an estimate of k as the measure of treatment effect. We
first note that a test for the significance of the treatment effect involves testing
the null hypothesis k = 1, which is equivalent to testing σ11 = σ22. For this the
Pitman-Morgan test (Pitman,1939; Morgan, 1939) may be used. First we define
the pairwise sum and difference

Si = Y1i + Y2i = µ1 + µ2 + (1 + k)θi + e1i + e2i (2.4)
Di = Y1i − Y2i = µ1 − µ2 + (1 − k)θi + e1i − e2i, (2.5)

noting that e1i + e2i and e1i − e2i are uncorrelated and therefore, by assumption
of normality, independent. The covariance of (Si, Di)′ is

Σ∗ =
[

σ∗
11 σ∗

12

σ∗
12 σ∗

22

]
=

[
(1 + k)2σ2

θ + 2σ2
e (1 − k2)σ2

θ

(1 − k2)σ2
θ (1 − k)2σ2

θ + 2σ2
e

]
(2.6)

so a test of k = 1, equivalently σ11 = σ22, can be performed by testing the
significance of the correlation between S and D, ρSD = 0. The Pitman-Morgan
test calculates the sample correlation coefficient rSD for n individuals and refers
rSD

√
n − 2/

√
1 − r2

SD to a t-distribution with n − 2 degrees of freedom.
An equivalent, and perhaps more convenient, way of carrying out this test

is to regress Di on Si and to assess the significance of the slope. This can be
regarded as an “errors in variables” regression, with e1i + e2i as the measurement
error in the x variable µ1 + µ2 + (1 + k)θi. In the absence of measurement error,
the true slope of the regression would be (1 − k)/(1 + k), or zero if k = 1. It is
well-known (see Fuller, 1987; Carroll, Rupert and Stefanski,1995) that the effect
of measurement error in x is to bias the estimated slope towards zero. However,
as Carroll et al. (1995) point out, the naive test that the slope is zero, using
standard regression output, is valid provided there are no other covariates and
the measurement error in x is uncorrelated with the error in y.

If the treatment effect is found to be significant, we can use an estimate of k to
describe the strength of the effect. We now consider some alternative estimators,
using the framework of measurement error models, and noting that in this case
the measurement errors e1i + e2i and e1i − e2i in Equation 2.4 are uncorrelated
with equal variances.

2.1 Naive regression estimator

A naive approach to the estimation of k would be to simply regress Y2i on
Y1i. In the absence of measurement error e1i the regression coefficient would
be unbiased for k, but from Equation 2.3 we can see that the expected slope is
σ12/σ11 = kσ2

θ/(σ2
θ + σ2

e). Since 0 < σ2
θ/(σ2

θ + σ2
e) < 1 the regression slope k̂nr is

biased towards zero. We could attempt to correct for this bias by multiplying by
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an estimate of (σ2
θ + σ2

e)/σ2
θ , which is then equivalent to the method of moments

estimator of the next section. Carroll et al. (1995, p33) point out that such
bias-correction will also increase the variance and perhaps lead to a larger mean
squared error. Since the variance of k̂nr is not mathematically tractable, this
issue is investigated using simulation in Section 4.

2.2 Method of moments

By equating the components of the covariance matrix in Equation 2.3 to their
sample values s11, s12, s22 we can solve for k and the variance parameters σ2

e , σ2
θ .

Writing γ = (s11 − s22)/s12 we get

k̂mm = (
√

γ2 + 4 − γ)/2

and, assuming s12 > 0, the variance components are then

σ̂2
θ = s12/k̂mm and σ̂2

e = s11 − σ̂2
θ

If we use these estimates of the variance components to bias-correct the naive
estimate k̂nr as suggested above, we again get the method of moments estimator
k̂mm. Although the sample moments are unbiased for the true values, the esti-
mated correction factor will not be, so we expect this correction to reduce but not
eliminate bias. We note too that k̂mm is the slope of the first principal component
of (Y1i, Y2i)′, also the orthogonal regression estimator (Carroll et al.,1995, p28).

2.3 Pitman-Morgan regression estimator

A third alternative is to use the regression of the difference Di on the sum Si,
as given in Equation 2.4. Again this is an errors-in-variables regression. In the
absence of measurement error in Di (e1i − e2i ≡ 0) the expected regression slope
would be

β = (1 − k)/(1 + k)

but the covariance matrix of Equation 2.6 shows that

E(β̂) =
σ∗

12

σ∗
11

=
(1 − k2)σ2

θ

(1 + k)2σ2
θ + 2σ2

e

=
(

1 − k

1 + k

)
σ2

θ

σ2
θ + 2σ2

e/(1 + k)2

so again the measurement error causes a bias towards zero. If we back-transform
we get the estimator

k̂pm =
1 − β̂

1 + β̂
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A first-order approximation gives

E(k̂pm) = k +
(1 − k)σ2

e

(1 + k)σ2
θ + σ2

e

so assuming k < 1 there is a positive bias in k̂pm which will be quite small if
σ2

e ¿ σ2
θ or k is close to one. The next term in a higher-order approximation to

E(k̂pm) involves σ2
β̂

and will be much smaller than the previous term if the data
set is reasonably large. We can expect then that the bias of this estimator will
be small so that it may out-perform k̂mm. This too is investigated by simulation
in Section 4.

2.4 Bayes estimator

If we specify prior distributions for the parameters k, µ1, µ2, σ2
θ and σ2

e then
the posterior distribution of k is easily obtained by Markov chain Monte Carlo
estimation (Gilks, Richardson and Spiegelhalter, 1996) using, for example, the
BUGS program (Spiegelhalter, Thomas, Best and Gilks, 1994). This has the
advantage of providing a measure of the uncertainty of the estimate, for ex-
ample the standard error of the estimated posterior distribution. For the other
non-Bayesian estimators, analytical expressions for the standard errors are math-
ematically intractable, although approximate standard errors can be calculated
using the bootstrap as illustrated in the next section.

3. Analysis of Pig Data
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Figure 1: Live weights of pigs before (Y 1) and Afer (Y 2) feed withdrawl.

To investigate the effect of feed withdrawal on live weight, pigs in three differ-
ent age groups (“weaners”, “growers” and “finishers”) were split randomly into
control and treatment groups. They were weighed in the evening and again the
following morning after a time lapse of 11 hours for the weaners and 17 hours for
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the other groups. Those in the control group were fed normally, but food was
withheld from the treatment group. It is thought that “gut fill” is a component
of the variability in live weight, and that feed withdrawal would reduce gut fill to
give a less variable and more useful measure of live weight. The experiment was
later repeated, with the same treatment and control groups, after a period of 20
days, giving four measures of live weight per pig. The full dataset is available at
http://www-ist.massey.ac.nz/GJones.

Here we analyze the results of the first experiment using, in the notation of
Section 2,

Y1i = Live weight in the evening
Y2i = Live weight the following morning

The data are plotted in Figure 1. There is a clear difference between control and
treatment groups in the Growers, less so in the Finishers, and very little apparent
difference in the Weaners. Table 1 gives the Pitman-Morgan p-value for each
group for testing the null hypothesis of no difference in the variances of Y1 and
Y2. These are two-sided p-values allowing for the possibility that the between-pig
variance has increased, which is possible since they are continuing to grow and, in
the control group, to eat. For all three age groups there is a significant decrease in
variance with treatment. The results for the variance decomposition (σθ, σe) show
that the within-pig variation is much smaller than the between-pig component.
Both show a gradual increase with age. It is noticeable that the within-pig
component is similar between control and treatment groups, whereas the between-
pig component is much larger in the control group for both Growers and Finishers.
This does not seem to be a failing in the model, since the discrepancy is present in
the initial standard deviations σY 1. This perhaps calls into question the random
allocation into treatment groups.

Table 1: Results of analysis of three groups of pigs, giving the p-value for
the Pitman-Morgan test and the estimated standard deviations. ∗ denotes the
results for the Bayesian analysis using MCMC.

Group Treatment n pval σ̂Y 1 σ̂Y 2 σ̂θ σ̂e pval∗ σ̂∗
θ σ̂∗

e

Weaners Control 66 0.7246 1.7408 1.7296 1.7315 0.1793 0.7300 1.7530 0.1827
Withdrawl 52 0.0008 2.0704 1.9599 2.0647 0.1530 0.0004 2.0920 0.1583

Growers Control 52 0.9485 3.7364 3.7417 3.7141 0.4075 0.9352 3.7650 0.4198
Withdrawl 51 0.0014 2.6355 2.3880 2.6103 0.3633 0.0010 2.6470 0.3730

Finishers Control 50 0.7216 8.1935 8.2371 8.1720 0.5933 0.7204 8.2810 0.6122
Withdrawl 52 0.0484 5.0151 4.8302 4.9942 0.4572 0.0434 5.0640 0.4701

The Bayesian analysis was performed by running the model (2.1), with vague
conjugate prior distributions, in WinBugs for 20 000 iterations after a burn-in of
10 000. Table 1 gives the estimated posterior means for σθ and σe, which are seen
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to be broadly similar to those derived by the method of moments. The Bayesian
“p-value” shown is really twice the posterior probability that k ≤ 0 (or k ≥ 0 as
appropriate).

The estimated attenuation factors (k) are displayed in Table 2. Standard
errors for k̂mm, k̂nr and k̂pm were obtained by resampling from each group of
pigs, whilst k̂b represents the standard deviation of the posterior distribution of
k derived from the MCMC output. The downward bias in the naive regression
estimator k̂nr is apparent. The Pitman-Morgan regression estimator k̂pm con-
sistently gives results very similar to the method-of-moments k̂mm, but is much
easier to compute as it involves only a simple regression.

The results suggest that the effect of feed withdrawal is most pronounced in
the middle age group, when the growth rate of the pigs is at its highest.

Table 2: Results of analysis of three groups of pigs, giving the estimated treat-
ment effect (standard error) by method of moments (mm), naive regression
(nr), Pitman-Morgan regression (pm) and Bayesian posterior mean (b)

Group Treatment n k̂mm k̂nr k̂pm k̂b

Weaners Control 66 0.9935 ( 0.0211 ) 0.9829 ( 0.0199 ) 0.9935 ( 0.0210 ) 0.9940 ( 0.0185 )
Withdrawl 52 0.9463 ( 0.0163 ) 0.9411 ( 0.0163 ) 0.9465 ( 0.0163 ) 0.9465 ( 0.0149 )

Growers Control 52 1.0014 ( 0.0215 ) 0.9895 ( 0.0214 ) 1.0014 ( 0.0214 ) 1.0020 ( 0.0226 )
Withdrawl 51 0.9042 ( 0.0275 ) 0.8870 ( 0.0278 ) 0.9052 ( 0.0271 ) 0.9053 ( 0.0276 )

Finishers Control 50 1.0053 ( 0.0170 ) 1.0000 ( 0.0167 ) 1.0053 ( 0.0170 ) 1.0050 ( 0.0153 )
Withdrawl 52 0.9628 ( 0.0204 ) 0.9548 ( 0.0207 ) 0.9630 ( 0.0203 ) 0.9627 ( 0.0184 )

4. Simulation Study
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Figure 2: Root-mean-squared error for estimating k by method of moments
(mm), naive regression (nr) and Pitman-Morgan regression (pm), for n = 60
and σe/σθ = 0.1 or 0.5, based on 10 000 simulations.
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The analysis of the pig data suggests that for estimating the treatment effect
k the Pitman-Morgan regression estimator may be competitive with the method-
of-moments estimator. The analysis of Section 2 showed that the former is biased
upwards, but this bias may be compensated for by a smaller variance. In this
Section we investigate this issue by simulating from the model 2.1 for various
values of k from 0.5 to 0.95, and for various values of the ratio σe/σθ from
0.05 to 0.5. In each simulation 10 000 simulated values of β̂ were produced to
estimate E(β̂) and Var(β̂), from which the root-mean-squared-error RMSE =√

[E(β̂ − β)]2 + Var(β̂) was calculated. Sample sizes of n = 30, 60 and 100 were
considered.

Typical results, for n = 60, are shown in Figure 2. The bias term dominates
the RMSE of the naive regression estimator k̂nr, which in all cases has the worst
performance. There is negligible bias in the method-of-moments estimator k̂mm

but as k increases its variance increases faster than that of the Pitman-Morgan
regression estimator k̂pm, which has a small positive bias. The result is that
for large values of k the use of k̂pm gives the best result in terms of RMSE.
When n = 60 this occurs at approximately k > 0.7, a little earlier (k > 0.65)
when n = 30 and a little later (k > 0.75) when n = 100. The difference in
RMSE between the two estimators is quite small when the measurement error
(within-individual) variance σ2

e is small, as in the pigs data, but increases as the
measurement error increases.

5. Discussion

We have presented a model for paired data in which the change in variance
between the first and second measurements is represented as a re-scaling of a
subject-specific random effect. The purpose behind this is to measure the effect
of a treatment on the variability of measurements in a way which allows for
measurement error or other within-subject variation. The question arises as to
whether the model is appropriate for a given data set. Since the model can be
regarded as a re-parametrization of the bivariate normal distribution, testing its
goodness of fit is equivalent to testing for bivariate normality. The parameter k
measuring the attenuation in the subject-specific random effect can be understood
as a definition of what we regard as the effect of the treatment. The within-
individual component σ2

e could be thought of as measurement error, and in some
situations it might be possible to estimate it from repeated measures on each
subject. We could then test the appropriateness of the assumption that e1i, e2i

have a common variance. However it has to be remembered that the overall
variability in the measuring process is not always easy to reproduce as it may
include more factors than just the repeatability of the measuring instrument.
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We have investigated some alternative estimators of the size of the treatment
effect. A Bayesian analysis is reasonably straightforward and would be partic-
ularly useful if prior information were available. If conjugate priors are used,
the posterior distribution of the variance of (Y1i, Y2i)′ is inverse gamma, and the
model parameters are functions of its components which, though analytically
intractable, could be derived by simulation. MCMC gives a simple alternative
which converges quickly.

The naive regression estimator has been found to be significantly biased, but
regression of the difference on the sum, which we have termed Pitman-Morgan
regression, and then transforming the estimated slope, performs well if the treat-
ment effect is not too large (k close to 1). This is the simplest alternative since
it requires only standard regression software. Estimation based on moments is
a little more complicated but also has good properties, particularly when the
attenuation is large (k ¿ 1).
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