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Abstract: Comparison of more than two diagnostic or screening tests for
prediction of presence vs. absence of a disease or condition can be com-
plicated when attempting to simultaneously optimize a pair of competing
criteria such as sensitivity and specificity. A technique for quantifying rel-
ative superiority of a diagnostic test when a gold standard exists in this
setting is described. The proposed superiority index is used to quantify and
rank performance of diagnostic tests and combinations of tests. Develop-
ment of a validated model containing a subset of the tests may be improved
by eliminating tests having a very small value for this index. To illustrate,
we present an example using a large battery of neuropsychological tests for
prediction of cognitive impairment. Using the proposed index, the battery
is reduced with favorable results.
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1. Introduction

Screening patients for a specific disease or condition is commonly performed
by administering one or more diagnostic tests or procedures, each one with an
outcome characterized as either positive (high risk) or negative (low risk) for the
disease. For instance, at the University of California, San Diego, HIV Neurobe-
havioral Research Center, 19 neuropsychological (NP) tests were used to classify
subjects as normal vs. impaired in the cognitive domain measured by each test.
These same subjects were also classified globally either as neurocognitively nor-
mal or as impaired, based on a systematic clinical rating system that relied on
results from all 19 test measures and other criteria detailed in Woods et al. (2004)
This global classification was considered to be the clinical “gold standard” with
regard to characterization of neurocognitive status. A technique for quantifying
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the performance of each test relative to others in the prediction of this gold stan-
dard was sought. Essentially, a smaller, briefer, and relatively accurate screening
battery was needed for future studies in order to efficiently classify subjects based
on their global neuropsychological status.

Many criteria for the performance of a screening test exist. These criteria
can be single measures, such as misclassification rate, accuracy rate, or total
cost, or they can be pairs of measures, such as sensitivity versus specificity,
positive versus negative predictive value (PPV vs. NPV), and likelihood ratio
of a positive versus negative test (LR+ vs. LR−). If Pr means probability,
“|” refers to the conditional, D reflects the presence of disease, D′ reflects the
absence of disease, and pred D and pred D′ represent the prediction of pres-
ence or absence of disease, respectively, then sensitivity = Pr(predD|D), speci-
ficity = Pr(predD′|D′), PPV = Pr(D|predD), NPV = Pr(D′|predD′), LR+ =
Pr(predD|D)/[1−Pr(predD′|D′)], and LR− = [1−Pr(predD|D)]/Pr(predD′|D′).
There is no uniform agreement regarding which measures to apply (See discussion
in Gallagher, 1998).

In the presence of a gold standard, regardless of the measure selected for
assessing performance, most reported methods are designed to evaluate only two
tests at a time (as in Bloch, 1997; Viana and Pereira, 2000; Leisenring, Alonzo,
and Pepe, 2000) or sort through multiple screening tests to generate a model
which assigns weights to the tests or specifies a sequence of tests. These strategies,
such as used by logistic regression, discriminant analysis, recursive partitioning,
and others (See Kraemer, 1992, pp. 165-227), may eliminate a subset of tests,
but these techniques have no provision for evaluating or ranking the individual
performance of a large number of tests retrospectively and simultaneously.

One complication in identifying which of many diagnostic tests better predicts
a disease or condition is that there are two types of errors related to diagnosis:
predicting the existence of disease when it is absent (false positive) and predicting
the absence of disease when it is present (false negative). Ideally, both types of
errors are taken into account when determining how well a test performs, although
the two types of errors may have different weights or costs.

When a single assessment measure is used, screening tests can be ranked
on their performance from best to worse simply according to the ordering of
the measurement values. For instance, the overall misclassification rate is the
total number of false positives and false negatives, divided by the total number
of subjects. The test with the smallest misclassification rate would be ranked
highest, and so forth. Misclassification rate is one criterion of relative superiority
of a test compared to others. Another single measure, total cost, can be formed
when one type of error is considered worse or costlier than another by weighing
each type of error by its relative influence and aggregating the combined costs into
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a single weighted measure. Based on ascending or descending values, ranks can
be assigned as appropriate. For instance, if false positives (FP ) are given twice
as much weight as false negatives (FN), then total weighted misclassification cost
can be formulated as [2(FP ) + FN ]/N and ranked in order of increasing value.

When comparing two diagnostic tests based on a pair of measures, such as
sensitivity and specificity, complications arise if one test has better performance
on one measure but the other test performs better on the second measure (e.g.,
one test has higher sensitivity, but the other test has higher specificity). This
results in a virtual stalemate for several published techniques offering screening
test comparison schemes (Leisenring, Alonzo, and Pepe, 2000; Lee, 1999; Bigger-
staff, 2000). Marshall (1989) discusses this dilemma but admits to the limited
clinical utility of alternate approaches in practice.

When comparisons using a pair of performance criteria are limited to only
two screening tests, one simply concludes that the tests are not comparable when
one test performs better for one measure and the other has superior performance
based on the other measure. When there are a large number of tests, though,
the pattern of pairwise noncomparability, although complex, may yield useful
information on relative performance.

Some published methods for pairwise comparisons claim the reported tech-
niques can be applied similarly when there are more than two diagnostic tests
to be judged (Leisenring, Alonzo, and Pepe, 2000; Biggerstaff, 2000). However,
application of these comparisons to more than two tests is not straightforward.
Even if the procedure is applied repeatedly and routinely for each pair of tests,
no guidance is offered for evaluating performance after making the pairwise com-
parisons.

Section 2 reviews pairwise comparisons of diagnostic tests when the tests have
binary outcomes, the criterion for test comparison is a pair of assessment mea-
sures, and actual knowledge of whether or not the disease or condition exists for
each screened subject in a sample representative of the targeted population is
known, that is, when a “gold standard” is present. Section 3 introduces a new
superiority index and its properties. This measure quantifies the superiority of
a diagnostic test compared to many other tests on the basis of simultaneously
optimizing a pair of screening test assessment measures. Section 4 applies the
superiority index technique to data from 19 neuropsychological tests to quan-
tify and rank the tests with respect to their relative performance, and to assist
in selection of tests entered into a classification model that would result in a
substantially reduced test battery. Confidence intervals are estimated for the su-
periority index using a bootstrap procedure. Section 5 provides a discussion of
the superiority index and related issues.
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2. Pairwise Comparisons

Commonly used pairs of measures to assess the performance of a screening
test include: (a) sensitivity and specificity, (b) positive predictive value (PPV)
and negative predictive value (NPV), and (c) likelihood ratio of a positive test
(LR+) and likelihood ratio of a negative test (LR−). An informative discussion
of these measures and how to compute them can be found in Gallagher (1998). It
should be noted that large values are desirable for the first five of the six measures
listed above; small values are favorable for LR−. Sensitivity and specificity will
be used to illustrate the procedures which follow. The procedures apply to any of
the pairs of measures listed above, although the inequalities should be reversed for
LR−. The proposed methods also apply to other pairs of performance assessment
measures not listed above.

Each screening test can be categorized into one, and only one, of the following
four representations. When comparing Test X to Test Y , and letting Sens(X)
and Spec(X) denote the sensitivity and specificity, respectively, of Test X, we
can say:

• Test X is superior to Test Y if Sens(X) > Sens(Y ) and Spec(X) >
Spec(Y ),

• Test X is inferior to Test Y if Sens(X) < Sens(Y ) and Spec(X) <
Spec(Y ),

• Test X is equal to Test Y if Sens(X) = Sens(Y ) and Spec(X) = Spec(Y ),
and

• Test X and Test Y are not comparable if Sens(X) > Sens(Y ) and Spec(X) <
Spec(Y ) or Sens(X) < Sens(Y ) and Spec(X) > Spec(Y ).

For each superior or inferior representation above, if exactly one of the in-
equalities is replaced by equality, the relationship still holds.

3. Superiority index

To assess the relative performance of a diagnostic test, we will draw on the
definitions of superior, inferior, equal, and not comparable from Section 2 above.
The main idea is essentially that a test which is pairwise superior to a relatively
large number of other tests and pairwise inferior to relatively few other tests
should have a high superiority value and be ranked higher than those tests that
do not perform as well. Ideally, the larger the superiority value, the more ac-
curately a screening test is expected to predict the targeted condition compared
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to other screening tests, based on relatively better simultaneous performance of
both assessment measures.

This approach gives more weight to a diagnostic test doing comparatively
well on both measures and less emphasis on tests doing relatively poorly on both
measures or even doing extremely well on one measure but performing poorly
on the other measure. In its formulation, the superiority index is designed to
consider the joint performance of the two assessment measures.

3.1 Formulation of Superiority Index Si

Let ai = the number of tests to which Test i is superior, bi = the number of
tests to which Test i is inferior, and ci = the number of tests equal to Test i.
Only non-negative values are possible for ai and bi, and ci ≥ 1, since every test
is equal to itself. For convenience, from this point forward, the subscripts will be
dropped when their correspondence to Test i is obvious.

Then, the superiority index S for a test can be calculated as

S = (a + c/2)/(b + c/2) = (2a + c)/(2b + c) (3.1)

This superiority index is the ratio of the number of tests to which Test i is
superior versus inferior after splitting the number of equal tests evenly between
superiority reflected in the numerator and inferiority in the denominator. Rank
1 is assigned to the test with the largest value of Si, rank 2 is assigned to the test
with the next largest value of Si, etc.

The number of diagnostic tests that are not comparable to Test i do not enter
into the calculation of Si. However, each diagnostic test may have different sets of
tests that are pairwise comparable. Thus, the superiority index for one screening
test may be based on a different set of tests than for another screening test.
The importance of this feature is that quantification of overall superiority uses
information from tests that are not pairwise comparable to some tests so long as
they are comparable to at least one of the other tests. This property maximizes
information from all tests and distinguishes the superiority index from previously
reported methods that can handle only pairwise comparisons.

3.2 Properties of Si

Holding other values constant, three properties can be observed from Equation
(3.1) for test i: (a) as a → ∞, Si → ∞; (b) as b → ∞, Si → 0; and (c) as
c → ∞, Si → 1. These properties are all desireable. The first property represents
that the more tests that exist to which Test i is superior, the higher the value of
superiority, and this value is without bound. The second property shows that the
more tests that exist to which Test i is inferior, the lower the value of superiority,
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and the index approaches its lower bound of zero in the limit. The third property
indicates that the more equal tests there are, the superiority index approaches
closer to one. An exact value of one reflects that a test has as many tests superior
to it as inferior to it, regardless of the extent that it is equal to or not comparable
to some other tests. When the superiority:inferiority ratio (a : b) is greater than
1.0, Si decreases as the number of equal tests (c) increases, and conversely, when
the superiority:inferiority ratio is less than 1.0, Si increases as c increases. This
is sensible, since when given a screening test that is superior to a relatively large
number of other tests compared to the number of tests to which it is inferior,
additional tests that are equivalent to it will lessen the impact of the superiority.
Similarly, a greater number of equivalent tests improves the overall standing of a
test considered to be inferior to many other tests.
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Figure 1: Changes in superiority index Si as c varies. (a = the number of tests
to which Test i is superior; b = the number of tests to which Test i is inferior;
c = the number of tests equal to Test i)

Figure 1 graphically shows examples of the behavior of Si for Test i. There
are four different scenarios displayed by the four curves in Figure 1. The top
two curves reflect a superiority:inferiority ratio of two, or that the given test is
superior to twice as many other tests as to which it is inferior. The upper of these
two curves is based on the larger number of tests that have comparable pairwise
comparisons (a = 10, b = 5 vs. a = 4, b = 2) and shows higher values of Si than
the lower of these two curves. Both curves are above 1.0, since Test i compares
favorably more than unfavorably. As c increases, both curves drop closer to one
from above. The bottom two curves reflect a superiority:inferiority ratio of 1/2
(a = 2, b = 4 vs. a = 5, b = 10) and the interpretation is analogous to, but the
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converse of, the situation with a ratio of two. Although plotted in Figure 1, in
practice, c will never equal zero, since each diagnostic test is equal to itself.

The behavior of the superiority index demonstrates that for each screening
test, when the number of equal tests and the ratio of superiority:inferiority are
the same, the superiority index will be further from 1.0 when more tests are
comparable. This property reflects a stronger degree of superiority or inferiority
when a greater number of diagnostic tests contribute to the estimate, perhaps
somewhat analogous to “higher power with larger sample size” in a statistical
hypothesis-testing environment.

4. Example

4.1 Data description

A large battery of neuropsychological (NP) tests was administered to par-
ticipants in a longitudinal study of neurocognitive functioning in HIV-infected
individuals at the University of California, San Diego, HIV Neurobehavioral Re-
search Center. The battery consisted of nineteen separate test measures labeled
as Tests #1-19 for purposes of this analysis and are identified in Appendix A. The
test battery, which takes two to three hours to administer, assesses the follow-
ing seven ability domains: abstraction/executive functioning, attention/working
memory, learning, memory (delayed recall), motor skills, speed of information
processing, and verbal skills (Woods et al., 2004). Demographically corrected
norms are used to convert raw scores to age-, education-, gender-, and, where
possible, race/ethnicity-corrected standard scores (T-scores) using published pro-
cedures based upon large normative datasets (Benedict et al., 1998; Heaton et
al., 1995).

Results for each individual’s tests were classified as neuropsychologically im-
paired if the test score was more than one standard deviation below the normative
mean for that test. Otherwise, an unimpaired classification was designated. An
overall global rating of NP impairment vs. not impaired was assigned for each
subject based on several criteria. Clinical ratings were performed by trained neu-
ropsychologists utilizing standardized procedures which yield a global rating, as
well as domain ratings, for each of the seven NP domains cited above (Woods
et al., 2004). This global rating was treated as the gold standard against which
individual test predictions were compared. Details of the NP testing, scoring,
and classifications have been published elsewhere (See Heaton et al., 1994; Ellis
et al., 1997).

The rationale for reducing the nineteen NP tests to a smaller subset was to use
a limited number of tests to screen a cohort while retaining predictive accuracy
and requiring a much shorter duration of time than was necessary for the full



168 Reena Deutsch et al.

battery, currently approximately two to three hours.
Among the 393 subjects who completed each of the 19 NP tests, 159 (40.5%)

were diagnosed as NP impaired based on the gold standard. Table 1 reflects
the outcomes for the full dataset on sensitivity, specificity, PPV, NPV, LR+,
and LR− for each NP measure. The percentage of subjects who were classified
incorrectly, the misclassification rate, is also reported. Overall, there appears
to be no clear winner, or best subset of winners, among the 19 diagnostic tests
according to these measures. For example, the test with the best sensitivity,
NPV, and LR−, Test #8, also has the lowest specificity, PPV, and LR+.

Table 1: Performance measures for 19 neuropsychological tests on the full
dataset (N=393). (Test = neuropsychological test; Sens = sensitivity; Spec
= specificity; PPV = positive predictive value; NPV = negative predictive
value; LR+ = likelihood ratio for a positive test; LR− = likelihood ratio for a
negative test; Misclass = misclassification rate)

Test Sens Spec PPV NPV LR+ LR− Misclass

1 0.65 0.87 0.78 0.79 5.10 0.40 0.22
2 0.43 0.84 0.65 0.68 2.70 0.68 0.33
3 0.45 0.80 0.61 0.68 2.30 0.68 0.34
4 0.57 0.78 0.64 0.73 2.58 0.55 0.31
5 0.41 0.93 0.80 0.70 5.98 0.63 0.28
6 0.49 0.87 0.72 0.72 3.83 0.58 0.28
7 0.21 0.89 0.58 0.63 2.00 0.88 0.38
8 0.80 0.58 0.56 0.81 1.89 0.35 0.33
9 0.16 0.97 0.78 0.63 5.26 0.87 0.36
10 0.22 0.95 0.74 0.64 4.29 0.82 0.35
11 0.28 0.94 0.76 0.66 4.73 0.76 0.33
12 0.35 0.93 0.78 0.68 5.15 0.70 0.30
13 0.21 0.95 0.75 0.64 4.42 0.83 0.35
14 0.32 0.97 0.88 0.68 10.72 0.70 0.29
15 0.28 0.91 0.69 0.65 3.24 0.79 0.34
16 0.31 0.91 0.69 0.66 3.34 0.76 0.33
17 0.40 0.91 0.75 0.69 4.42 0.66 0.30
18 0.60 0.88 0.78 0.77 5.23 0.45 0.23
19 0.48 0.91 0.78 0.72 5.33 0.57 0.26

4.2 The superiority index and variability

For the purpose of building a classification model in the next subsection,
the full sample was randomly split in half (Sample #1: N = 197, Sample #2:
N = 196). Superiority indices were computed for Sample #1. Diagnostic test
performance assessment was based on likelihood ratios of a positive and negative
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test, since these measures do not depend upon the neurocognitive impairment
prevalence rate and were favored for the application (Gallagher, 1998). Table
2 displays superiority indices and their bootstrap bias-corrected and accelerated
95% confidence interval estimates (Efron and Tibshirani, 1993, pp. 184-188) for
the Sample #1 data using the methods described in Section 3. The confidence
intervals (CIs) reflect the degree of variability associated with Si for each NP test.
In identifying tests which are likely to be relatively superior, we are reasonably
confident that those tests with 95% CIs having both endpoints above the value
of 1.0 (NP Tests #18, 5, 14, and 16) tend to be the better performing tests, and
those CIs with both endpoints below 1.0 (NP Tests #4, 7, and 9) are inferior.
The others (NP Tests #6, 1, 19, 12, 17, 11, 8, 13, 2, 3, 15, and 10) all contain the
value 1.0 within the interval. Thus, we cannot reject with reasonable confidence
the possibility that they are both superior to and inferior to about the same
number of tests.

Table 2: Sample #1 superiority indices in rank order and Bootstrap BCa 95%
confidence interval estimates of mean Si for 19 neuropsychological tests (NP
= neuropsychological; Si = superiority index for test i; BCa = bias-corrected
and accelerated; CI = confidence interval).

NP Test # Observed Si Bootstrap BCa 95% CI for mean Si

18 27.0 5.7 - 35
5 21.0 2.1 - 33
14a 13.0 1.6 - 29
16a 13.0 1.3 - 29
6 5.0 0.5 - 27
1 3.7 0.1 - 17
19 2.6 0.2 - 23
12b 2.2 0.1 - 23
17b 2.2 0.2 - 25
11 1.6 0.1 - 19
8 1.0 –
13 0.6 0.03 - 13
2c 0.3 0.03 - 3.4
3c 0.3 0.03 - 1.8
15 0.3 0.03 - 1.3
10 0.4 0.03 - 1.0
4 0.1 0.03 - 0.33
7 0.04 0.03 - 0.24
9 0.03 0.03 - 0.33

NP test numbers with the same superscript letter (a,b,c) have the same (tied)
observed Si.
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4.3 Classification Models

NP Test #18 ranked highest with Si = 27.0 (95% CI: 5.7, 35.0). Since a com-
bination of screening tests may interact or provide complementary information
to further reduce error, a model-building strategy was developed. As with most
model development, the final model may be appropriate, useful, and effective,
but it may not necessarily be unique.

Ideally, when numerous candidates are considered for model-building, two
driving influences should inform selection of candidate prognostic variables: (a)
avoidance of the inclusion of redundant (i.e., highly “correlated” or collinear)
variables and (b) elimination of variables having little predictive value. In a clas-
sical regression setting, when a large number of candidate prognostic variables are
available, a commonly used approach is to screen out variables to be included in
a model by computing univariable estimates and considering only variables with
a p-value less than, say, 0.05, 0.10, or 0.20, etc., with the criterion depending on
how conservative one wishes to be. Sets of these variables containing redundant
information can be pared down by eliminating all but the one with the smallest
p-value or largest test statistic (See Schwimmer et al., 2003). A method analogous
to this approach for combining diagnostic tests can be used. Tests having large
superiority values and thus more likely to be superior should be selected, and
tests having a small superiority index value, say less than one, can be eliminated.

To examine and assess the utility of the superiority index as a screening tool
for model variable-selection, Sample #1 was used as the model-training data and
Sample #2 was reserved for validation of the generated model. Four different
scenarios were used to determine which diagnostic tests were to be candidates
for inclusion in building separate models. The first scenario included diagnostic
tests having the highest superiority index values. According to Table 2, there
is a clear break between Si values for the two highest ranked NP tests, Tests
#5 and #18, versus the other tests. They have superiority values of 21 and 27,
respectively, in contrast to the next highest ranked tests which drop to an Si

value of 13; thus Tests #5 and 18 are indicated. The second scenario included
the seven highest ranked tests. They are, in order of their ranking, NP Tests
#18, 5, 14, 16 (tied with 14), 6, 1, and 19. They have superiority index values
ranging from 2.6 through 27.0. The third modeling scenario dropped all of the
clearly inferior NP tests as evidenced by a superiority index less than 1.0; thus,
the first seven tests included in the second scenario are included, plus NP Tests
#12, 17 (tied with 12), 11, and 8. The fourth modeling scenario used all 19 NP
tests.

We may also assess if some tests contain highly redundant information. The
Kappa statistic was used as the criteria for redundancy. The maximum Kappa
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value computed between every pair of NP tests was 0.46, which can be considered
as only moderate agreement according to the standard of Landis and Koch (1977).
Other methods are available to check for redundancy, such as the Phi coefficient,
Lambda statistics, or similarity measures.

To identify the final model for classification, CART (Classification and Re-
gression Tree) (Breiman et al., 1984, pp 11-13), a recursive partitioning technique
for classification, was applied using Sample #1 as training data. For each of the
four scenarios, a full CART tree was grown, then the branches were pruned until
the model reached a minimum misclassification error rate when applied to the
validation sample. Validation is essential because of the risk of overfitting the
model to the data in the training sample rather than reflecting the underlying
population from which the sample is obtained.

For each of the four models based on different scenarios, the final model using
CART produced the same decision rule: classify a subject as neuropsychologically
normal if the subject is rated as normal on both NP Tests #5 and #18, and
classify the subject as NP impaired if impaired on either of the two tests. Of
note, these two NP tests were the two highest ranked tests among the nineteen
with respect to the superiority index values.

Diagnostic test assessment measures for the final model for both the training
and validation datasets are presented in Table 3. Most of the measures reported
in Table 3 are substantially improved for both the training and validation data
compared to the values for each of the two tests #5 and #18 alone.

Table 3: Final CART model results for all four variable-selection scenarios.
(NP = neuropsychological, Training = Sample #1, Validation = Sample #2,
Sens = sensitivity; Spec = specificity; PPV = positive predictive value; NPV
= negative predictive value; LR+ = likelihood ratio for a positive test; LR−
= likelihood ratio for a negative test; Misclass = misclassification rate)

NP Tests Dataset Sens Spec PPV NPV LR+ LR− Misclass

#5, 18 Training 80% 86% 81% 85% 5.6 0.23 17%
Validation 80% 80% 71% 87% 4.05 0.25 20%

To further explore what impact superiority may have on modeling and prun-
ing, additional models were developed using the second, third, and fourth sce-
narios for NP test selection described above. However, this time, CART decision
trees were arbitarily forced to have exactly five NP tests included in the final
model. The results on several diagnostic test performance measures for these
three models were compared and appear in Table 4. Note that the third and
fourth scenarios produced the same final model.



172 Reena Deutsch et al.

Table 4: Comparison of CART results for three test-selection scenarios and forc-
ing exactly five tests into the final model. (NP = neuropsychological, Training
= Sample #1, Validation = Sample #2)

NP Test Selection Scenario Si ≥ 1∗; All 19 tests 7 highest ranking tests
NP Tests in Final Model∗∗ #18, 5, 11, 17, 6 #18, 5, 6, 1, 14

Measure Training Validation ∆∗∗∗ Training Validation ∆∗∗∗

Sensitivity 84% 69% 15% 81% 70% 11%
Specificity 88% 81% 7% 88% 84% 4%
Positive Predictive Value 84% 69% 15% 84% 72% 12%
Negative Predictive Value 88% 81% 7% 86% 82% 4%
Likelihood ratio of a + test 6.7 3.7 3.0 7.0 4.3 2.7
Likelihood ratio of a − test 0.19 0.38 0.19 0.21 0.36 0.15
Misclassification Rate 14% 23% 9% 15% 21% 6%

∗Si = superiority index, Tests in rank order: #18, 5, 14, 16, 6, 1, 19, 12, 17,
11, 8
∗∗Tests are listed in order of appearance in each model.
∗∗∗∆ =difference between results for the Training and Validation datasets, all
in the expected direction.

According to Table 4 and as expected, performance on every measure is worse
for the validation sample than for the training sample for all three variable-
selection scenarios. The column headed by delta (∆) shows the magnitude of
worsening for each method. The key findings here are that the amount of degra-
dation is less, and the absolute performance with the validation sample on all
presented diagnostic test assessment measures is better, when only the seven
highest ranking tests are presented as candidates for inclusion into the CART
models, compared to when all screening tests were used, or if only tests with
superiority index less than one were eliminated. This may reflect the way we
apply CART here, as it may tend to overfit the data. Screening out neuropsy-
chological tests which do not perform well relative to the other tests in the full
battery appears to allow development of a better model than if more inferior tests
are considered. It is expected that a model using fewer, but superior, classifiers,
results in better prediction than one using more, but less informative, classifiers.

Variations on the scenarios described above, such as forcing exactly three,
four, six, or more tests into the model, were applied. In every case, restricting
candidate diagnostic tests to the higher values of Si resulted in as good or better
performance than no restriction (results not shown).

5. Discussion

In many fields, it is common to seek the binary-valued screening or diagnostic
test which performs best among many. With our proposed methods and based
simultaneously on a pair of performance measures such as sensitivity and speci-
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ficity, not only is it possible to identify relative standing among a collection of
diagnostic tests, but the magnitude of relative superiority or inferiority of a test
can be estimated. Variability for this measure, reflected by 95% CIs, can be
estimated using bootstrap.

The proposed quantification of superiority provides a computationally simple
method for reducing a sometimes intractably large number of binary-valued di-
agnostic evaluation measures to a smaller number of more effective predictors of
a disease or condition. The superiority index for a diagnostic test can be inter-
preted alone in a simple and meaningful way, since it is the ratio of the number
of tests that it surpasses in performance to the number to which it is inferior.
Pairwise noncomparability reduces the impact of the superiority strength or infe-
riority strength in a balanced way, and it does not cause the procedure to result
in a stalemate beyond pairwise comparisons as previously reported methods do.
The index reflects a relative value but does not guarantee identification of tests
which perform well. The proposed methods are an option for modeling and for
eliminating relatively poor screening tests from consideration. It may serve a pur-
pose similar to pruning in CART and can be added to the collection of existing
methods which are used to assign subjects to a high vs. low risk category.

The proposed diagnostic test performance assessment methods assume that
various conditions exist: (a) multiple diagnostic tests with dichotomized out-
comes, (b) the presence of a gold standard, and (c) desire to optimize a pair
of test assessment measures. Estimates of individual screening test performance
measures are easily calculated from simple script programming, commercial soft-
ware, or free web-based calculators. The techniques are appropriate when any
pair of measures need to be simultaneously optimized, so the criteria for assess-
ment can be customized to fit the situation at hand. The proposed index need
only be applied to tests having equal costs for the two types of misclassification.
When there are different costs, the two types of errors can be combined into an
overall single weighted measure of total misclassification rate or cost and evalu-
ated and ranked accordingly. The proposed method accommodates missing data
and small samples, since each individual test measure, such as sensitivity, is mea-
sured as a proportion. Nevertheless, caution should be applied when evaluating
tests with a limited number of observations.

In the NP example, a two to three hour test battery of 19 tests was reduced
to two tests taking only approximately ten minutes to administer, so the impact
of the superiority technique was substantial. When CART was used for mod-
eling with a specified number of tests forced into the final model, all reported
validation sample performance measures were the same or better when the poor-
est performing tests were initially excluded based on low Si values as compared
to when CART had all tests available. The final CART model did not depend
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on whether or not diagnostic tests were screened out based on superiority. This
seems to confirm that screening out tests based on lower Si values plays a similar
role as pruning does in CART. Overfitting, a common modeling problem, is likely
reduced by these techniques.

A potential concern for the superiority index is that the proportion of other
screening tests from which it differs is accounted for, not the total number of tests.
Although the number of equal tests in the formulation attenuates this case, this
probably deserves more attention in the future. Another conceivable issue is that
each pairwise comparison identifies the better test but ignores the magnitude
of superiority. For example, it makes no difference if Test X has much higher
or only slightly higher sensitivity and specificity than Test Y . Either way, a is
incremented by one. Nevertheless, other tests will have a rougher time beating
out Test X if Test X has a very high superiority value and its relative ranking will
be sequenced appropriately after taking into account all pairwise comparisons.

In considering the extension of the superiority ranking to more than two
performance measures, such as sensitivity, specificity, LR+ and LR−, one option
would be to expand the comparisons specified in Section 2. For example, Test X
is superior to Test Y if Sens(X) > Sens(Y ), Spec(X) > Spec(Y ), LR + (X) >
LR +(Y ), and LR− (X) < LR− (Y ), and so on. However, the more restrictions
made to indicate a test as being superior, the fewer such designations will likely
be made, and the number of tests counted in computing the superiority index
may be drastically reduced.

A notable strength of the superiority quantification and ranking system is
that it can treat any binary covariate, including demographic or other charac-
teristics, in the same way as it treats a diagnostic or screening test. Hence, an
interesting application of the superiority index is its use in comparing competing
classification models which classify subjects as high vs. low risk. Relative supe-
riority of multiple classification models can be quantified and ranked using the
proposed techniques, even if the models are not nested. Another potential util-
ity of the superiority value is that if two screening tests are close in superiority,
but one is much more expensive in either time, cost, or other resource, the more
expensive test may be considered for elimination to conserve resources with the
awareness that minimal superiority is lost. Thus, the proposed superiority index
is adaptable in common situations and provides meaningful information with a
straightforward interpretation.
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Appendix A. Nineteen Neuropsychologic Evaluations Used in the Sec-
tion 4 Example.

Test # Test name

1 Brief Visuospatial Memory Test - Trials 1-3 Total
2 Brief Visuospatial Memory Test - Delayed Recall
3 Grooved Pegboard - Dominant
4 Grooved Pegboard - Nondominant
5 Paced Auditory Serial Addition Test
6 Story Memory Test - Learning Rate
7 Story Memory Test - Delayed Recall Trial
8 Figure Memory Test - Learning Rate
9 Figure Memory Test - Delayed Recall Trial
10 Trail Making Test - Part A
11 Trail Making Test - Part B
12 Digit Symbol subtest of the WAIS-3∗

13 Letter-Number Sequencing subtest of the WAIS-3∗

14 Symbol Search subtest of the WAIS-3∗

15 Letter Fluency
16 Category Fluency (animals)
17 Booklet Category Test
18 Hopkins Verbal Learning Test - Trials 1-3 Total
19 Hopkins Verbal Learning Test - Delayed Recall

∗Wechsler Adult Intelligence Test (3rd Edition)
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