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Abstract: This paper studies an effective stepwise hypotheses testing pro-
cedure in identifying dynamic relations between time series, and its close
connection with popular information criteria such as AIC and BIC. This
procedure, labeled M2, extends Chen and Lee’s (1990) procedure to cover
both the strong and weak form dynamic relations; and to be used with
a guided choice of significance levels which are adapting in nature. Intu-
itively, procedure M2 can be viewed as a backward-elimination approach
that simplifies the all-possible pairwise comparisons approach implied by
information criterion. New insights concerning identification of strong and
weak form dynamic relations using these approaches are given. Extensive
simulation experiments are conducted to illustrate the performance of the
IC and M2 approach in different settings. For applications, we study the
dynamic relations between price level and interest rate in US and UK, and
the robustness of the model identified is also addressed.
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1. Introduction

Popular model selection criteria such as Akaike information criterion and
Schwarz’s Bayesian information criterion are widely used and successfully imple-
mented in many applications. In general, using the information criterion (IC)
approach, the decision for choosing an appropriate model depends upon a trade-
off between the goodness-of-fit and the complexity of the model. Other commonly
used criteria can be found, for example, in Billah, Hyndman and Koehler (2005).
On the other hand, stepwise hypotheses testing approach is also a popular model
selection strategy in specific applications. For instance, in choosing the order
of vector autoregressive model, a sequential likelihood ratio tests procedure can
be used to determine if the next higher order AR term is needed (e.g., Reinsel
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(1993, chap.4). In phylogenetics, a popular strategy to select model is hierarchi-
cal likelihood ratio tests (see, for example, Posada and Buckley (2004) and the
references therein). In choosing an appropriate dynamic relation between time
series, a stepwise likelihood ratio tests procedure is developed in Chen and Lee
(1990).

The information criteria and hypotheses testing are apparently different ap-
proaches for model selection, and it is important to study their connection. First,
the basic connection between the penalty term in information criterion and sig-
nificance level in hypotheses testing is well known (e.g., Smith and Spiegelhalter
(1980) and Aitkin (1991)). Second, the IC approach can be viewed as a decision
procedure that involves all-possible pairwise testing of the candidate models, with
the critical values used in the testing approach determined by the penalty terms
of the criteria (e.g., Pötscher (1991)). Stoica, Selén and Li (2004) discussed an
implementation of generalized likelihood ratio tests which is equivalent to IC rule
and applied it for sparse models.

In this paper, we study an extended Chen and Lee’s (1990) procedure and
investigate its interesting and close connection to popular information criteria in
the context of specifying an appropriate dynamic relation between time series.

In many business and economics applications, it is crucial to identify the
presence or the absence of specific dynamic relations between the time series
of interest. For instance, does full feedback relation exist between the series,
or the relationship is solely uni-directional or even independent. In addition, is
there concurrent association between the series or not. Following the concept
of Granger’s causality, such relations can be represented by imposing specific
restrictions on the model parameters within the vector ARMA model. See, for
example, Chen and Lee (1990) and the references therein. They proposed an
effective sequential inference procedure based on a series of likelihood ratio tests
on various model structures to identify the best structure. It is used to study the
price and interest rate relationship and shed light on the Gibson’s paradox. Chen
and Wu (1999) extended the procedure to more than two series, and studied the
dynamic relations among corporate dividends, earnings and prices.

A natural question arises as how does this effective procedure compare to
classic model selection criterion such as AIC and BIC? We begin with extending
Chen and Lee’s (l990) procedure to handle dynamic relations both in the weak
and strong forms in Section 2. The strong form excludes concurrent associa-
tion between the series while the weak form does not. See, for example, Geweke
(1986) who emphasized the importance of distinguishing the presence of con-
current relation in economics. The extended procedure, labeled M2, begins with
determining an appropriate form (weak or strong) for the dynamic relations, then
seeks to move up a hierarchy of models with increasingly simplified structure. A
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model is selected at the simplest level the procedure can move up to, without
significantly reducing the likelihood. It is important to point out that the choice
of significance level to accompany the various tests is critical to the success of the
procedure. To assess the effect, we perform an extensive simulation study. We
experiment with a wide range of significance levels and find that a better choice
in our setting is around 2.5%, which is about the usual level choice of 1 to 5%.
Furthermore, when M2 is conducted at 2.5% level, the procedure gives an en-
couraging overall empirical probability of about 82% in correctly identifying the
different types of dynamic relations under consideration. The rationale behind
such preferred level choice, and a even better choice of using adapting levels, will
be addressed in Section 4.

Section 3 turns to study the performance of information criterion in identi-
fying both strong and weak form dynamic relations. To accommodate strong
form relation, an effective number of parameter is used in the IC rule. Simula-
tion results show this adjustment works well. To the best of our knowledge, this
adjustment has not been studied in the literature. A variety of penalty weights
including AIC, BIC, lighter and heavier weights relative to BIC are investigated
in the simulation. Results in Section 3.1 show that BIC serves well in selecting
the right dynamic relation overall. Its overall empirical probability in identifying
the model correctly is about 84%, which is only about 2% higher than using M2.
Moreover, we note that the performance of M2 when conducted at 12.5 to 15%
significance level is close to AIC. This is striking as M2 and IC are apparently
different approaches, but the results suggest a close connection between them in
fact exists.

It is well known that when casted in the testing framework, the IC approach
can be viewed as a decision procedure that involves all-possible pairwise compar-
isons of the candidate models (see Smith and Spiegelhalter (1980), Aitkin (1991),
Pötscher (1991) and Stoica, Selén and Li (2004) for further discussions). In this
light, procedure M2 when used with adapting significance levels can be viewed as
a backward-elimination approach that simplifies the all-possible searching proce-
dure, by taken into consideration model structure. A noted feature of procedure
M2 is that the model under the null hypothesis is always nested within the al-
ternative, and the number of restrictions is usually small due to the stepwise
structure. This feature is appealing because the null and alternative hypothe-
ses are not necessarily nested under the all-possible comparisons approach. See
Vuong (1989) for likelihood ratio tests for non-nested hypotheses. Here, the no-
tion that a guided choice of significance levels can be made according to the
penalty term leads to further improvement of M2. Simulation studies in Section
4.1 confirm that the performance of using M2 with adapting significance levels
improves to about 84%, which is essentially the same as using BIC.
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For empirical applications, we revisit the price level and interest rate series
in Chen and Lee (l990). We strengthen their result by further distinguishing
between the strong and weak form relations in the dynamic structure. Moreover,
we also illustrate how the robustness of the dynamic relation selected can be
effectively assessed through the use of a variety of adapting significance levels
and penalty weights.

The rest of the paper is organized as follows. Section 2 studies procedure M2
in choosing dynamic relations. Section 3 studies information criteria in choosing
dynamic relations including both the strong and weak forms. Section 4 studies
their connection and improves M2 by using adapting significance levels. Section
5 presents empirical applications and concludes the paper.

2. Choosing Dynamic Relations with a Stepwise Hypotheses Testing
Procedure

Consider a stationary and invertible vector ARMA (VARMA) model[
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] [
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]
=
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]
where εt = (at, bt)′ is an identically and independently distributed Gaussian noise
with mean zero and covariance matrix Σ which consists of elements σi,j , i, j = 1, 2.
The φij and θij are the usual AR and MA components and B is the back-shift
operator. In many applications, it is important to determine an appropriate
dynamic relation between the time series given the observed data. For instance,
is the relationship uni-directional or in feedback form; and whether the errors are
contemporaneously related or not.

Table 1: Parametric constraints and the corresponding hypotheses which are sufficient

Parametric Constraints
Dynamic relations Hypothesis Model parameter Error covariance
independent (strong) H∧ : x ∧ y φij(B) = θij(B) = 0 σij = 0, i 6= j
contemporaneous (weak) HB : x ↔ y φij(B) = θij(B) = 0
unidirectional (strong) HU0 : x ⇐0 y φ21(B) = θ21(B) = 0 σij = 0, i 6= j
unidirectional (weak) HU : x ⇐ y φ21(B) = θ21(B) = 0
unidirectional (strong) HL0 : x ⇒0 y φ12(B) = θ12(B) = 0 σij = 0, i 6= j
unidirectional (weak) HL : x ⇒ y φ12(B) = θ12(B) = 0
feedback (strong) HF0 : x ⇔0 y no parametric constraints σij = 0, i 6= j
feedback (weak) HF : x ⇔ y no parametric constraints

These various dynamic relations under examination lead to different restric-
tions to be placed in the model parameters. The parametric constraints and the
corresponding hypotheses which are sufficient (but not necessary) for various dy-
namic relations to hold are summarized in Table 1. In the table, a strong form
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relation has the same structural parameterization as the weak form, and further
requires the error covariance σij to be zero. In other words, a strong form relation
excludes the contemporaneous association between the series (see, for example,
Geweke (1986)).

Chen and Lee (l990) developed a stepwise likelihood ratio tests procedure to
identify the best dynamic specification. Their method with a minor modification,
labeled as M1, is described in the Appendix using our notations. In essence, it
is a backward-elimination approach that seeks to move up a hierarchy of models
with increasingly simplified structures. A model is selected at the simplest level
the procedure can move up to. The specifications they considered, however, do
not include strong form relations. Below, we extend their procedure to cover this
form.

Among the eight possible structures under the hypotheses {HF , HF0 , HU ,
HU0 , HL, HL0 , HB, H∧} that we considered, it is clear that not all hypotheses
between the most restrictive H∧ and least restrictive HF are nested. However,
there are subsequences such as {HF , (HU or HL), HB} or its strong form counter-
parts which are nested. A noted feature of our stepwise testing procedure is that
the null hypothesis is always nested within the alternative.

To facilitate the procedure design, observe that if a weak form relation is
estimated under the more restrictive strong form specification, the resulting log
determinant of the error covariance matrix (ln|Σ|) will be substantially affected.
On the other hand, ln|Σ| will not be much affected if a strong form is estimated
as weak form. Our limited experience from simulation studies suggested that
this is the key to distinguish between the strong and weak forms. Our extended
Chen and Lee’s (l990) procedure begins with choosing a form (strong or weak)
by testing three pairs of hypotheses (HL0 , HL), (HU0 , HU ) and (HF0 , HF ). If
there are no significant difference between all of these strong/weak form pairs,
the procedure would only search for strong form relations; otherwise it would
search for weak form.

To simplify presentation, we use the notation (Hj , Hi) to denote testing
of the null hypothesis Hj against the less restrictive alternative Hi using the
usual likelihood ratio test. The determinant of the error covariance matrix of the
VARMA model obtained under the parametric constraints imposed by hypothesis
Hk is denoted by |Σk|. (For simplicity of notation, this is understood to be the
sample estimate). The result of the likelihood ratio test is represented by an ’x’ or
an ’o’, as judged by comparing n∗ln|Σj |/|Σi| to the chi-square value χ2

#r
(α). The

degree of freedom #r equals to the number of parametric restrictions between the
null and alternative hypotheses, α is the pre-specified significance level, and n is
effective number of observations. An ’x’ indicates Hj is rejected when compared
to Hi at the α level; an ’o’ is used if Hj is not rejected. In other words, an ’x’
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indicates that ln|Σj | is significantly different from ln|Σi|; an ’o’ indicates that it
is not. Similar notation is used for testing of more than one pair of hypotheses.
For example, in testing (Hj , Hi) and (Hl, Hk), the result, say, (x,0), indicates
that Hj is rejected in the first test and Hl is not in the second.

Procedure M2. Initial step: Test three pairs (HF0 , HF ), (HU0 , HU ), and (HL0 ,
HL). If the result is (o,o,o), go to (Strong form) Stage one to test for strong form
relations; otherwise, go to (Weak form) Stage one to test for weak form relations.

(Strong form) Stage one: Test two pairs (HU0 , HF0), (HL0 , HF0). If the result
is
1a) (x,x): conclude HF0 .
1b) (x,o): conclude HL0 .
1c) (o,x): conclude HU0 .
1d) (o,o): go to (Strong form) Stage two and check if further parametric con-
straints can be imposed.

(Strong form) Stage two: Test two pairs (H∧, HU0), (H∧, HL0). If the result
is
2a) (x,o): conclude HU0 .
2b) (o,x): conclude HL0 .
2c) (o,o): conclude H∧.
2d) (x,x): then test (H∧, HF0). An ’x’ will conclude min(HU0 , HL0); an ’o’, H∧.

(Weak form) Stage one: Use Chen and Lee’s (l990) procedure as described in
the Appendix.

It is clear that this is not the only way to design the stepwise hypotheses
testing procedure. We have also tried some alternative designs and found pro-
cedure M2 to be simple and also performed well. Moreover, the approach is
intuitively appealing in the sense that the partially nested structure has been
employed in the testing procedure. The other designs we tried are reported in an
earlier version of the paper and are not reported here for brevity. It is important
to point out that the significance level chosen to accompany the various tests in
the procedure plays an important role in the success of the procedure. In the
simulation study below, we experiment with a wide range of significance levels
for exploration purpose. The issue of choosing a better significance level will be
addressed in subsequent sections.

2.1 Simulation study: Procedure M2 conducts at various fixed signifi-
cance levels

Bivariate ARMA(1,1) models are simulated according to the eight types of
dynamic relations we considered. The parameter values are chosen according to
the estimation results for the price level and interest rate series as studied in
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Chen and Lee (l990) and their related working paper, which are given as follows:

For HB, Φ =
(

1 0
0 0.92

)
, Θ =

(
−0.3 0

0 0

)
.

For HL, Φ =
(

1 0
0.1 0.92

)
, Θ =

(
−0.3 0
−0.3 0

)
.

For HU , Φ =
(

1 0.1
0 0.92

)
, Θ =

(
−0.3 −0.3

0 0

)
.

For HF , Φ =
(

1 0.1
−0.2 0.92

)
, Θ =

(
−0.3 −0.3
0.3 0

)
.

The AR(1) and MA(1) components are (I − ΦB) and (I − ΘB) respectively.

The error covariance matrix is Σ =
(

9 3
3 9

)
for weak form relations; and Σ0 =(

9 0
0 9

)
for strong form.

From each of these eight underlying models, we simulate 200 observations with
the first 100 removed. This is the simulated time series, and M2 is applied to
select the best specification. Specifically, we estimate eight different VARMA(1,1)
models (with intercept term) to the simulated time series, each according to the
restrictions imposed by the eight dynamic relations under consideration, and the
corresponding sample ln|Σ| is recorded. The best model is then identified by
M2, which is conducted at a pre-specified significance level being held fixed in
all tests. In this experiment, we try a wide range of levels at 0.1, 0.5, 1, 2.5,
5, 10, 12.5 and 15% for exploration and to locate a better choice. The whole
experiment is replicated 5000 times. In this experiment, a simulated series will
be removed if its sample ln|Σ| under the HF and H∧ structure are not being the
smallest and largest value, respectively. The number of series removed ranges
from about 1% to 5% out of the total number of series simulated from each of
the eight underlying models.

For each underlying model i, denote the probability of selecting the correct
specification as Pi|i (or correctly select Hi given Hi is true); and that of incor-
rectly selecting other specification j as Pj|i. The first panel of Table 2 reports
the empirical probability of correct selection Pi|i for each i using M2 at various
significance levels. The detail tabulations of Pj|i for each underlying model are
available on request. It is useful to come up with an overall performance measure
to summarize the effectiveness of M2. Here, we use a geometric mean measure
defines as P̄all = (Π8

i=1Pi|i)1/8 to summarize the eight individual empirical prob-
abilities of correct identification. Similarly, denote P̄W = (ΠiPi|i)1/4, i=F , U , L,
B and P̄S = (ΠiPi|i)1/4, i=F0, U0, L0, ∧ as the overall performance measure for
identifying the weak and strong form relations, respectively. These measures are
reported in Table 3. The following observations can be made.
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Table 2: Simulation studies: Empirical percentage of correctly identifying the
true underlying specification using three different procedures.

(First Panel) M2 with fixed significance levels:

Fixed True underlying specification
level F F0 L L0 U U0 B ∧
15% 0.977 0.792 0.729 0.622 0.585 0.519 0.522 0.472

12.5% 0.973 0.824 0.756 0.668 0.617 0.566 0.567 0.522
10% 0.964 0.856 0.774 0.717 0.652 0.622 0.614 0.580
5% 0.928 0.918 0.805 0.826 0.705 0.743 0.711 0.735

M2 2.5% 0.884 0.954 0.779 0.892 0.706 0.802 0.751 0.845
1% 0.811 0.968 0.692 0.915 0.636 0.817 0.733 0.922

0.5% 0.740 0.968 0.602 0.916 0.562 0.802 0.684 0.955
0.1% 0.560 0.946 0.387 0.852 0.358 0.691 0.535 0.985

(Second Panel) AIC and BIC with penalty adjustments v from -3.0 to+3.0:

True underlying specification
v F F0 L L0 U U0 B ∧

AIC 0.977 0.823 0.744 0.639 0.605 0.539 0.581 0.498
-3.0 0.985 0.773 0.675 0.538 0.525 0.441 0.467 0.386
-2.5 0.975 0.833 0.755 0.664 0.619 0.564 0.604 0.525
-2.0 0.963 0.876 0.805 0.750 0.686 0.660 0.708 0.641
-1.5 0.947 0.901 0.820 0.817 0.722 0.730 0.775 0.738
-1.0 0.930 0.922 0.817 0.856 0.740 0.768 0.813 0.812
-0.5 0.909 0.935 0.795 0.884 0.733 0.789 0.829 0.867

BIC 0 0.889 0.947 0.762 0.895 0.701 0.794 0.838 0.907
+0.5 0.865 0.951 0.718 0.896 0.663 0.785 0.832 0.934
+1.0 0.837 0.951 0.667 0.888 0.621 0.768 0.820 0.950
+1.5 0.809 0.946 0.616 0.873 0.571 0.737 0.803 0.963
+2.0 0.774 0.941 0.560 0.852 0.524 0.700 0.783 0.972
+2.5 0.740 0.930 0.504 0.828 0.473 0.654 0.759 0.979
+3.0 0.704 0.918 0.449 0.803 0.415 0.612 0.731 0.985

(Third Panel) M2 with adapting significance levels:

Adapting True underlying specification
level F F0 L L0 U U0 B ∧
αA 0.979 0.784 0.747 0.631 0.607 0.529 0.552 0.488

αB*4 0.971 0.819 0.850 0.765 0.751 0.682 0.781 0.702
αB*2 0.938 0.894 0.829 0.852 0.762 0.761 0.822 0.825

M2 αB 0.895 0.933 0.779 0.894 0.718 0.794 0.824 0.900
αB/2 0.841 0.951 0.699 0.901 0.650 0.789 0.795 0.942
αB/4 0.776 0.951 0.609 0.887 0.566 0.759 0.745 0.967
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Table 3: Overall measure of the empirical percentage of correctly identifying
the true underlying specification using three different procedures.

(First Panel) M2 with fixed significance levels:

Fixed Overall measure
level P̄all P̄W P̄S

15% 0.634 0.683 0.589
12.5% 0.673 0.712 0.635
10% 0.712 0.739 0.686
5% 0.792 0.782 0.802

M2 2.5% 0.823 0.777 0.871
1% 0.804 0.715 0.904

0.5% 0.764 0.643 0.908
0.1% 0.623 0.451 0.861

(Second Panel) AIC and BIC with penalty adjustments v from -3.0 to +3.0:

Overall measure
v P̄all P̄W P̄S

AIC 0.660 0.711 0.613
-3.0 0.573 0.635 0.516
-2.5 0.679 0.724 0.636
-2.0 0.754 0.783 0.726
-1.5 0.803 0.812 0.794
-1.0 0.830 0.822 0.838
-0.5 0.840 0.814 0.867

BIC 0 0.838 0.794 0.884
+0.5 0.825 0.765 0.889
+1.0 0.804 0.730 0.886
+1.5 0.778 0.691 0.875
+2.0 0.747 0.649 0.859
+2.5 0.712 0.605 0.838
+3.0 0.674 0.556 0.816

(Third Panel) M2 with adapting significance levels:

Adapting Overall measure
level P̄all P̄W P̄S

αA 0.649 0.704 0.598
αB*4 0.786 0.834 0.740
αB*2 0.833 0.835 0.832

M2 αB 0.839 0.801 0.879
αB/2 0.814 0.742 0.893
αB/4 0.770 0.668 0.887

Results in the first panel of Tables 2 and 3 show that a better choice of
significance level is 2.5%, which gives an encouraging P̄all = 0.823, or about 82%
chance in selecting correctly using M2. The individual Pi|i ranges from about
70% to 95%. When conducted at other significance levels, the performance at
1% level is fairly similar with a P̄all = 0.804, but the performance starts to decline
when using levels beyond the 1 to 2.5% range.

Two interesting questions then arise naturally. First, why is 2.5% a better
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choice of significance level in this setting? Second, how does procedure M2 com-
pare to classic model selection criteria such as AIC and BIC? These issues are
investigated in the next two sections.

3. Choosing Dynamic Relations with Information Criteria

By treating models with different parametric constraints as different VARMA
models, the issue of identifying an appropriate dynamic relation can be addressed
by model selection criteria. The IC approach provides a tool for a trade-off
between the complexity of a model and the goodness-of-fit in the process of
model selection. Specifically, denotes

ICi = ln|Σi| + pn#i/n (3.1)

as the information criterion for model i, #i the number of estimated parameters,
and n the effective number of observations. AIC corresponds to a fixed penalty
of pn = 2, while BIC uses a heavier penalty term of pn = ln(n). These criteria
are well studied and it is well known that BIC is consistent if the underlying true
model is finite-dimensional; while AIC is motivated with a focus on prediction.

In general, many other choices of penalty term besides the popular AIC and
BIC have been considered in the literature. Generally speaking, the choice of
penalty term can be made according to the underlying assumptions as well as
the specific objective of building model. Later on in our simulation studies, we
try a wide range of pn weights other than AIC and BIC to explore the effect of
other types of information criteria. Our purpose is exploratory and we do not
focus on any particular alternative choice.

Typically, the #i in (3.1) refers to structural parameters in the model, and
there is no zero restrictions placed in the error covariance matrix. Therefore, to
account for strong form relations, we need to adjust the standard IC rule in (3.1).
In this paper, we shall use a simple adjustment to the number of parameters in
(3.1) as described below. To the best of our knowledge, this adjustment has not
been studied in the literature.

Consider a k-dimensional VARMA(1,1) model where xt−Φxt−1 = εt−Θεt−1,
and εt has unrestricted covariance matrix Σ. Decompose Σ = LDL′ where L
is a lower triangular matrix with unit diagonal, and D is a diagonal matrix.
Transform xt by L−1, and the original VARMA(1,1) can be re-written as L−1xt−
L−1ΦLL−1xt−1 = η

t
− L−1ΘLη

t−1
, where η

t
= L−1εt has covariance matrix D.

In this form, the contemporaneous relation in the error term is now explicitly
expressed as structural parameters in the model. Note that by restricting the
lower diagonal elements of L−1 to be zero, the model becomes a VARMA(1,1)
in strong form. Hence, we can regard the strong form version of a model as
its weak form with restrictions, and the number of restrictions is equal to the
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number of σij=0, for j > i. In other words, when compared to the weak form,
a strong form has k(k − 1)/2 less parameters to estimate. In the same manner,
this discussion also applies to higher order VARMA(p, q) model. Based on this
rationale, we modify the definition in (3.1) to accommodate both strong and weak
form relations by using the effective number of parameters as follows:

ICi = ln|Σi| + pn#′
i/n; #′

i = #i − #Σ. (3.2)

For strong form, #Σ = k(k − 1)/2 is the number of restricted zeroes. For weak
form, #Σ = 0 for no restrictions.

3.1 Simulation study: IC approach with a variety of penalty weights

For comparison on the same basis, we apply the IC approach to the same
simulated series in Section 2.1 when we study the performance of M2. In addi-
tion to AIC (pn = 2) and BIC (pn = ln(n)), we also use some lighter and heavier
penalty weights for exploration purpose and to gain insight. In particular, we
experiment with adjusting the BIC penalty upward and downward as ln(n) ± v,
where v=0 through 3 with an increment of 0.5. For 100 observations simulated
from VARMA(1,1) model, these weights cover a wide range of penalty weights
beyond AIC and BIC. The empirical probabilities Pi|i of correct model identifi-
cation using IC with this range of penalty weights and the overall measures are
summarized in the second panel of Tables 2 and 3, respectively. A number of
interesting observations can be made.

The simulation results show that BIC, without adjustment, serves well in
selecting the correct model from the eight underlying structures as a whole. This
is not surprising as our simulation is based on finite-order VARMA model and
BIC is known to be consistent in selecting the right model. We also note that
the strong form adjustment (3.2) works well. In addition, results show that the
highest P̄all is about 84% by using BIC or BIC with a slight downward penalty
adjustment (v = −0.5). Interestingly, this P̄all is just about 2% higher than
using M2 (with P̄all = 0.823). Moreover, we note that not only the performance
of M2 conducts at 1 to 2.5% level is close to using BIC; M2 at 12.5 to 15% level
is close to AIC. Such close connection is striking as M2 and IC are apparently
different approaches. Later on in Section 4, we shall examine in details why such
correspondence occurs.

While BIC performs well as a whole, further insights are observed in regards
to identifying strong and weak form relations. First, it is important to point
out that each dynamic structure has its own preferred penalty weight. Consider
the full model HF for instance. The second panel of Table 2 shows that the
empirical probability of identifying this specification increases as v gets more
negative. Intuitively, a larger downward adjustment means a lighter penalty on



150 Kasing Man and Chung Chen

the number of parameters, and therefore favours selecting the full model. In fact,
our simulations show a lighter penalty weight (relative to BIC) is preferred by
other weak form relations as well. Specifically, the best adjustment in identifying
HL, HU and HB are all non-positive, with vL = −1.5, vU = −1 and vB = 0
respectively. In sum, for all weak form relations collectively as a group, a lighter
penalty weight of ln(n)−1 increases P̄W to 0.822 from 0.794 of BIC’s ln(n) weight
(see the second panel of Table 3).

On the other hand, for strong form model H∧, a large positive adjustment
is preferred. Intuitively, a high penalty ln(n) + v imposes on the number of
parameters favours the selection of the simplest model. In fact, the preferred
adjustment for all strong form relations is non-negative, with vL0 = 0.5, vU0 = 0,
vF0 = 0.5 respectively. In sum, for all strong form relations collectively as a
group, a heavier penalty weight of ln(n) + 0.5 increases P̄S slightly to 0.889 from
0.884 of using BIC’s ln(n) weight. Even though the advantage over using BIC is
minimal; further evidence can be found in the testing framework.

That each underlying specification has its own preferred penalty adjustment
is also noted in the testing framework when M2 is used, but is now manifested as
a preferred choice of significance level. Results in the first panel of Table 3 shows
that a larger significance level is preferred in identifying weak form relations
(P̄W =0.782 using 5% improves slightly over P̄W =0.777 of using 2.5%); while
a smaller level is preferred in identifying strong form relations (P̄S=0.908 of
using 0.5% improves over P̄S=0.871 of using 2.5%). Intuitively, a larger/smaller
significance level makes the procedure easier/harder to reject the more restrictive
null hypothesis and conclude the less restrictive alternative. This is consistent
with imposing a lighter/heavier penalty on the number of parameters. Further
discussion will be given in Section 4.

To summarize, our simulation results support BIC as a good overall crite-
rion in identifying the eight dynamic relations of interest and no major ad-
vantage is seen by using a lighter or heavier penalty. However, if prior infor-
mation about the form (strong or weak) of the dynamic relation is available,
then penalty/significance level can be adjusted accordingly as described above
to favour the identification of that type of relations, and this is achieved at the
expense of the other type.

This section illustrates how the penalty weight pn and the number of param-
eters #i in the standard information criterion for VARMA model are subjected
to possible adjustment. This occurs when prior information about the model
type is available and when there is zero restrictions in Σ, respectively. Formal
investigation of these adjustments is interesting future work.
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4. The Connection between Information Criterion and Procedure M2

The connection between the penalty term pn in information criterion and
significance level α in likelihood ratio test is well known (e.g., Smith and Spiegel-
halter (1980) and Aitkin (1991)):

pn#r = χ2
#r

(α).

For convenience, its rationale is outlined as follow. Consider two VARMA models
that model 1 is nested within model 2. Using the minimum IC rule, if IC2 −
IC1 = ln|Σ2|/|Σ1| + pn#r/n > 0 or n ∗ ln|Σ1|/|Σ2| < pn#r, model 1 will be
selected. On the other hand, we can use likelihood ratio test to test model 1 as
the null hypothesis against model 2 as the alternative. Model 1 is concluded if
n ∗ ln|Σ1|/|Σ2| < χ2

#r
(α), where χ2

#r
(α) is the chi-square value with degree of

freedom #r = #2 − #1 at the α level. Therefore, if α is chosen as a function of
#r and pn, such that it solves pn#r = χ2

#r
(α), the likelihood ratio test would

conclude the same as using minimum IC.
This connection implies that the minimum IC approach can be viewed as a

decision procedure that involves pairwise comparisons of all candidate models
under examination. See Pötscher (1991) and Stoica, Selén and Li (2004) for
details and how the critical values in the testing framework are determined by
the penalty terms of the criteria. For convenience, the key characteristic of this
IC-induced all-possible pairwise testing procedure is summarized as follows. The
idea is to find a specification H∗ which is ‘close’ to all other specifications Hi

with more parameters (i.e., n ∗ ln|Σ∗|/|Σi| < pn(#i − #∗) = χ2
#r

(α)); yet ‘far
away’ from all other specifications Hj with less parameters (i.e., n∗ ln|Σj |/|Σ∗| >
pn(#∗ − #j) = χ2

#r
(α)); and is the ‘best’ (i.e., n ∗ ln|Σk|/|Σ∗| > 0) within

its own class (#k = #∗). The ‘closeness’ (or significance) is being judged by
the critical value pn#r, or its implied significance level α(#r, pn) which is not
fixed. In this testing framework, such adapting significance level α(#r, pn) plays
the same critical role as the penalty term pn in information criterion. Some of
the likelihood ratio tests involved in the IC-induced testing procedure are not
standard because the null and alternative hypotheses are not necessarily nested.

In accordance with the above interpretation, procedure M2 can be viewed
as a backward-elimination procedure that simplifies the all-possible comparisons
procedure implied by minimum IC approach. In other words, procedure M2
captures the essence of the IC-induced procedure by seeking the ‘closest’ simpli-
fied model (without significantly reducing the likelihood) in a sequential manner,
starting from the full feedback model. Using the same idea, one can also design a
forward-addition approach similar to M2 but begins the search with the simplest
H∧ model. The performance of M2 when used with adapting significance levels
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is expected to be similar to the IC approach. This is illustrated by simulations
next.

4.1 Simulation study: Procedure M2 with adapting significance levels

We apply the testing procedure M2 with adapting significance level to the
simulated series in Section 2.1 and 3.1, and results are compared to that of using
fixed levels as well as the IC approach.

In our simulation set-up, it is easy to check that the adapting significance
levels corresponds to AIC is αA=(0.1573, 0.1353, 0.1116, 0.0916) for 1 to 4 re-
strictions respectively; and the adapting levels corresponds to BIC is αB=(0.0321,
0.0101, 0.0032, 0.0010) when the effective sample size is 99. Note that for tests
involve one or two parameter differences, BIC corresponds to a significance level
of about 3% and 1% and AIC corresponds to about 16% and 14%. Recall that
many of the hypotheses tests in M2 involve only 1 or 2 parameter differences.
Hence, if a fixed significance level were to use in all tests, a level of 1 to 2.5%
will generally perform like BIC; and a 12.5% to 15% level perform like AIC. This
provides a justification to the findings we had in Section 2.1 and 3.1. Obviously,
the choice of a better fixed significance level will depend on the sample size as well
as the most common #r used and therefore may change in different applications.

Just as we use a variety of penalty weights pn for exploration in Section 3.1,
we also try a variety of adapting significance levels here. We explore with two
proportionally larger levels (2 and 4 times of αB), as well as two proportionally
smaller levels (1/2 and 1/4 times of αB) to gain insight and assess the sensitivity of
the model selected. The chance of correct model selection under each specification
Pi|i and the overall measure are summarized in the third panel of Tables 2 and 3,
respectively. In comparison to the results of using IC approach, it clearly shows
that M2 with adapting significance level αB performs similarly to BIC; and αA

to AIC. Their chances of selecting over the eight underlying models follow very
similar pattern. The highest P̄all = 0.839 of using αB is essentially the same as
0.838 of using BIC.

For individual specification, the remark we made in Section 3.1 that each
specification has its own preferred penalty adjustment is again noted here. In
identifying the full feedback model HF , AIC or αA is preferred. AIC imposes a
lighter penalty on the number of parameters, and therefore tends to favour model
with more parameters. Similarly, using a larger significance level αA (relative to
αB) is easier to reject the null hypothesis and conclude the less restrictive alterna-
tive. Intuitively, this means the procedure is harder to move up the hierarchy of
models with simplified structures, thus favouring the selection of the full model.
On the contrary, a heavier penalty term or a smaller significance level favours the
identification of the simplest model H∧.
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In between these two extremes H∧ and HF , broadly speaking, weak form
relations generally prefer a relatively large significance level or light penalty term;
and the reverse is true for strong form relations. Consider HL for example. The
use of αB or BIC correctly identifies the true model about 78% of the time,
but increases to about 85% when 4 times αB were used. For weak form relations
collectively as a group, a relatively large significance level is preferable (P̄W =0.835
of using 2 times αB improves over P̄W =0.801 of using αB); while the reverse is
true for strong form relations (P̄S=0.893 of using 0.5 times αB improves over
P̄S=0.879 of using αB). Recall that procedure M2 begins with selecting a form
by testing three strong and weak form pairs. Hence, if the true structure is in
strong (weak) form, it is desirable to use a smaller (larger) significance level or
a heavier (lighter) penalty weight as found in Section 3.1 because it would make
the strong form null hypothesis harder (easier) to reject.

5. Empirical Analysis: Prices and Interest Rates

For empirical analysis, we revisit the price (Pt) and interest rate (It) dynamics
studied in Chen and Lee (l990). They examined the full sample period as well
as two sub-periods selected according to monetary standard. Using the various
approaches described in this paper, Tables 4 and 5 report the model selection
results for the US and UK series respectively. The conclusions we draw confirm
their results and that all P ⇒ I relations found in US second and full periods as
well as UK full period can be strengthened to P ⇒0 I. Further details regarding
the performance of various procedures as well as the robustness of the structure
selected are discussed below.

In Tables 4 and 5, Column 2 reports the ln|Σi| when the model is estimated
under the parametric restriction imposed by Hi. To simplify the table, we do
not list all likelihood ratio comparisons made in our procedure, but only present
those with respect to the full model HF . In particular, n ∗ ln(|Σi|/|ΣF |) of a
hypothesis Hi from the base HF is reported in column 3. The model selected
by M2 using level αA is marked by a ‘‡’. For the adapting level αB as well as
two proportionally higher and lower levels (4, 2, 1, 0.5, 0.25 times of αB), the
model selected by k of these levels are marked by a ‘?k’. Details regarding the
corresponding k levels is described in the text. Columns 4 and 5 report the AIC
and BIC values, and the model selected accordingly is marked by a ‘*’. We also
try different penalty adjustments to the BIC weight as pn(v) = ln(n) + v, where
v ranges from -3 to 3 at an increment of 0.5. For those v that select differently
from BIC, the model they selected is marked by an ‘◦’, and details regarding the
corresponding v is described in the text.
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Table 4: US price (Pt) and interest Rate (It): Model selection using M2 and
IC approach

Model ln|Σi| n∗ln(
|Σi|
|ΣF | ) AIC BIC

US: Full period from 1:182, VARMA(1,1) fit
HF -10.062 0.000 -9.952 -9.775
HF0 -10.061 0.181‡ -9.962* -9.803
HL -10.039 4.163 -9.951 -9.809
HL0 -10.038 4.344?5 -9.961 -9.837*
HU -9.940 22.082 -9.852 -9.710
HU0 -9.940 22.082 -9.863 -9.739
HB -9.924 24.978 -9.858 -9.752
H∧ -9.924 24.978 -9.869 -9.780

Conclusion: P ⇒0 I

US: Period 2 from 115:182, VARMA(1,1) fit
HF -9.777 0.000 -9.478 -9.149
HF0 -9.775 0.134 -9.506 -9.210◦
HL -9.739 2.546 -9.500 -9.237
HL0 -9.738 2.613‡,?5 -9.529* -9.299*
HU -9.465 20.904 -9.226 -8.963
HU0 -9.464 20.971 -9.255 -9.025
HB -9.432 23.115 -9.253 -9.055
H∧ -9.432 23.115 -9.283 -9.118

Conclusion: P ⇒0 I

US: Period 1 from 75:114, VARMA(1,0) fit
HF -11.349 0.000 -11.041 -10.785
HF0 -11.325 0.936 -11.069 -10.855
HL -11.345 0.156 -11.089 -10.875◦
HL0 -11.321 1.092‡,?2 -11.116* -10.945◦
HU -11.258 3.549 -11.002 -10.788
HU0 -11.234 4.485 -11.029 -10.858
HB -11.250 3.861 -11.045 -10.874
H∧ -11.229 4.680?3 -11.075 -10.947*

Conclusion: P ∧ I

NOTE. For US series, full period is 1800-1981, sub-period 2 is 1914-1981, and sub-period
1 is 1874-1913. In column 3, the notations ‡ and ?k denote the models chosen by M2 at
significance levels αA, αB , and some proportionally larger and smaller levels of αB . The
notation * in column 4-5 denotes the models chosen by AIC and BIC; and notation ◦ denotes
the model selected by those adjustments v that is not the same as BIC (the specific v are
given in the text). For full period and sub-period 2, all variety of αB chose the same model.
For sub-period 1, all variety of αB chose H∧ except for 4 and 2 times of αB , which chose
HL0 .
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Table 5: UK price (Pt) and interest rate (It): Model selection using M2 and
IC Approach

Model ln|Σi| n∗ln(
|Σi|
|ΣF | ) AIC BIC

UK: Full period from 1:253, VARMA(1,1) fit
HF -10.469 0.000 -10.390 -10.250
HF0 -10.455 3.528 -10.384 -10.258
HL -10.465 1.008‡,?1 -10.402* -10.289◦
HL0 -10.451 4.536?4 -10.395 -10.297*
HU -10.382 21.924 -10.319 -10.206
HU0 -10.368 25.452 -10.312 -10.214
HB -10.375 23.688 -10.327 -10.243
H∧ -10.364 26.460 -10.324 -10.254

Conclusion: P ⇒0 I

UK: Period 2 from 186:253, VARMA(1,1) fit
HF -9.577 0.000 -9.278 -8.949
HF0 -9.533 2.948 -9.264 -8.968
HL -9.556 1.407‡,?1 -9.317* -9.054◦
HL0 -9.511 4.422 -9.302 -9.072
HU -9.484 6.231 -9.245 -8.982
HU0 -9.440 9.179 -9.231 -9.001
HB -9.458 7.973 -9.279 -9.081
H∧ -9.417 10.720?4 -9.268 -9.103*

Conclusion: P ∧ I

UK: Period 1 from 93:185, VARMA(2,0) fit
HF -12.620 0.000‡,?3 -12.400* -12.124*
HF0 -12.483 12.467 -12.285 -12.037
HL -12.514 9.646?2 -12.338 -12.117◦
HL0 -12.377 22.113 -12.223 -12.030
HU -12.468 13.832 -12.292 -12.071
HU0 -12.331 26.299 -12.177 -11.984
HB -12.337 25.753 -12.205 -12.040
H∧ -12.225 35.945 -12.115 -11.977

Conclusion: P ⇔ I

NOTE. For UK series, full period is 1729-1981, and sub-period 2 is 1914-1981, sub-period
1 is 1821-1913. In column 3, the notations ‡ and ?k denote the models chosen by M2 at
significance levels αA, αB , and some proportionally larger and smaller levels of αB . The
notation * in columns 4-5 denotes the models chosen by AIC and BIC; and the notation ◦
denotes the model selected by those adjustments v that is not the same as BIC (the specific
v is given in the text). For full period and sub-period 2, all variety of αB chose the same
model except for 4 times of αB , which chose HL. For sub-period 1, all variety of αB chose
HF except for 1/4 and 1/2 times of αB , which chose HL.

As expected, procedure M2 with levels αA and αB selected similarly as AIC
and BIC respectively. For the US series, strong form dynamic relationship is
supported over the full and both sub-periods. In sub-period 2, we note that
the HL0 structure identified is robust. This is the model chosen by M2 with
all 6 different adapting significance levels, as well as AIC, BIC and BIC with
all adjustments (except for v = −3 which chooses HF0 , but a large negative
adjustment is not preferred for strong form relation). Also, the likelihood ratio
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test statistics show an obvious jump after model HL0 as the model structure
attempts to simplify further.

In sub-period 1, we also select H∧ as Chen and Lee (l990). First note that the
largest likelihood ratio test statistic among all models is just 4.68 for H∧ which is
not ‘far’ from the full feedback model. Also, model H∧ is chosen by BIC and M2
conducts at αB and all relatively small levels, and they are the preferred levels
to identify strong form relations. Moreover, the model selected is robust using
BIC and all its positive adjustments (all v ≥ 0). BIC with negative adjustments
(−2.5 ≤ v ≤ −0.5) choose HL0 , and when a even larger negative adjustment of
v = −3 is used, HL is chosen. However, a negative adjustment or small penalty
weight is not preferred in identifying strong form relations. Our intuition is that
the use of a smaller penalty or larger significance level makes the procedure harder
to move up the hierarchy of models. Here, the procedure basically stops at HL0

before reaching H∧. In this sense, we regard HL0 as a second choice to H∧. This
is noteworthy as HL0 is the structure selected in sub-period 2.

For the full period, we choose HL0 over HF0 since the use of AIC or αA is
not preferred in identifying HF0 . Also, BIC with all adjustments (−3 ≤ v ≤ 3)
choose the same model HL0 . The choice of HL0 structure for the full period is
reasonable, as judged by the structures identified over sub-period 1 and 2, which
are H∧ (with HL0 as a second choice) and HL0 respectively. To summarize, we
find that US price and interest rate do not have concurrent association (or in
strong form) over the full period as well as the two sub-periods chosen according
to monetary standard. Interest rate is related linearly to the previous prices but
not the other way around, except for sub-period 1 when the relationship is simply
independent.

Turning to the UK prices and interest rates, we also find (see Chen and Lee
(l990)) that the strong form relation is appropriate to sub-period 2 but not for
sub-period 1. For sub-period 1, we choose the full feedback model HF because it
is selected by AIC, BIC (and with all negative v), and M2 with larger significance
levels; these are the preferred criteria to identify weak form relation. The BIC
with positive adjustments (v ≥ 0.5) and M2 with smaller level choose HL. Our
intuition is that under such criteria, the procedure is easier to move up the
hierarchy of models and in this case reaching HL from HF . For sub-period 2,
the independent structure H∧ is chosen, with HL as a second choice. The HL is
chosen when a larger significance level or lighter penalty (v ≤ −1.5) relative to
BIC is used. Again, these criteria make the procedure harder to move up, and
in this case it stops at HL before reaching H∧. For the full period, the results
favour HL0 using BIC and M2 with various significance levels except 4αB. A
second choice would be HL, which is chosen by using the larger level and BIC
with large negative adjustments (v ≤ −2.5).
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To summarize, we confirm that contrary to US, price and interest rate in UK
are independent in sub-period 2, whereas a full feedback relation is detected in
sub-period 1. The selection of a strong from HL0 structure in the full period
while having a weak form HL structure as second choice reflects the difficulty of
compromising between the vastly different behaviours over the two sub-periods.
In fact, the preference of having strong form relation over weak form is not
overwhelming. Finally, by exploring with different adapting significance levels
and penalty adjustments, we find that HL is a common second choice for both
sub-periods and full period. This consistency is notable in view of the vastly
different dynamic relations selected over different sub-periods.

As a conclusion, this paper sheds new lights on a stepwise hypotheses testing
procedure and information criteria in choosing an appropriate dynamic relation
between time series. The simulation studies and empirical applications illustrate
the similarity between the IC approach and M2 conducts at adapting significance
levels. Moreover, we illustrate how the use of BIC with penalty adjustments or M2
with a variety of adapting levels helps assess the robustness and sensitivity of the
model selected, and develop further insights regarding the underlying structures.
The analysis performed in this paper will be useful in studying other similar
stepwise hypotheses testing procedures.
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Appendix. Procedure M1

Using our notations, the following procedure, labeled as M1, describes Chen
and Lee’s (l990) method with a minor modification.

Procedure M1, Stage one. Test two pairs (HU , HF ), (HL, HF ). If the result
is
1a) (x,x): conclude HF .
1b) (x,o): conclude HL.
1c) (o,x): conclude HU .
1d) (o,o): go to stage two and check if further parametric constraints can be
imposed.

Procedure M1, Stage two. Test two pairs (HB, HU ), (HB, HL). If the result
is
2a) (x,o): conclude HU .
2b) (o,x): conclude HL.
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2c) (o,o): then test (H∧, HB). An ’x’ will conclude HB; an ’o’, H∧.
2d) (x,x): then test (HB, HF ). An ’x’ will conclude min(HU , HL) (the original
method conclude HF ). If the result is an ’o’, then test (H∧, HB). An ’x’ will
conclude HB; an ’o’, H∧.
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