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Abstract: Abstract: Partial least squares (PLS) method has been designed
for handling two common problems in the data that are encountered in most
of the applied sciences including the neuroimaging data: 1) Collinearity
problem among explanatory variables (X) or among dependent variables
(Y); 2) Small number of observations with large number of explanatory
variables. The idea behind this method is to explain as much as possible
covariance between two blocks of X and Y variables by a small number of
uncorrelated variables. Apart from the other applied sciences in which PLS
are used, in the application of imaging data PLS has been used to identify
task dependent changes in activity, changes in the relations between brain
and behavior, and to examine functional connectivity of one or more brain
regions. The aim of this paper is to give some information about PLS
and apply on electroencephalography (EEG) data to identify stimulation
dependent changes in EEG activity.
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1. Introduction

In the applied studies, researchers can encounter with two common problems
which cause some problems in statistical modeling: 1) Having many variables but
not many observations 2) The collinearity among the explanatory or dependent
variables. In order to use traditional statistical methods such as multiple linear
regression analysis, we must employ data reduction techniques on these kinds of
data. Partial least squares (PLS) method is one of these techniques. The idea
behind PLS is to explain as much as possible covariance between two blocks of
explanatory (X) and dependent (Y) variables by a small number of uncorrelated
variables known as “components” or “latent (intuitive or hidden) vectors”. The
pioneering work of PLS was largely done by Herman Wold who gives the end
of 1977 as the birth date of PLS. This analysis has received a great amount
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of attention in the field of chemometrics and in other scientific areas including
education, psychology, management sciences, economics, environmental science
and medicine. PLS was introduced to the neuroimaging community by McIntosh
et al. (1996). There are different applications of PLS to the neuroimaging data
such as the studies of Gurrera et al. (2001), Düzel et al. (2003), Mart́ınez-Montes
et al. (2004), Lehmann et al. (2006) and O’Toole et al. (2007) among others.
Basar et al. (2006) analyzed stimulation dependent changes in EEG data at
alpha, delta, theta, gamma and beta frequency bands by means of univariate
methods. In this study, the aim is to show that as a multivariate method PLS
is a very useful tool for analyzing stimulations dependent changes in EEG data
which have the collinearity problem as illustrated with Figure 4.1 in Section 4.
The results obtained in Section 4 for EEG data at delta frequency band support
the results obtained by Basar et al. (2006).

Organization of the paper is as follows: After giving brief description of PLS
in the following section, we will describe two validation methods used for PLS
analysis in Section 3, and finally we will give the results for the EEG data in
Section 4.

2. Partial Least Squares

T = XW and U = YC (2.1)

where the T = [t1, t2, . . . , tk] and U = [u1,u2, . . . ,uk] are the n × k matrices of
the k extracted latent vectors such that ti ⊥ tj for i 6= j and ui ⊥ uj for j > i. T
summarizes the X variables for every object while U summarizes the Y variables
for every object. The number of extracted latent vectors may be determined from
the analysis or given in advance. The N × k matrix W = [w1,w2, . . . ,wk] and
M × k matrix C = [c1, c2, . . . , ck] represent the matrices of weights with N × 1
and M × 1 column vectors wi = [w1i, w2i, . . . , wNi]T and ci = [c1i, c2i, . . . , cMi]T

for i = 1, 2, . . . , k, respectively. The i-th latent vectors for the X and Y blocks
equal to ti =

∑N
j=1 xjwji and ui =

∑M
s=1 yscsi for i = 1, 2, . . . , k, respectively.

PLS creates these orthogonal latent vectors using different algorithms among
which Nonlinear Iterative Partial Least Squares (NIPALS) algorithm is the mostly
used. As mentioned by Wold et al. (2001), this algorithm is the one led to
the acronym PLS with the way used for estimating the weight vectors wi and
ci. In NIPALS, PLS weights are iteratively estimated as wi = XTui/uT

i ui and
ci = YTui/uT

i ui where wi and ci are the least squares estimation for the slopes
of simple regression of X on ui and Y on ti at i-th iteration for i = 1, 2, . . . , k,
respectively. We should mention that X and Y are deflated at the end of each
iteration as X = X − tipT

i and Y = Y − ticT
i where pi = XT ti/tT

i ti, and next
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iteration continues with these deflated matrices. The “partial” in PLS indicates
that this is a partial regression since ui and ti are considered as fixed in the
estimation (Wold et al., 2001). Apart from being the least squares estimates
for the slopes, the way of calculating wi and ci suggest that each wji for j =
1, 2, . . . , N is the weight of the variable xj on the i-th latent vector representing
the Y block, and each csi for s = 1, 2, . . . ,M is the weight of the variable ys

on the i-th latent vector representing the X block. Using ui instead of ti in the
calculation of wi and using ti instead of ui in the calculation of ci improve the
inner relation between X and Y.

In this paper, we used The Singular Value Decomposition (SVD) of cov(X,Y),
XTY, which is another method used in PLS to extract the latent vectors. This
method decomposes the covariance matrix XTY into three parts as follows:

WSCT = XTY, (2.2)

where C and W are the M × k and N × k column-wise orthonormal matrices
(wT

i wi = 1 and cT
i cwi = 1 for i = 1, 2, . . . , k and wT

i wj = 0 for i 6= j) containing
the right and left singular vectors, respectively. S is the diagonal matrix of
k nonzero singular values, S1, S2, . . . , Sk which are equal to the square root of
the eigen values of XTYYTX or YTXXTY. Eigen vectors of XTYYTX and
YTXXTY give the left and right singular vector matrices W and C; that is;

(XTYYTX)wi = wi(S)2 (2.3)

(YTXXTY)ci = ci(S)2 (2.4)

W and C matrices obtained by Eq. (2.2) or Eq.(2.4) and Eq. (2.4) contain
the weights of wi and ci which are mentioned before but this time they are
obtained at once instead of one per iteration. Höskuldson (1988) was the first
in reformulating the PLS as an eigenvalue/eigenvector problem (Lindgren and
Ränar, 1998). In PLS, the aim is to find matrices T and U such that these two
latent vector matrices have maximal covariance, TTU among all in X and Y space
subject to the constraints length of each wi and ci will be one, that is: wT

i wi = 1
and cT

i ci = 1 for i = 1, 2, . . . , k. According to Höskuldson (1988), the W and C
matrices estimated with NIPALS or SVD satisfy this aim. Höskuldson (1988) also
suggested that T and U given with Eq. (2.1) are the matrices of eigen vectors of
XXTYYT and YYTXXT . As mentioned by Lindgren and Rännar (1998), the
advantage of the matrices XTYYTX,YTXXTY,XXTYYT and YYTXXT is
their sizes. Since XTYYTX and YTXXTY are N ×N and M ×M matrices the
size of these matrices will not depend on the how many observations there are in
the original X and Y matrices while the sizes of the n x n matrices XXTYYT

and YYTXXT will not depend upon the number of variables in the original X
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and Y matrices. Hence, matrices with either a large number of objects or a large
number of variables can be summarized into small matrices, making computation
easier and containing all information necessary for developing PLS model.

In the application of imaging data, PLS has been used to identify task de-
pendent changes in activity, changes in the relations between brain and behavior,
and to examine functional connectivity of one or more brain regions. In this
study, we will use PLS to identify changes in EEG activity for “q” different stim-
ulations. In the application, X will be the orthogonal linear contrasts matrix.
Each stimulation will be applied on each of n person. Hence, Y will be the data
matrix of nq × M . Since the means and standard deviations of the Y variables
differ, we will center and scale these variables such that they will have zero mean
and one standard deviation. Centering means subtracting the column averages
and it corresponds to moving the coordinate system to the centre of the data.
Scaling geometrically corresponds to changing the length of the coordinate axes.
It is customary to standardize the data matrix, Y, so that each column has a
variance one. We will employ SVD on covariance between orthogonal contrasts
X and standardized Y. The contrasts are made for each subject so that X has
nq rows and q − 1 columns. So the number of extracted latent vector, k, will
be equal to q − 1. However, not all the latent vectors do have to be significant
and not all the variables may have significant effect on these latent vectors. The
brief information about two methods which are used to determine the significant
latent vectors and significant variables are given in the following section.

3. Assessment of Significance

The decisions regarding the number of significant latent vectors and variables
with statistically significant weights on these latent vectors are determined using
permutation tests and bootstrap estimation of the standard errors for the weights
of the original variables, respectively. The permutation test assesses whether the
effect represented in a given latent vector is sufficiently strong, in a statistical
sense, to be different from random noise (McIntosh and Lobaugh, 2004). In
this test, we assess the magnitude of the singular values by asking the question:
“With any other random set of data, how often is the value for Si, i = 1, 2, . . . , k
as large as the one obtained originally?”. To answer this question, subjects are
randomly reassigned (without replacement) to different tasks (or stimulations
in our case). It is accomplished by permuting tasks within each subject, then
applying permutation for subjects across tasks. To permute conditions within
each subject, a random vector containing the values between one and number
of tasks is created for each subject and then the original values are reordered
according to these vectors. For instance; lets assume there are two tasks and
three subjects with following data matrix, Y, containing two variables y1 and
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y2.

YT =
[

13 15 9 7 8 12
20 15 13 9 9 17

]
=⇒

after permuting
tasks within
each subject

=⇒

YT
1 =

[
13 8 12 7 15 9
20 9 17 9 15 13

]
=⇒

after permuting
subjects across
tasks

=⇒

YT
2 =

[
12 8 13 9 15 7
17 9 20 13 15 19

]
First three rows of Y correspond to the observation values of three subjects
for the first task and rest of the rows correspond to the second task. First
column represents the first variable y1 and second column represents the y2.
To permute tasks within each subject we create a random vector containing the
integers between one and two for each subject and then we reorder the original
values for subject according to this vector. If we create the random vectors
[1 2], [2 1] and [2 1] for the first, second and third subjects, respectively then we
obtain reordered matrix given with Y1. Then, by creating the random vector
of integers between one and three, we can reorder subjects across tasks. For
instance; if we create a random vector of [3 2 1], then new reordered Y will
be as given with Y2. We changed the places of first and third row for both
tasks, that is; the values of the first subject changed with the values of the
third subject. After reordering the data matrix, the PLS is recalculated for
new sample, new SVD is computed and the new singular values is compared
to the ones obtained from original sample. This process repeats as the number
of permutations and the number of times the permuted singular values exceed
the observed singular values are determined. Then, this number is divided by
the total number of permuted samples to get the p-value for the permutation
distribution, and if this probability is small (usually p-value < 0.01 for two-tailed
distribution is the criterion used) then this latent vector is said to be significant
and should retain. This method enables us determining the significance of a
particular latent vector without relying on the distributional assumptions. The
only requirement is the consistency with the null hypothesis of no significant
difference between stimulations which provides us with the ability to exchange
the data between rows. To identify task dependent changes, 500 permutations are
generally sufficient, although probability estimates are typically stable at about
100 permutations.

To determine the significance of nonzero weights for the variables on the cor-
responding latent vector, bootstrap tests are used for calculating the standard er-
rors of these weights. The name bootstrap originates from the expression ”pulling
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yourself up by your own bootstraps” and refers to the basic idea of the bootstrap,
sampling with replacement from the data (Wehrens and Van Der Linden, 1997).
As mentioned by Boos (2003), the logic behind this method is to create the data
as closely as possible to the original data and replace the unknown aspects of
the statistical model with bootstrap sample estimates. In the bootstrap sam-
pling procedure, the unknown probability distribution F of the independent and
identically distributed variables y1,y2, . . . ,yM is replaced by the empirical distri-
bution F̂ , i.e. by the probability function 1/n. Therefore, as mentioned by Efron
and Tibshirani (1986) a bootstrap sample turns out to be the same as a random
sample of size n drawn with replacement from the original sample. More detailed
information about the bootstrap sampling can be found from Efron (1981), Efron
and Tibshirani (1986), Wehrens and Van Der Linden (1997), and Boos (2003).
In the case of identifying task dependent changes, bootstrap sampling includes
the sampling with replacement from the original sample by keeping the assign-
ment of conditions fixed for all observations. From these bootstrap samples, the
standard errors of the variable weights, csi for s = 1, 2, . . . ,M ; i = 1, 2, . . . , k, are
estimated as follows:

σ̂cs =

√∑B
b=1(csib − c̄si)2

B − 1
(3.1)

where c̄si =
∑B

b=1 csib/B and B is the number of bootstrap samples. The esti-
mates of the standard errors are usually stable after 100 resamplings. As men-
tioned by McIntosh and Lobaugh (2004), a weight whose value depends greatly
on which observations are in the sample is less precise than one that remains
stable regardless of the sample chosen. The absolute value of the ratio of the
weight to its standard error can be used to determine if the variable’s weight de-
pends on the sample chosen, i.e. if this variable is significant or not . If this ratio
exceeds 2.57 which has an approximate two tailed probability of 0.01 assuming
the standard normal distribution then this variable is said to be significant for
the corresponding latent vector.

4. Application

In this study, PLS has been applied on the EEG data taken from 20 healthy
subjects to determine if three different stimulations significantly differ and which
part of the brain is mostly related to this differentiation. For this analysis, the
PLS algorithm written in Matlab (Mathworks Inc.)1 was used. The stimulations
comprise of two-complex and one- simple stimulations. Complex stimulations
were the pictures of an anonymous elder lady and the picture of a known face
while simple stimulation was the light. The illuminations and the other physical

1See www.rotman-baycrest.on.ca/index.php?section=345.
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attributes were standardized among (app. 30 cd/m2) the stimuli which were
presented with a duration of 1000 ms (milliseconds). The interstimulus interval
varied between 3.5-6 ms and the analysis was based on the post stimulus 0 to
500 ms period. The subjects were mostly composed of medical students, who
volunteered to participate in the study, after filling the consent form and receiving
the ethical approval. The recordings were performed in an isolated room located
in the Biophysics Dept. of Dokuz Eylul University. EEG records were taken from
Fz, F3, F4, Cz, C3, C4, T3, T4, T5, T6, P3, P4, O1 and O2 locations using the EEG-
CAP. The electrophysiological and psychophysiological discussion of the results
will not be a concern of this preliminary analysis.

XT =
[

X11 X12 X13

X21 X22 X23

]
,

where

X11 = -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
X12 = -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
X13 = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
X21 = -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
X22 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X23 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

First row of XT is the contrast of the light stimulation versus two-complex
stimulations. Second row is the contrast between two complex stimulations, i.e
contrast between the pictures of an anonymous elder lady and the picture of a
known face. We should mention that other contrast matrices are also considered
for the analysis but this one is the only contrast matrix giving at least one sig-
nificant latent vector. Therefore, only the results for this contrast are given. The
60× 14 data matrix Y contains standardized the peak to peak maximum ampli-
tudes (micro volts) of grand average of sweeps from fourteen channels in delta
frequency band for each person under three stimulations. Figure 1 illustrate the
collinearity problem among the Y variables.
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Figure 1: Matrix plot for the correlations of F3, F4, P3, P4, T3, T4, Cz, O1,
O2, C3, C4, T5, T6 and Fz electrodes

As a result of SVD on XTY, the number of extracted components, k, is two.
So C matrix will have the size of 14×2 and W matrix will have the size of 2×2.
Orthonormal C matrix for the weights of the dependent variables on the latent
vectors is given with Eq. (4.1). c1 is the vector of 14×1 representing the weights
of the variable ys for s = 1, 2, . . . , 14 on the first latent vector while c2 is the vector
of 14×1 representing the weights of the variable ys for s = 1, 2, . . . , 14 on the sec-
ond latent vector. Rows represent F3, F4, P3, P4, T3, T4, Cz, O1, O2, C3, C4, T5, T6,
and Fz electrodes, respectively. Since c1 and c2 are the length one vectors we
can not decide on which variable is mostly related to the corresponding latent
vector. Hence, Corig containing the original weight vectors c1 orig and c2 orig
are obtained by Corig = CS where S is the diagonal matrix of singular values

S =
[

5.346 0
0 1.8977

]
.

Each of the squared singular values divided by the sum of the squared singu-
lar values indicates the proportion of the total sum of squares accounted for from
XTY. So first latent vector explains the 88.8 % of XTY while second vector
explains 11.2% of XTY which shows that second latent vector may not be signif-
icant. However, we need more evidence to conclude that second latent vector is
not significant. Hence, 500 permutations have been performed for the statistical
significance of the latent vectors. The probabilities obtained from permutation
test are 0.0000 and 0.35130 which show only the first latent vector representing
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the contrast between light stimulation and two-complex stimulations is significant
at 0.01 significance level.

[c1, c2] =



0.08699 0.12115
0.07411 0.05953
0.10610 0.12296
0.21216 0.40940
0.26972 0.23488
−0.05917 0.08762−
−0.07808 0.08762−
0.50437 0.20026−
0.54872 0.07559
−0.01244 0.01507−
−0.01533 0.07481−
0.26445 0.46792
0.42934 0.65050
0.19543 0.14945−



(4.1)

Table 1: Standard errors of the weights on the first latent vector

Variable (Electrode) Standard Error (SE)

F3 0.47002
F4 0.56229
Cz 0.55209
P3 0.37800
P4 0.45322
T3 0.26718
T4 0.37333
O1 0.50200
O2 0.38429
C3 0.37474
C4 0.42573
T5 0.40860
T6 0.74842
Fz 0.54398

The standard errors of the weights of the dependent variables are calculated
through 100 bootstrap samples to determine the significance of variable ys for
s = 1, 2, . . . , 14 on the first latent vector. These values are given with Table
1. The variables with |cs1 orig/SE(cse)| > 2.57 for s = 1, 2, . . . , 14 are given
in bold. The results reveal that P3, P4, O1, O2, T5, and T6 are the electrodes
that differ most, between one-simple and two-complex stimulations in the delta
frequency band. These results support the result obtained by Basar et al. (2006).
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As to conclude, this preliminary analysis has provided a basic approach that
can be suggested to be applied to EEG data. The results and this application
can further be extended to other attributes of electrophysiological data, such
as the other frequency bands, spatial relationships and correlation with possible
behavioral data.
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