
Journal of Data Science 7(2009), 73-87

Bayesian Semiparametric Sales Projections for the Texas Lottery
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Abstract: State lotteries employ sales projections to determine appropri-
ate advertised jackpot levels for some of their games. This paper focuses
on prediction of sales for the Lotto Texas game of the Texas Lottery. A
novel prediction method is developed in this setting that utilizes functional
data analysis concepts in conjunction with a Bayesian paradigm to produce
predictions and associated precision assessments.
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predictive distribution.

1. Introduction

State lotteries throughout the U.S market portfolios of games that provide
a source of revenue for their respective states. Typically, at least one lottery
game is jackpot-driven in the sense that players buy tickets in hopes of winning a
publicly advertized top prize. For such games, sales are responsive to the size of
the top prize or the jackpot level which entails that higher gross revenue will result
from larger jackpots. On the other hand, the advertized jackpot figure must be
set prior to the actual drawing and, hence, before the sales that are needed to
pay winners have been realized. As a result, lotteries find it necessary to carry
out sales projections to avoid the negative revenue consequences of arbitrarily
setting prize amounts too low or too high. In this paper, we describe one such
sales projection technique that was developed for use by the Texas lottery with
their signature Lotto Texas game.

The Texas lottery began operation in 1992 with a single game known as Lotto
Texas wherein players attempted to match the 6 numbers selected by the Lottery
(without replacement) from the numbers 1 to 52. Since that inception point, four
other games have been added (including the multi-state Mega Millions game) and
the original Lotto Texas ball configurations have been altered on three occasions.
The focal data set for this article derives from a period in 2000-2002 where a
“6 of 54” scenario was being used with 6 balls (i.e., numbers) being selected
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without replacement from a set of 54. This also happens to be the current game
configuration.

The drawings for Lotto Texas take place at 10 pm CST on Saturday and
Wednesday nights. A new jackpot level needs to be set shortly after each draw
upon determination of whether or not there has been a jackpot winner. If one
or more player tickets match the selected ball numbers, then the jackpot for the
next draw is set at a standard level which has traditionally been 4 million dollars
for Texas. If there is no winner on a given Wednesday or Saturday, then the
jackpot prize pool carries over to the next draw and a value for the jackpot for
the subsequent Saturday or Wednesday draw must be selected. This value is then
used in Lottery promotions that include billboards and radio/television spots.

In theory it is quite easy to determine an “optimal” jackpot value given some
basic information about lottery sales allocation. Specifically, the ideal jackpot or,
equivalently, the largest jackpot that can be supported by sales, is obtained via
the formula

(payout)×(jackpot allocation)×(annuity factor)×(cumulative sales at draw time) .
(1.1)

Here the “payout” is the proportion of sales for the game that is returned to
players which was 0.5 for the data we consider. The “jackpot allocation” is the
proportion of the total prize pool (i.e., 50% of total game sales) that is allocated
to the top tier prize. This was fixed at 0.64 for the time period in our study. For
Texas, advertized jackpots are annuitized figures that are obtained by multiplying
the present value of jackpot funds by an “annuity factor.” This annuity factor
depends on interest rates that vary from draw to draw. It typically fell in a range
between 1.6 to 1.7 for the data used in our analysis.

Formula (1.1) provides a prescription for setting fiscally responsible jackpots.
However, to use it one needs a 3 or 4 day ahead prediction of sales depending on
whether the draw is to occur on a Saturday or Wednesday. When this work began,
the projections were accomplished using a heuristic, but overall quite effective,
approach based on “nearest neighbor” principles. To predict sales, marketing
personnel would determine one or more previous roll cycles or runs (i.e., a se-
quence of consecutive draws without a jackpot winner) that had similar jackpot
levels and sales behavior to the current roll cycle and then use this information to
determine a suitable sales level to employ in (1.1). It has been the Texas policy
to only increase jackpots in 1 million dollar increments which provides a built in
margin for error in the calculations. In addition, the personnel conducting the
projections were skilled, well-experienced with their approach and well-informed
about the Texas marketing environment. Thus, from a practical perspective,
their pointwise predictions were more than satisfactory and unlikely to be im-
proved in any meaningful sense. The goal of this work was rather to provide
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something they could not gauge with their methodology: namely, the precision
of point-wise predictions.

Figure 1 shows daily sales data corresponding to a particular roll cycle consist-
ing of 35 days and 10 draws. The run began on a Sunday with a 4 million dollar
jackpot after a winning ticket was sold prior to a Saturday night draw. The plot
then tracks the sales progression over a period of 5 weeks with the jackpot finally
being won on the last Saturday of the run. There are 9 Wednesday/Saturday
draws shown in the plot for which there were no winning tickets. These junctures
are termed rolls and represent instances where the jackpot prize pool accumu-
lates and new jackpot levels must be set. The daily sales values depicted in the
plot demonstrate a common pattern: sales activity is initially low but becomes
more intense as the draw day approaches. This produces a sequence of peaks and
valleys with the problem being one of obtaining an estimate for the height of the
next peak using only the knowledge that is available at the time of the prior peak
in the sequence.

Figure 1: Example sample path

There are many strategies that could be employed for prediction purposes with
data such as that in Figure 1. Perhaps the most obvious is to use information
from repeated roll cycles to estimate an underlying regression function with sales
projections then being obtained by standard mean estimation methods. However,
this approach turns out to be too crude to be of much value in this setting because
it largely ignores information from the roll cycle that is currently underway in
lieu of ensemble information from previous cycles. In contrast, our approach
to the problem uses information about mean behavior but incorporates it with
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information about the “trajectory” of the current roll cycle to carry out the
prediction process.

From our perspective, data sets such as the one in Figure 1 are examples
of functional data in the sense of representing discretized readings on a contin-
uous time stochastic process. The development of methodology for analysis of
functional data is an area of current research interest due, in large part, to the
foundational work of Ramsay and Silverman (2005). Although the techniques we
develop here have certain similarities to others that have appeared in the func-
tional data analysis (FDA) literature, our specific approach is, to our knowledge,
novel both as a result of its origin as well as its utilization of Bayesian posterior
predictions.

In the next section, we describe the methodology we have developed for pre-
diction of Texas Lottery sales. Like most FDA problems there are registration
issues that arise and we first consider how to pre-process the data in a way that
makes it amenable for use in aggregate inference. We then turn to the devel-
opment of an appropriate model for the (registered) process mean function and
detail how this is to be used in prediction of future sample paths. The actual
data analysis and sales projection results are the subject of Section 3. Concluding
remarks are collected in Section 4.

2. Methodological Approach

The data in frame (a) of Figure 2 shows two roll cycles corresponding to
Sunday and Thursday starts after a hit (i.e., a winning ticket was sold) on a
Saturday and Wednesday night. While both sample paths experience the same
characteristic sales run-ups on draw days, we can see that the peaks are misaligned
due to the different starting days. The (b) frame in the figure shows how this
effect is manifest over the collection of runs that comprise the entire data set.
The gaps in the plot are typical of functional data that require realignment or
registration due to the progression of sample paths along different time scales.

There are now some very sophisticated methods for registration of functional
data (e.g., Gervini and Gasser 2004 and Brumback and Lindstrom 2004). How-
ever, for our case there is a relatively simple solution that can be accomplished
through a uniform rescaling of time. The basic idea is to simply make time run
somewhat slower from Sunday through Wednesday in a sense that is described
in Table 1. This produces a new time or “Day” index that runs from 1 to 6 over
any 7 day drawing period regardless of whether a run starts on a Thursday or
Sunday. The end product is the satisfactorily registered sample paths that are
shown in panel (c) of Figure 2.
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(a)

(b)

(c)

(d)

Figure 2: Lotto Texas Data: (a) example sample paths, (b) unregistered data,
(c) registered data (d) Sales versus jackpot levels.
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Table 1: Registered time scale

“Day” Index 1 2 3 4 4 2/3 5 1/3 6
Thurs. Start Thurs. Fri. Sat. Sun. Mon. Tues. Wed.
Sun. Start Sun. Mon. Tues. Wed. Thurs. Fri. Sat.
“Day” Index 1 1 2/3 2 1/3 3 4 5 6

2.1 Modeling the mean function

Once the data have been properly registered, the next step is to consider
how to model any common trends in the sales sample paths. In this respect
our focus will be on modeling the mean function for the (registered) process.
As noted previously, the mean function is not by itself sufficient for prediction
purposes. However, it nonetheless provides important information about the
process behavior that is a key ingredient for our projection methodology.

Some theoretical and empirical studies have been carried out concerning the
demand for lotto games in England (e.g., Farrell, et al 1999 and Farrell, et al
2000) and in Israel (e.g., Beenstock and Haitovsky 2001). One consensus is that
the demand (and, hence, sales) for lotto type games are positively influenced
by increasing jackpot levels. Figure 3 shows the sales and jackpot figures for
the Lotto Texas data in Figure 2 aggregated across roll cycles. This clearly
demonstrates that such consideration are equally applicable to the Texas scenario.

Another common factor that has been deemed important in the economic
aspects of lotteries is the influence of prize pool rollovers or rolls as we have
termed them here. Beenstock and Haitovsky (2001) provide arguments to suggest
that the mean sales may have a form similar to βH(t, z, r) + θr, where β, θ are
coefficients and H is a nonlinear function in time (i.e., t), jackpot level (i.e., z)
and the rollover r from the previous prize pool into the current jackpot. Their
empirical work then employs dummy variables to test for the presence of the θr
term. When such terms are significant they refer to this as “lottomania” wherein
“ticket sales increase by considerably more than implied by the unusually large
jackpot.” In particular, they find this effect to be present after the third rollover
for their data.

As a result of the above discussion, we chose to model the sales roll cycle
mean function as

µ(t, z) = β(t)z (2.1)

with z representing the jackpot level, t corresponding to the time (in the altered
scale of Table 1) of the roll cycle and β(·) a smooth, unknown function. Model
(2.1) is a special case of a varying coefficient model as considered in Hastie and
Tibshirani (1993). The idea is that sales are, on the average, proportional to
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jackpot levels but the proportionality factor is allowed to vary over the course of
time thereby accounting for the nonlinearity present in Figure 3.

Nonparametric regression considerations dictate the use of a flexible form for
estimation of β. In this respect, we approximate it by as piecewise quadratic
function with different quadratic segments for each of the biweekly drawing pe-
riods that occur over the course of a run. That is, on each interval of the form
[3l − 2, 3l], l = 1, . . . , L, we will assume that

β(t) = αl
0 + αl

1t + αl
2t

2. (2.2)

Note that no continuity constraints are imposed across segments which allows
for twice weekly jumps in mean sales after drawings have occurred. For the
data shown in the bottom panel of Figure 2 the longest run is for 33 days which
translates into fitting a coefficient function with L = 11 segments.

We complete the mean function modeling process by employing priors for
the parameters that arise in β(·). Specifically, we will assume that αl

0, α
l
1, α

l
2, l =

1, . . . , L, are mutually independent with common densities π(α0), π(α1) and π(α2)
for the intercept, linear and quadratic coefficients, respectively, of each segment.
Then, π(αi) is modeled as being normal with mean zero and variance σ2

i , i =
0, 1, 2. In lieu of assuming a hierarchical model for σ2

0, σ
2
1 and σ2

2, we will instead
choose them to be large positive values thereby effectively employing diffuse priors
for the segment coefficients.

2.2 Relating the sample paths and the mean function

An examination of the lower frame in Figure 2 suggests that there is a ten-
dency for the sample paths of individual roll cycles to follow the same overall
trend in the combined data apart from deviations in starting sales levels and
slope or trajectory relative to the “grand mean” for the data. This suggests that
we consider a model wherein the runs are sample paths from a stochastic process
of the form

Y (t) = a + bµ(t, z(t)) + ε(t) (2.3)

with Y (·) representing sales, z(·) the concomitant jackpots, ε(·) a normal white
noise process (i.e., the mean of ε(·) is zero and the covariance between ε(t) and
ε(t′) is zero for t 6= t′) with variance σ2

ε and a, b are random intercepts and
slopes, respectively, that are independent of ε(·). If we are to observe m runs
then, conditional on the realized values (a1, b1), . . . , (an, bn) of (a, b) in (2.3), the
ith run will evolve from the model

Yi(t) = ai + biµ(t, z(t)) + εi(t) (2.4)

with εi(·) a normal white noise process. For a mature Lotto game, such as the one
in Texas, the results from one roll cycle typically have little effect on subsequent
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sales levels. Accordingly we will treat the ai, bi and εi(·) that come from different
roll cycles as being uncorrelated.

The vectors (aj , bj), j = 1, . . . ,m in (2.4) are each assumed to have bivariate
normal distributions, π(aj , bj |Σ), with common mean vector (0, 1)T and common
variance-covariance matrix Σ. Let

Symm(a, b, c) =
[

a b
b c

]
. (2.5)

Using this notation, Σ ≡ Symm(σ2
a, σab, σ

2
b ) is assigned an Inverse Wishart prior

π(Σ) = W−1(Ψ,m′), where Ψ = I2×2 the identitiy matrix and m′ = 4. This
entails that the prior mean is E[Σ] = I2×2/(m′ − 2 − 1) and the prior variances
for each entry of Σ are infinite. The prior density for the error variance π(σ2

ε )
is chosen to be an Inverse Gamma with hyper-parameters γε and δε. In our
analysis of the Texas Lottery data presented in the next section, we choose the
shape parameter γε = 2 and the scale parameter δε = 1. This choice sets the prior
mean as 1 and the prior variance as infinity. These particular priors were found to
perform better in terms of posterior distribution and prediction than other choices
of priors from the same family with the same mean that had finite variances. All
of these priors are proper and yield conjugate posterior distributions. The priors
and posterior distributions as well as the posterior prediction densities under the
Bayesian model are discussed in more detail in the Appendix.

3. Results from Posterior Inference

In this section we summarize the results of Bayesian posterior inference ob-
tained through application of the results in the Appendix to model (2.4) using
the Lotto Texas sales data from Figure 2. We begin with a discussion of the
parameter simulations before turning to issues related to sales prediction. We
have used sales in millions of dollars as our unit of measurement.

Realizations were generated from the posterior distibution of the parameters
in the models (and for predictions) using a Monte Carlo Markov chain (MCMC)
approach. For this purpose 5000 burn-in samples were employed after which
100,000 samples were obtained. These later samples were subsequently thinned
out by 10 iterations.

Table 2 gives the quantiles obtained by sampling from the posterior distribu-
tions of Σ and σε. In particular, we see from this that σab, the covariance between
the intercept aj and bj for j = 1, . . . ,m is non-significant since its 95% posterior
credible interval contains 0.
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Table 2: Posterior quantiles

Parameters 2.5% 50.0% 97.5 %
σa

2 0.229 0.471 2.043
σb

2 1.390 2.450 4.276
σab -1.589 0.143 2.096
σε

2 1.012 1.108 1.220

(a)

0 5 10 15 20 25 30

0
5

10
15

20
25

30

time

sa
le
s

(b)

0 5 10 15 20 25 30

0
5

10
15

20
25

30

time

sa
le
s

Figure 3: (a) Real (black circles) vs. median predicted(red circles) sales. (b)
Real (black circles) sales vs. 95% posterior predictive intervals – lower bounds
are green circles and upper bounds blue circles.

Figure 3 summarizes the results of “predictions” for the observed Lotto Texas
sales. Here we use the posterior parameter simulations described in the Appendix
to produce 95% prediction intervals for the observed sales. The results are overall
quite good with 96.8% of the intervals containing the actual sales. As was true for
estimation of the coefficients for β, lack of data likely contributed to the problems
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the prediction intervals encountered for a few of the very large jackpot and we
will now examine this issue in more detail.
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Figure 4: (Real(black dots) and median predicted sales(red triangles) for the
(a) 9th and (b) 5th runs (c) Plot of time versus median posterior values
Med(E[Yi(tij)]/zij).

We notice that of the 58 runs, 3 runs have very different values for their
intercepts aj and slopes bj in Figure 4. These are the 9th, 7th and 53rd run
which also happen to be the only runs that have observations in the last time
interval [31, 33]. In panel (a) of Figure 2 we plot the real sales (represented
by black dots) versus the median of the posterior means (represented by the
red triangles) for one of these (i.e., the 9th) runs that typifies what happens for
all three cases. To compare predictions, we also show one other run (i.e., the
5th) which contain no observations from the last time-interval in panel (b) of
the figure. This demonstrates that the poor predictions in the last time interval
represent isolated cases rather than an inherent problem with the method. From
a practical perspective, the last time interval corresponds to unusual situations
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where unexpectedly long runs have produced unprecedently large jackpot levels.
Conservative sales projections enacted by senior lottery personnel would generally
be used for such instances in any event.

4. Discussion

In this paper we have reported on what we consider to be a successful blend
of FDA and Bayesian methods for solution of a real world problem. Although
the particular application concerns sales projection for lotteries, the problem of
prediction from functional data is quite general and this basic approach might be
expected to be adaptable to a much more general context. We intend to pursue
this in future work.

The landscape of the Texas Lottery games changed significantly with the
entrance of the muli-state Mega Millions game into their game portfolio in De-
cember of 2003. Mega Millions follows a “power ball” format with large odds
that produce very large jackpot. Like Lotto Texas, sales for Mega Millions are
jackpot driven and, as a result, there has been significant sales canibalization
for Lotto Texas in the period since Mega Millions became available. The main
consequence this has for our analysis here is that the present projection algo-
rithm is no longer appropriate. At the very least it become necessary to include
the advertized jackpot for Mega Millions into the process as a covariate. This is
another topic that is currently under investigation.

Finally, let us return to the “lottomania” phenomenon that was discussed in
Beenstock and Haitovsky (2001). A question arises as to what empirical symp-
toms would be realized in our analysis that could be indicative of the on-set of
“lottomania.” The answer may lie in in panel (c) ou Figure 4 that shows the
pattern of sales wherein the effect of jackpots on prediction has been eliminated.
Here we have plotted median predicted sales divided by the jackpot values across
time for all runs. This suggest that the sales slopes tend to initially decline as
jackpots increase until they flatten and begin to increase for very long runs that
also have very large jackpots. The implication is that for typical, shorter runs
the proportional effect on sales of increasing jackpots is diminishing. However,
eventually this trend is reversed and we postulate that the associated change
point may represent the beginning of “lottomania.”

Appendix

Here we provide a detailed derivation of the posterior distributions that were
used for the developments in Section 3. We initially focus on the parameters in
model (2.4) and then describe how posterior simulations obtained for the param-
eters can be used for prediction purposes.
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Let y denote the vector of sales values arranged in sub-vectors corresponding
to each roll cycle and ordered by time within each sub-vector: i.e.,

yT = (yT
1 , . . . ,yT

m)

with

yj = (y1j , . . . , yrjj)T

the results of the jth run. The vector of parameters for data from model (2.4)

θT = (a1, b1, . . . , am, bm, α1
0, α

1
1, α

1
2, . . . , α

L
0 , αL

1 , αL
2 , σ2

ε , Σ) (A.1)

then has the associated likelihood function

L(y|θ) ∝ σ−n
ε exp

−(2σ2
ε )

−1
m∑

j=1

∑rj

i=1
(yij − ai − bizijβ(tij))

2

 (A.2)

with (tij , zij), i = 1, . . . , rj , being the day indices and jackpots associated with
sales for the jth run. The developments in Sections 2.1–2.2 now entail that the
joint distribution of y and θ is the product of L(y|θ) with the prior density

π(θ) =
∏m

j=1
π(aj , bj |Σ) π(Σ)

∏L

l=1
π(αl

0)π(αl
1)π(αl

2) π(σ2
ε).

The next step is to derive the posterior densities for each of the components of
(A.1) that will allow us to carry out Bayesian inference via the multi-stage Gibbs
sampler (e.g., Robert and Casella 2004, Chapter 10). For this development we
will employ the symbol “\” to indicate removal of a particular parameter or
parameters from θ.

We begin the marginalization process by noting that the posterior density for
σ2

ε is

π(σε
2|y, θ\σε

2) ∝ σ−n
ε exp

(
−

∑m

j=1

∑rj

i=1
(yij − aj − bj µ(tij , zij))

2 /2σε
2
)

×σ−2(γε+1)
ε exp

(
−δε/σ2

ε

)
.

From this it follows that σε
2|y, θ\σ2

ε has an inverse gamma distribution with
parameters 2−1n + γε and 2−1

∑m
j=1

∑rj

i=1(yij − aj − bjµ(tij , zij))2 + δε).
For the joint posterior distribution of (aj , bj), j = 1, . . . ,m, we obtain

π(aj , bj |y, θ\(aj , bj)) ∝ exp
(
−(2σ2

ε )
−1

∑rj

i=1
(yij − aj − bjµ(tij , zij))

2
)

× exp
(
−2−1(aj , bj)Σ−1(aj , bj)T

)
.
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This leads to (aj , bj)
T |y, θ\ (aj , bj) having a bivariate normal distribution with

posterior mean

µ̃ = Σ̃

(
σ−2

ε

rj∑
i=1

yij ,

rj∑
i=1

yijzij

)T

and posterior variance-covariance matrix

Σ̃ =

[
Σ + σ−2

ε Symm

(
rj ,

rj∑
i=1

zij ,

rj∑
i=1

z2
ij

)]−1

.

The posterior distribution of αl
k, k = 0, 1, 2, l = 1, . . . , L, can be derived as

follows. First, observe that

π(αk
l|y, θ\αl

k) ∝ exp
(
−(2σ2

ε )
−1

∑m

j=1

∑rj

i=1
(yij − aj − bjµ(tij , zij))

2
)

× exp
(
−

(
αl

k

)2
/

(
2σ2

k

))
.

From this we then deduce that αl
k|y, θ\αl

k is normal with mean

µ̃ =
σ̃2

σε
2

∑m

j=1

∑rj

i=1

∑
tij∈[3l−2,3l]

(
(yij − aj) bjzijt

k
ij

)
and variance

σ̃2 =
(

σ−2
k + σ−2

ε

∑m

j=1

∑rj

i=1

∑
tij∈[3l−2,3l]

(
bjzijt

k
ij

)2
)−1

.

Finally, the posterior for Σ can be deduced from

π(Σ|y, θ\Σ)

∝ exp
(
−1

2

∑m

j=1
(aj , bj)

T Σ−1(aj , bj)
)

det(Σ)−m/2 × π(Σ)

∝ exp
(
−1

2
trace(Symm(

∑m

j=1
aj

2,
∑m

j=1
ajbj ,

∑m

j=1
bj

2)Σ−1)
)

det(Σ)−m/2

× exp
(
−1

2
trace(Ψ−1Σ−1))

)
det(Σ)−(m′+2+1)/2

= exp
(
−1

2
trace

({
Symm(

∑m

j=1
aj

2,
∑m

j=1
ajbj ,

∑m

j=1
bj

2) + Ψ−1
}

Σ−1
))

× det(Σ)−(m+m′+2+1)/2.
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Thus, the posterior distribution for Σ is inverse Wishart and given by π(Σ|y, θ\Σ)

= W−1(Ψ̃, m̃), where Ψ̃ =
{

Symm(
∑m

j=1aj
2,

∑m
j=1ajbj ,

∑m
j=1bj

2) + Ψ−1
}−1

and
m̃ = m + m′.

In order to find the posterior distribution of E(Yi(t)|θ)/zi(t), from (2.4) and
(2.1) we note that E(Yi(t)|θ) = ai + biµ(t, zi(t)) = ai + biβ(t)zi(t). Thus, from
the S subsamples θs, s = 1, . . . , S, generated in the MCMC step we can further
generate subsamples of the posterior distribution of E(Yi(t)|θ)/zi(t). That is, we
can compute [as

i +bs
iβ

s(t)zi(t)]/zi(t), s = 1, . . . , S for any particular choice of t and
jackpot value zi(t). We then use these S posterior subsamples to approximate
the posterior median in panel (c) of Figure3 4. In order to find the posterior
predictive distribution of Yi(t), we use a similar algorithm to get S subsamples
as

i + bs
iβ

s(t)zi(t) + es
i (t), s = 1, . . . , S where es

i (t) is simulated from a zero mean,
normal distribution with variance equal to the σ2

ε component of θs. We can
then find the median and the 95% posterior predictive intervals by evaluating
the corresponding 2.5th and 97.5th percentiles of the the posterior predictive
distribution.
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