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Approximate Graphical Methods for Inverse Regression
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Abstract: Graphical procedures can be useful for illustrating and evaluating
the process of inverse regression. We first review some simple and well-known
graphical approaches for univariate linear and nonlinear models. We then
propose a new graphical tool applicable to situations where the response is
bivariate and repeated measures data are available. The proposed method
is illustrated with an example of the age determination of tern chicks using
measurements on body weight and wing length.
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1. Introduction

In inverse regression, or statistical calibration, the relationship between a
response Y and a covariate x is first estimated using a set of training data
(x1, Y1), . . . (xn, Yn). This relationship is then used to infer the covariate value
x0 corresponding to an observed response Y0. A comprehensive summary of the
theory is given by Brown (1993).

Our interest here is in approximate graphical methods for estimating the
unknown x0 once the relationship between Y and x has been established. It
is sometimes the case that a quick approximate answer is all that is required,
so that a method which involves merely referring to a graph without the need
for computing equipment has much to recommend it, particularly when many
estimates are needed in a field situation. Moreover graphical methods can give
insights into the nature and reliability of the process, since aspects of statistical
uncertainty can be incorporated into the graph.

Our aim in this paper is to illustrate the above points with some fairly well-
known approaches, and to introduce a new graphic for inverse regression with
bivariate longitudinal data. In the first section we consider inverse regression
with a univariate response, focussing on the method of inverting a prediction
interval. This is illustrated with some examples chosen to demonstrate the range
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of applicability of this method. In the next section the case of bivariate Y is con-
sidered. The statistical issues here are more complex, and graphical approaches
can provide useful insights. In the third section we consider repeated measures
data and introduce a new graphic. We discuss some issues in the construction
and use of this graph.

Inverse regression estimation will usually involve adding some new lines to a
graph developed from the training data. This may require actually drawing the
new lines on the graph, but since we are only expecting approximate answers
it may be sufficient to add the new lines “in the mind’s eye”. These may then
be imagined to move, giving a dynamic image of the estimation and perhaps
insights into its characteristics. This dynamic use of a graph is a key feature of
the approach. To aid in illustrating this process, we have created some dynamic
images which are available on request from the authors.

2. Univariate Response

Figure 1 shows a graphical analysis of two simulated calibration data sets
from the model

Y = α + βx + ε,

where ε ∼ N(0, σ2). In each case a straight line has been fitted to the six “training
data” points by least squares, and 95% and 99% prediction intervals have been
added (dashed and dotted lines respectively).
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Figure 1: Inverse regression for Y0 = 6 from a simple linear model. The dashed
and dotted lines are respectively 95% and 99% prediction intervals. In the
second panel the 95% confidence interval for x0 is finite but the 99$ interval is
infinite.
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Suppose we now observe Y0 = 6 and want to estimate the corresponding x0.
By adding a horizontal line to the graph, we can read off the x coordinate where
this crosses the line of best fit. This is equivalent to using the estimator

x̂ =
Y0 − α̂

β̂
(2.1)

This we could call the Conditional Least Squares (CLS) estimator since it chooses
x0 to minimize the squared error in Y0 conditional on the estimated values of
parameters α, β, σ. It is also the Maximum Likelihood Estimator (MLE), which
we can argue as follows. If we add the new point (x0, Y0) to the training data,
then for any values of the other parameters we can always place this point on the
corresponding line, so that its contribution to the log-likelihood is not a function
of α, β. Hence these parameters can be chosen based only on the training data,
and x̂, α̂, β̂ as defined for CLS will jointly maximize the overall likelihood. This
argument still applies if there are multiple unknowns x01, . . . , x0m, and can be
extended to the situation of replicates Y01, . . . , Y0r of the same x0 (see Brown,
1993 p27), but it will not work for the bivariate response of the next section, or
in general if the dimension of Y is greater than the dimension of x. It can also
break down in the univariate nonlinear case when there is a horizontal asymptote
and the observed Y0 does not correspond to a fitted value.

It is well-known that a confidence interval for x0 can be obtained by the pro-
cess of “inverting a prediction interval” (see for example Carroll and Ruppert,
1988, p56). This is illustrated in both panels of Figure 1, with the 95% confidence
limits being given by the points where y = 6 crosses the 95% prediction bands.
This gives a simple graphical estimation of the uncertainty in x0, but also illus-
trates some of the theoretical peculiarities in the use of the CLS estimator. In the
second panel we can see that a 99% confidence interval for x0 would have infinite
width, since the line y = 6 does not intersect the lower 99% prediction band. The
occurrence of this phenomenon is related to the significance of the slope coeffi-
cient, which can also be assessed from the graph. If the slope of the regression line
is not significantly non-zero then inverse regression seems a dismal prospect. But
there will always be some level at which the slope is non-significant. The usually
benign assumption of normality leads in this instance to pathological behaviour.
This was noted by Hoadley (1970)and resolved using a Bayesian analysis.

Examination of the form of the CLS estimator in equation (2.1) shows that
it is related to a Cauchy distribution, being a ratio of normally distributed vari-
ables. It does not have a finite mean or variance. This generated considerable
controversy in the 1960s, with Krutchkoff (1967) proposing the estimation of x0

via a regression of x on Y , even for the “controlled calibration” case where the
xs in the training data are fixed by design. This can be justified in a Bayesian
framework (see Brown, 1993, p98).
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This graphical method for obtaining estimates and confidence intervals is
particularly useful when the relationship between Y and x is nonlinear or when
the errors are heteroscedastic, or both. In cases where a transformation produces
approximate linearity and homoscedasticity, it may be advantageous to plot the
graph using the untransformed variables for ease of use. Figure 2 shows the
PCB data from Bates and Watts (1988), giving ages and PCB concentration
in lake trout from Cayuga Lake, NY. They point out that log transformation
of Concentration and cube-root of Age seems to produce a straight line with
constant variance. In Figure 2 the fitted line and 95% prediction bands have
been transformed back to the original scales. The prediction bands give a visual
summary of how informative the PCB analysis of a sample would be about the
age of the fish from which it is taken. Only at very low concentrations can we
get a useful upper limit on the age, but for high concentrations we may be able
to say something about the lower age limit. It is unlikely, for example, that a
sample with a concentration above 20 ppm would have come from a trout below
8 years old.
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Figure 2: PCB data (Bates and Watts, 1988) with 95% prediction bands.

An important principle of the graphical approach is that once the graph has
been produced, it is very easy to use, even though a considerable amount of diffi-
culty may lie in its production. Figure 3 is based on the Toluene data from Rocke
and Lorenzato (1995) and uses their two-component model for measurement error

Yi = α + βxie
ηi + εi (2.2)
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Figure 3: Limits of reliable detection for Toluene data (Rocke and Lorenzato,
1995).

where Yi is the measured response from a sample with concentration xi of an
analyte. It is assumed that in the absence of error Yi would be linearly related to
xi. In addition to the usual additive error εi, this model postulates an additional
error term ηi whose effect depends on the concentration level xi as shown in
Equation (2.2). This results in a variance function for Yi which increases with
xi but does not reduce to zero when xi = 0, thus mimicking the behaviour
often observed in analytical measurements. It assumed that both εi and ηi are
normally distributed. One motivation for this model is to assume that random
disturbances in the measurement process can be partitioned into those which
affect the measurement additively, εi, and those which have a multiplicative effect,
ηi. Further details are given in Rocke and Lorenzato (1995). We focus here
on examining the limit of detection of the assay, which measures amounts of
toluene by gas chromatography/mass spectrometry (GCMS). The scales of the
graph have been restricted to amounts close to zero. Prediction limits could
be added using an “exact approximate” method, estimating the parameters by
maximum likelihood and using a delta-method approximation. Here we employ
instead an “approximate exact” MCMC method suggested by Jones (2004) which
accounts properly for the distributions and uncertainty in the estimates, thus
giving an accurate picture of the prediction intervals close to zero concentration.
To illustrate the limit of detection, we add a horizontal line at the point where
the upper prediction band meets x = 0; this corresponds to a peak area of 28.
Any sample having a GCMS peak area above this value would be regarded as
positive for toluene. By adding vertical lines we can see that an amount of 11pg
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would have a 50% chance of being detected, whereas 22pg would have a 95%
chance. There are a number of competing definitions and calculations for limits
of detection and limits of quantitation (see Cox, 2005). Perhaps the best answer
would be the graph itself.

3. Bivariate Response

In this section we consider bivariate Y = (Y1, Y2)′ and univariate x. An
interesting nonlinear example was given by Clarke (1992). Figure 4 plots the
lengths of the anterior (Y1) and posterior (Y2) horns of a sample of rhinoceros
against their known ages in years. The fitted lines are

log Yi = α + βiγ
x
i i = 1, 2

with a common horizontal asymptote α, the parameter values being those given
by Clarke (1992). The graph has been plotted on the original, rather than the log
scale, so the variation increases considerably with age. Clarke (1992) discusses
computational methods for inferring the unknown age of a further animal, adding
(x0, Y0) to the training data and estimating all parameters simultaneously by
maximum likelihood or generalized least squares. Here we examine approximate
graphical methods.
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Figure 4: Lengths in mm of the anterior and posterior horns of a sample of 12
rhinocereos, with fitted curves (Clarke, 1992).

Suppose a new rhinoceros presents itself with an anterior horn of 400 mm and
posterior horn of 200 mm. Horizontal lines for these two values have been added
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to the graph in Figure 4. We now try to add a vertical line which intersects the
two horizontal ones at values which seem to fit in with the existing data. This
suggests an age of around eight years. A more careful consideration might suggest
minimizing in some way the vertical distances of the intersection points from the
respective curves. Inspection of the scatter of points around the curves suggests
that the anterior horn measurement is more variable. The covariance estimate
given by Clarke (1992) confirms this, and also suggests that the departures from
the two curves are correlated. Both of these facts argue for moving our estimate
towards nine or ten years. From a theoretical perspective we are employing a
rough conditional least squares procedure. We could add 95% confidence bands
and try to develop a confidence interval for x0 as in the previous section. Per-
haps with a little practice one could imagine moving the vertical line until the
intersection points no longer seem to fit in with the existing data.

An alternative viewpoint plots the two horn lengths against each other, as in
Figure 5, with age as a parameter tracing out the “response path” as it varies.
Such plots have been used before, for example Jones and Rocke (2001) who
use multiple response paths for different herbicides to identify and quantitate
unknown samples with two immunoassays.
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Figure 5: Bivariate response paths for the Rhino data of Figure 4.

A minor innovation here is that the age values have been added as text along
the response path. We are using a log scale for both axes since the model assumes
constant error covariance on the log scale; however the spread of points around
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the response path suggests that the variances are still increasing with age. Our
new rhinoceros is plotted as an asterisk at the point (log 400, log 200) in Figure
5. Its age is determined by the point on the response path nearest to this new
point, that is we project the observed point onto the response path. The direction
of this projection should take account of the error covariance, so we have added
to the plot a 95% probability ellipse based on the estimated error covariance
matrix. We now imagine this ellipse centered on the new point and expanding
or contracting until it just touches the response path, at around nine years, as
shown in Figure 5. This is a CLS estimator since the response path is regarded
as fixed. In contrast to the univariate case, it does not coincide with MLE
because the latter would move the estimated response path nearer to the new
point. Note that the 95% ellipse does not yield a satisfactory 95% confidence
interval by its intersection with the response path; indeed it is possible that there
will be no intersection if the new point is far enough away. This situation is
discussed by Brown (1993, p89). In the linear case the departure of a new point
from the response path can be resolved into orthogonal components along and
perpendicular to the path, and a confidence interval developed by considering
only the first component. Perhaps a reasonable graphical technique would be,
having determined the point of projection, to center the 95% error ellipse on this
point and use its intersection with the response path. This suggests an interval
estimate of around 8 to 12 years. Maximum likelihood gives an estimated age of
10.1 years, and a profile-likelihood based confidence interval is approximately (7,
14). The extra width of the calculated interval perhaps reflects the uncertainty
in the model estimated from quite a small sample.

4. Repeated Measures

If the training data have a hierarchical structure, for example a series of
measurements on each of a number of individuals, the model needs to allow
different parameters for each individual to reflect population heterogeneity. Such
models are variously known as mixed effects, repeated measures, longitudinal or
hierarchical models, and have been widely studied (Laird and Ware, 1982; Diggle,
Liang and Zeger, 1994; Goldstein, 1995; Davidian and Giltinan, 1995). In the
linear case we might have, for i = 1, . . . , I and j = 1, . . . , ni:

Yij = αi + βixij + εij

where αi ∼ N(α, σ2
α) and βi ∼ N(β, σ2

β).
Menzefricke (1998) demonstrated the use of MCMC methods for inverse re-

gression in a univariate linear (in parameters) hierarchical model, using as an
example the tensile index of paper pulp as a function of beating time. Here we
use a bivariate nonlinear example from Jones, Keedwell, Noble and Hedderley
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(2005). The motivation for this work was to investigate the possibility of accu-
rately determining the age of a tern chick using easily-obtained measurements of
wingspan (Y1) and weight (Y2). The model(

Y1,ij

Y2,ij

)
=

(
αi + βitij

ci/[1 + dci exp(−bitij)]

)
+

(
ε1,ij

ε2,ij

)
for i = 1, . . . , I and j = 1, . . . , ni, was fitted using MCMC with d as a fixed
parameter and (αi, βi, bi, ci)′ as multivariate normal. We have made some changes
to the model of Jones et al (2005), dropping the “slow” group, whose existence
was questionable, and assuming a lognormal distribution for the growth rate
parameter bi.

Figure 6 shows the response paths for 150 simulated terns from the fitted
model. Age has been shown by changing the color of the response path every two
days. Inverse regression for tern chicks of unknown age would be accomplished
by plotting the wingspan and weight, and referring the local color(s) to the key.
The “braiding” of the response paths produces some mixing of colors and gives
an impression of the uncertainty due to the variability in growth parameters.
Uncertainty due to the error terms ε1, ε2 can be incorporated by referring to the
error ellipse.
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Figure 6: Response paths for growth in wingspan and weight of tern chicks
(Jones et al., 2005), with color changing every two days.

Suppose, using an example from Jones et al (2005), that a new chick is ob-
served with wing length 108 mm and weight 78 g. The color at this point on the
graph gives the approximate age of the chick. If an error ellipse is drawn centered
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at this point, it gives an impression of the uncertainty in the estimate. In our
case, the color is mostly that of 19 and 21 days. The Bayesian analysis given by
Jones et al (2005) gives a 95% credible interval of (19.7, 21.6).

In constructing such a graph, there are a number of parameters to consider
which can have an important bearing on the useability of the result: the number
of simulated paths, the thickness of the lines, the rate at which the color changes,
and the colors themselves. If the colors change too rapidly (for example, every
day in the tern chick graph) there is too much mixing of colors; if they change
too slowly, precision is lost. To aid in exploring the effects of these parameters
on visualization of the information and in optimizing the design of the graph,
we have created some software which can be obtained from the authors on re-
quest. The software allows the user to specify the band width – the range of ages
represented by a single color on the display. It then calculates the number of
colors required (age range/bandwidth), and allocates them to age ranges in hue
sequence, with saturation and lightness both alternating between high and low.
That is, increasing ages are represented by colors in color-wheel order, but dull,
dark colors alternate with light, bright colors. This alternation between high and
low values of saturation and lightness ensure that adjacent colors on the graph
are clearly distinguishable.

5. Discussion

We have summarized and illustrated the ways in which graphical methods
can aid in visualizing the process of inverse regression, and can be used to derive
estimates when only an approximate value is required. Some computational issues
have not been carefully addressed. We have focussed mostly on conditional least
squares – although the uncertainty in the model estimates is incorporated in the
inversion of prediction intervals in our univariate examples, it is not allowed for
in the bivariate cases. Generally, as the situation becomes more complex the
approximation becomes cruder. In the rhinoceros example it would be much
easier and more intuitive to take the point on the response path nearest to the
new data. Allowing for the covariance of the errors by using a Mahalonobis
distance is more accurate but much more difficult, although the use of an error
ellipse makes it possible. In examining the colors inside the error ellipse of the
tern chick graph, more weight should be given to points nearer the center of the
ellipse, but also to points on response paths closer to the average path. Again
this detracts from the intuitive appeal and ease of use of the graphical method.

We have not distinguished here between single use and multiple use of cali-
bration curves. Computational methodologies can be adapted for making joint
probability statements about multiple inverse estimates. We have also not con-
sidered the case of uncontrolled calibration, where the distribution of x values in
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the training data is informative about the unknown x0. Both of these issues are
discussed by Brown (1993).

We have introduced a new graphic for illustrating bivariate growth patterns
and performing approximate age estimation. This could easily be extended to
situations in which different groups have different growth characteristics, so that
discrimination as well as inverse regression would be required. Good design is
always important for producing useful graphs, but it is of particular importance
in this case. The choice of colors requires a combination of theory (the color-
wheel) and trial-and-error if an adequate visualization is to be achieved. Good
design can be facilitated by software that allows the parameters to be changed
interactively before a final version is printed.
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