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Abstract: An analysis of air quality data is provided for the municipal area
of Taranto characterized by high environmental risks, due to the massive
presence of industrial sites with elevated environmental impact activities.
The present study is focused on particulate matter as measured by PM10
concentrations. Preliminary analysis involved addressing several data prob-
lems, mainly: (i) an imputation techniques were considered to cope with
the large number of missing data, due to both different working periods for
groups of monitoring stations and occasional malfunction of PM10 sensors;
(ii) due to the use of different validation techniques for each of the three
monitoring networks, a calibration procedure was devised to allow for data
comparability. Missing data imputation and calibration were addressed by
three alternative procedures sharing a leave-one-out type mechanism and
based on ad hoc exploratory tools and on the recursive Bayesian estimation
and prediction of spatial linear mixed effects models. The three procedures
are introduced by motivating issues and compared in terms of performance.
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1. Introduction

This paper is motivated by an analysis of air quality data for the municipal
area of Taranto (southern Italy) characterized by high environmental risks as
formally decreed by the Italian government in the ’90s with two administrative
measures. This is due to the massive presence of industrial sites with elevated
environmental impact activities along the NW boundary of the city of Taranto
conurbation. Such activities include one of the largest iron production plants in
Europe, an oil-refinery, cement production, fuel storage, power stations, waste
materials management, mining industry and many others. Some other highly
environmental impacting activities are more integrated within the urban area
and have to do with the presence of a large commercial harbour and quite a few
military plants (a NATO base, an old arsenal and fuel and munitions storages).
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All the afore mentioned activities have effects on the environment and on public
health, as a number of epidemiological researches concerning this area reconfirm.
As a consequence Taranto was subject to intensive monitoring of the main pollu-
tants in the last few years, leading to an unusually fine composite network that
lends itself to the reconstruction of spatial fields at the city level.

Spatio-temporal modelling of PM concentrations can be useful to understand
the process dynamics and in producing exposure variables for ecological risk mod-
els, as assessing the association between daily concentrations of particulate matter
and adverse health effects was the objective of many studies in recent years (Pope
et al., 1995 and Biggeri et al., 2004 among others).

Here our main concern is on two methods for pre-processing data recorded
from an air quality monitoring network characterized by missing data and het-
erogeneity. The primary aim is the proposal of a statistical protocol for missing
data imputation and adjustment, in view of the spatio-temporal modelling of
air quality data. A recent paper by Fasso et al. (2007) partly shares the same
objectives and also addresses space-time modelling by a geostatistical dynamical
calibration model based on a multivariate state-space formulation, dealing with
the high dimension of the state equation by the Empirical Orthogonal Function
(EOF) approach. The first to introduce a reduced dimension space-time Kalman
filter were Goodall and Mardia (1994) who proposed the Kriged Kalman filter
(KKF, Mardia et al, 1998). Parameter estimation for both KKF and the afore
mentioned EOF-based approach is carried out in the maximum likelihood frame-
work, while Bayesian versions of space-time Kalman filter models were first intro-
duced by Wickle et al. (1998), followed by Sahu and Mardia’s Bayesian Kriged
Kalman filter (BKKF, 2005) and Xu and Wickle (2007) EOF-based model, among
others. In a recent paper (Sahu et al., 2005) a point is given in favour of the use
of Bayesian Gaussian random effect models (Bayesian LME’s) instead of BKKF
when there is a reasonable suspect that the space-time process is separable. The
application of a separability test by Fuentes (2006) proved that this was indeed
the case for the data at hand. In recent years a number of papers was devoted
to spatio-temporal modelling of air quality data by Bayesian LME’s (Cocchi et
al., 2007; Shaddick and Wakefield, 2002 among others). In the following sections
we propose and compare three alternative procedures which are suitable for data
imputation and adjustment. These procedures share a leave-one-out type mech-
anism and are based on ad hoc exploratory tools and on the recursive Bayesian
estimation and prediction of spatial LME’s.

The paper is organized as follows. In section 2 we describe the PM concen-
tration data of the Taranto area. These data come from a composite network
since they are collected and validated by the regional and municipal governments
with different protocols. Section 3 contains a discussion of the methodology used
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for missing data imputation and adjustment. In particular in subsection 3.1 we
introduce some ad hoc tools based on spatial and dynamic regression within a
leave-one-out type mechanism. We consider the latter to be a baseline standard
approach, to be improved by the Bayesian model-based ones reported in subsec-
tion 3.2. A detailed comparison among the performances of the ad hoc tools and
two Bayesian model-based methods is given in section 4, while section 5 contains
some concluding remarks.
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Figure 1: Smooth density estimates of log-average daily PM10 concentrations
and spatial distribution of the stations belonging to the ARPA and GECOM
monitoring networks (the stations Archimede and Orsini are almost overlap-
ping).

2. The Data

In the context of an agreement between Dipartimento di Scienze Statistiche
- Università degli Studi di Bari and the local regional environmental protec-
tion agency (ARPA Puglia) air quality data for the municipal area of the city
of Taranto were provided belonging to three different monitoring networks per-
taining to the regional and municipal government and counting 25 monitoring
stations on the whole. Pollutants continuously monitored by some of the stations
include sulphur dioxide (SO2), nitrogen oxide (NOx) and dioxide (NO2), carbon
monoxide (CO), benzene, PM10 and ozone. At present validated data for the
three networks are available for only one common operating period correspond-
ing to year 2005. The present study is focused on particulate matter as measured
by PM10 concentrations. All the stations monitoring PM10 are equipped with
analogous instruments based on the Beta absorption technology, either reporting
hourly, two-hourly or daily measurements.
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Log-average daily concentrations were obtained and the 14 stations monitor-
ing PM10 were split into two groups according to the data validation protocol
used: the 6 instruments controlled by the regional government (ARPA) were con-
sidered to be far more reliable than those managed by the municipal government
(GECOM), except for one ARPA sensor which produced sensibly lower values
(and was re-calibrated during 2006). The use of the ARPA measurements as ref-
erence values lead to the exclusion of that station from the data-base. Among the
13 remaining stations the GECOM ones often appeared to overestimate PM10
concentration levels (Fig. 1 (a)), this behaviour being only partly attributable to
the more peripherical location of the ARPA sensors (Fig. 1 (b)). Some adjust-
ment of the GECOM data was thus deemed necessary to allow for data compa-
rability.

A large number of missing data was observed (Tab. 1), due to both different
working periods for groups of monitoring stations and occasional malfunction of
PM10 sensors. Missing data were thus considered to be missing at random (MAR)
wether they occurred during the operating periods of the measuring devices.

Table 1: Taranto PM10 concentration data, year 2005: operating periods start-
ing dates and percentages of missing daily averages (ARPA stations in bold).

Station Starting date % missing
Ancona 01/01/2005 1.10
Camuzzi 01/01/2005 2.19
Carcere 01/01/2005 1.64
Gennarini 01/01/2005 9.32
Stadio 01/01/2005 9.59
Talsano 01/01/2005 9.04
Talsano (A) 01/01/2005 2.74
Testa 01/01/2005 2.74
Paolo VI 15/01/2005 9.86
Peripato 15/01/2005 25.75
Orsini 08/02/2005 17.81
Archimede 07/04/2005 29.04
Statte 07/04/2005 34.79

3. Methods

Missing data is a ubiquitous problem in evaluating long-term experimental
measurements, such as those associated with air quality monitoring. Spatio-
temporal modelling often implies that such gaps in the measured data are filled or
imputed. So far, no standardized method has been accepted and the imputation
methods used are largely dependent on the researchers’ choice.
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The objective of the methods to be described in this section is to obtain
a “clean” database by imputing missing values and adjusting data recorded at
presumably overestimating (GECOM) stations. These tasks are undertaken by
three alternative procedures. In the first occasional NA’s are imputed by linear
spatial regression, then GECOM data are calibrated by dynamic linear models
within a leave-one-out scheme (this procedure will be denoted by ad hoc). The
other two procedures both rely on the Bayesian estimation of daily hyerarchical
spatial linear models (Bayesian Kriging) within a leave-one-out scheme for miss-
ing data imputation and data adjustment (they will be called krg and s/t krg
respectively). In section 4 the three procedures are compared considering the
performance of the first as a baseline standard.

3.1 Ad hoc exploratory tools

First of all to deal with occasional NA’s assumed to be MAR (i.e. those
occurred during the instruments operating periods), an imputation technique
based on linear spatial regression is used (Le and Zidek, 2006). In particular,
consider measurement at site i missing at time t:

i. fit a regression model with PM10 log-mean daily concentrations at site i
as predictand and the time series of all other sites available at time t as
predictors;

ii. obtain the prediction of the fitted model at time t;

iii. impute the missing value by simulating at random from a Normal distribu-
tion with mean and variance respectively equal to the fitted value and the
estimated residual regression variance.

Within this procedure no spatial correlation structure is assumed for the
imputed data, all the stations being considered equivalent in the linear predictor.

As a second step adjustment of data recorded at the GECOM stations is
dealt with. Generally speaking calibration is often referred to as the process of
adjusting the output of a measurement instrument to agree with the values of
some specified standard. In Statistics calibration is a reverse process to regression
(Osborne, 1991) and can be summarized as follows:

i. a dependence model is estimated between a response variable (the specified
standard) and an explanatory variable (the output of the measurement
intrument);

ii. it is used to obtain predictions of other values of the explanatory variable
from new observations of the response variable.
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In the Taranto case-study each GECOM monitoring station is adjusted to agree
with the values reported by a specified station belonging to the ARPA network
(taken as the reference standard). Notice that in order not to generate further
missing values in the adjusted GECOM data, only two ARPA stations were avail-
able, i.e. those having no missing values after the imputation process (Carcere
and Talsano (A)). Then for each GECOM station one of the two ARPA stations
was chosen as a reference standard on the ground of spatial proximity (Fig. 1 (b))
and maximum correlation (Tab. 2). In this case no new values of the output of
the measurement instrument are available to obtain predictions of the reference
standard, but rather the same observations of the explanatory variable are used
to base model estimation and prediction. This is accomplished within a leave-one-
out scheme where each daily observation is deleted in turn and the dependence
model is estimated by the remaining 364. The prediction of the log-average daily
PM10 concentration at the ARPA station for the deleted day is then considered
as the corresponding adjusted measurement for the GECOM station.

Table 2: Correlation matrix between stations belonging to the GECOM (rows)
and ARPA (columns) networks

Archimede Carcere Paolo VI Talsano (A) Statte
Ancona 0.18 0.69 0.56 0.68 0.65
Camuzzi 0.55 0.53 0.54 0.56 0.49
Gennarini 0.29 0.67 0.69 0.76 0.72
Orsini 0.67 0.30 0.31 0.28 0.11
Peripato 0.68 0.66 0.70 0.76 0.53
Stadio 0.34 0.40 0.39 0.44 0.45
Talsano 0.08 0.43 0.38 0.52 0.47
Testa 0.28 0.50 0.54 0.58 0.59

The form chosen for the dependence model was dynamic linear regression
(Pankratz, 1991), where the AR(1) autocorrelation structure was assumed for
both the response and the explanatory variable:

Yt = φYt−1 + β1Xt + β2Xt−1 + εt (3.1)

here Yt and Xt respectively stand for the log-average PM10 concentrations at the
ARPA and GECOM stations on day t and εt is an i.i.d. random term. Model (1)
is estimated by OLS and adjusted values of the GECOM output are obtained as
X̃t = Ŷt within the afore mentioned leave-one-out scheme.

3.2 Bayesian Kriging

While explicitly taking the temporal correlation structure into account, the
methods outlined in the latter section don’t include any spatial information. We
then consider them to be a baseline standard approach to be improved by a



Imputation and Adjustment of Air Quality Data 49

unique “spatial” procedure, to be used for both missing data imputation and
data adjustment. The basic idea is to use daily spatial interpolation models,
in order to predict missing and overestimated data. This approach is taken
to obtain an efficient tool for data pre-processing, reducing the computational
complexity implied by considering a full spatio-temporal model. Alternatively
the consideration of a unique marginal spatial model would lead to neglect the
predictable changes in the spatial structure of the data along time. Hierarchical
Bayesian models embracing properly defined spatial autocorrelation structures
can admit any pattern of missing measurements in a partially observed spatial
process, as this approach provides a predictive distribution that can be used for
imputation.

The usual LME model is chosen as the daily spatial interpolation model (Dig-
gle and Ribeiro, 2007):

Y (s) = µ(s) + S(s) + ε(s)

where Y (s) is the observed process at a set of n spatial locations s, µ(s) is a
spatial trend, S(s) is a Gaussian spatial random effect and ε(s) is an independent
random error term. More precisely:

• µ(s) is a function describing the large scale variation of the spatial phe-
nomenon. It can be modeled as a function of covariates (coordinates and/or
other spatial information) or set as a constant;

• S(s) is a second order stationary isotropic Gaussian spatial process with null
mean and covariance structure depending on the distance between spatial
locations through two parameters σ2 and φ, respectively the variogram sill
and a vector of spatial correlation parameters;

• ε(s) is a vector of i.i.d. Normal random variables with null mean and
common variance τ2 (the variogram nugget). ε(s) accounts for measurement
error and microscale uncertainty, i.e. the noise affecting the readings of the
spatial signal.

Here we assume the trend to be constant µ(s) = β0, concentrating our at-
tention on the latent spatial part of the process S(s). Prior specification then
concerns parameters β0, σ2, τ2 and φ. Diffuse priors are chosen for β0 and σ2.
A scalar correlation parameter φ (the variogram range) is considered, measuring
how quickly the correlation function decays to a particular reference value when
the separation distance between pairs of locations increases. The prior represents
a guess about its possible values, varying in the interval [0,∞). The krige.bayes
function of the geoR R library implements two types of prior distributions for dis-
crete sets of values of φ:
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1. flat priors: pr(φ) ∝ 1,

2. decreasing priors: pr(φ) ∝ 1/φδ or pr(φ) ∝ exp(−δφ) , with δ > 0

The uniform prior (type 1) represents the belief that, a priori, all the values in
the specified discrete set are equally plausible. Priors of type 2 allow the user to
flexibly choose the shape hyperparameter δ and express a prior belief that small
values of φ in the discrete set are more likely.

The so called noise-to-signal ratio τ2
rel = τ2/σ2 can be treated as a fixed or

random quantity. In the second case it is possible to describe the prior knowledge
in the same way adopted for the correlation parameter φ.

For missing data imputation and adjustment we propose a procedure making
use of two daily spatial kinds of models specified as Bayesian LME’s, namely
prediction models and estimation models. The structure of the algorithm is itera-
tive and based on a leave-one-out scheme: iterations are necessary to reconstruct
the spatial variation, while the by leave-one-out scheme we obtain homogeneous
predictions of data to be calibrated, missing or outlying.

Available daily averages are often too few and show little spatial structure: our
way to make use of such slight spatial variability to obtain spatially smooth daily
series without using any external information consists in iteratively estimating
the spatial structure parameters and predicting the observations to be treated.
Along the iterations estimates and predictions become more and more stable
and the daily spatial structure becomes more apparent. Further insights on the
iteration mechanism and its effectivness are given in section 4 (figure 2 (a) and
(b) and comments).

Within each iteration we obtain predictions using as many data points as
possible: a single daily model predicting all observations to be treated by those
not to be treated would be too expensive in terms of degrees of freedom and esti-
mates’ variability would change daily as a function of the number of observations
to be treated. Then daily spatial prediction models are fitted within a leave-one-
out scheme and used to predict each observation to be treated by all the data
available on the same day. This procedure is repeated updating observations to
be treated untill convergence is reached.

The iterative reconstruction of the daily spatial variation and the prediction
of missing and overestimated values are formalized in the following krg algorithm.
Let x be the vector of daily observations and J the set of indices denoting the
monitoring stations to be treated.

step 0.1 Fit the estimation model to vector x where data corresponding to the sta-
tions to be treated are omitted. After some sensitivity analysis a discrete
uniform prior was chosen for τ2

rel on the interval (0,1) with 0.1 increments.
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We allowed φ to vary in a discrete sequence between 1 and 7 km with 0.5km
incremental value; a type 2 (reciprocal) prior was judged appropriate (faster
convergence and less smoothing in the returned values). Obtain posterior
estimates of φ and τ2

rel.

step 1.1 For i ∈ J let x(i) be obtained by omitting station i in the vector of daily ob-
servations x. Iteratively predict each xi from x(i) using posterior estimates
of φ and τ2

rel obtained in the previous step in the prior specification of the
prediction models. Store predicted values in vector z and substitute them
to corresponding values in x.

step 2.1 Store the current z values in zold and repeat step 1.1 to obtain a new z.

step 3.1 If |zold − z| < ε (ε = 0.0001) or the iterations number is ≥ 100 stop,
otherwise repeat step 2.1 until convergence.

An explicit consideration of the time correlation structure is neglected in
the krg algorithm. Exploratory data analytic results (Tab. 6) show that, as
expected for PM10 concentrations (Cocchi et al., 2007), the time series have an
autoregressive order 1 correlation structure. In order to include this time dynamic
into the Kriging procedure daily priors are recursively updated at each iteration
in algorithm s/t krg. More precisely the priors of the prediction models are
daily updated by posterior estimates obtained by the estimation model on the
previous day. The spatial variation is thus believed to follow a sort of order 1 time
dependence, with daily covariance parameter estimates depending stochastically
on those of the day before. Then step 0.1 in krg takes the following modifyed
form, while next three steps remain the same:

step 0.2 For day 1 run step 0.1. For days 2 to 365 fit the estimation model to vector
x of the previous day, where data corresponding to the treated stations z
are substituted. The same priors as in step 0.1 are used.

Notice that the leave-one-out structure of both algorithms implies that each
observation to be treated is updated by a prediction model, on the basis of the
values at the previous iteration. As a by-product estimates of covariance structure
parameters τ2

rel and φ for each treated observation at each iteration of the two
algorithms are obtained as summaries of posterior simulations and are used to
assess convergence.

4. Results

The methods outlined in §3 were used to obtain MAR data imputation and
adjustment of the GECOM data.
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In Fig. 2 the developement of the estimates of τ2
rel and φ when passing

from one iteration to the next is shown for one day representative of the overall
behaviour. It is quite evident that while the covariance structure parameters
are updated within s/t krg, it is not so in krg. This means that in krg the
provisional a priori spatial structure remains substantially unchanged along the
iterations and that treated observations are iteratively adapted to this structure
untill convergence. On the contrary s/t krg simultaneously adapts the spatial
structure and the observations to be treated, so that the final spatial structure
is the result of an adaptive iterative process. Given that the spatial structure
“moves”, the need of a larger number of iterations for s/t krg to reach con-
vergence is justified, as shown in Tab. 3. Notice that for both algorithms the
maximum iteration number is far below the 100 units limit.
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Figure 2: Posterior summaries (medians) of τ2
rel and φ by iteration number for

day 9/2/2005 (similar results for the 365 days are available from the authors
on request).

Table 3: Summary statistics for the number of iterations of the two Bayesian
Kriging estimation algorithms

Minimum 1st Q. Median Mean 3rd Q. Maximum
krg 5.00 8.00 9.00 9.81 11.00 25.00
s/t krg 6.00 10.00 11.00 13.88 16.00 49.00

For the 8 stations belonging to the GECOM network the outlined procedures
produced time series of adjusted data that were compared to the observed ones
in terms of root mean squared error. Tab. 4 (left) shows how only for the
Gennarini and Stadio stations the ad hoc method produces time series closer to
those observed. Indeed in these two cases the three predicted time series and the
observed one are very close and thus the need for adjustment is questionable.
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Table 4: Left: differences between observed and adjusted (GECOM) data
(ARPA stations used to obtain ad hoc predictions: (*) Carcere, (**) Talsano
(A)). Right: differences between observed and calibrated GECOM data and
the closest ARPA station (†Carcere, ‡Archimede, §Talsano (A)): root mean
squared errors.

ad hoc krg s/t krg obs ad hoc krg s/t krg

Ancona (†) 0.48 (*) 0.32 0.42 0.532 0.233 0.277 0.208
Camuzzi (‡) 0.56 (*) 0.38 0.44 0.413 0.567 0.261 0.262
Gennarini (§) 0.28 (**) 0.30 0.39 0.359 0.232 0.154 0.163
Orsini (‡) 0.77 (*) 0.51 0.57 0.416 0.546 0.234 0.236
Peripato (‡) 0.57 (*) 0.33 0.39 0.338 0.535 0.323 0.329
Stadio (†) 0.35 (*) 0.39 0.45 0.556 0.353 0.271 0.204
Talsano (§) 0.46 (*) 0.38 0.43 0.425 0.342 0.141 0.148
Testa (‡) 0.61 (*) 0.47 0.56 0.610 0.592 0.328 0.333
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Figure 3: Log-average daily PM10 concentrations for the Camuzzi GECOM
monitoring station before and after imputation and calibration (days 100 to
200: 10/4/2005-19/7/2005): (a) comparison among the three methods, (b)
s/t krg predictions and 95% credibility intervals (similar results for all the 8
GECOM stations are available from the authors on request).

For the remaining six GECOM stations the ad hoc predictions are always smaller
and far from the Kriging-based ones (as noticed in Fig. 1 (a) the GECOM sta-
tions tend to overestimate PM10 concentrations, so adjusted data will be smaller
than observed ones), due to the former adjustment method being based on only
one reference station rather than on the spatial structure reproduced by all avail-
able stations (Fig. 3 (a)). The two Kriging-based methods behave quite similarly,
though krg predictions denote slightly larger values and variability (less smooth-
ing). Fig. 3 (a) also shows that the shift obtained by the three adjustment
procedures does not alter the time dynamics observed in the time series. In fig-
ure 3 (b) credibility intervals based on the 2.5% and 97.5% percentiles of the
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simulated predictive distribution prove to be quite narrow for the s/t krg case.
Similar results were obtained for the two Kriging-based methods and for all the
eight stations belonging to the GECOM network, the details being available from
the authors on request. Notice that the inspection of the graphs didn’t produce
any evidence for the daily IC’s size to vary as a function of the number of stations
to be treated.
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Figure 4: Differences between observed and calibrated data for the GECOM
Talsano monitoring station and the closer ARPA Talsano station: regression
lines (similar results for all the 8 GECOM stations are available from the au-
thors on request).

For the five ARPA stations missing data imputations obtained by the three
methods were quite similar though, as for the GECOM network, more extreme
and smaller values were obtained by the krg and ad hoc methods respectively.

With the aim of obtaining a first assessment of the spatial variability repro-
duced by the three methods, a second type of diagnostic was produced in order
to compare adjusted GECOM data to those observed at the closer ARPA station
(considered as a data quality reference standard). For the 8 GECOM monitoring
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stations Tab. 4 (right) contains the root mean squared errors corresponding to
the regression lines given in Fig. 4 for the Talsano station. It is clear that the ad
hoc method is the worst among the three and does a poor job in terms of spatial
variation, especially when the station used for adjustment does not coincide with
the closest one (as in the case of the Ancona and Gennarini stations), due to the
presence of missing data. The ad hoc method thus results to be very sensible
to the choice of the reference station used for adjustment. Algorithm krg and
s/t krg perform quite similarly in reproducing the spatial variation, providing
a sharp correspondence between calibrated data for each GECOM station and
those observed for the closest ARPA station.

For PM10 concentration data a strong daily dependence is expected, due to
the high atmospheric lifetime of smaller size particles (Cocchi et al., 2007). In
figure 5 (a) the boxplots of the partial auto-correlation functions of the 13 moni-
toring stations are reported (first four lags) showing higher values corresponding
to lag 1 for observed and adjusted data. The 13 log-average PM10 concentra-
tion time series show a similar AR(1) time-correlation structure and the same
conclusion is fostered by the direct inspection of empirical ACF’s (not reported).

As a matter of fact adjusting the data according to the three proposed pro-
cedures does not alter the AR(1) time-correlation structure. Direct inspection
of the 13 × 4 PACF’s shows that they almost invariably fall below significance
boundaries for lags greater than 1. Notice that higher values at lag 1 imply that
s/t krg reproduces a stronger daily dependence with respect to the other two
methods and foster the impression of a higher degree of temporal smoothing of
s/t krg already obtained by the inspection of fig 3 (a) and similar unreported
graphs.
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Figure 5: (a) Boxplot of 13 partial auto-correlation functions for observed and
adjusted data (first four lags) and (b) smooth loess curves interpolating time
de-trended variogram clouds.
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Finally empirical variograms of the data were obtained to further investigate
their spatial variation before and after missing data imputation and adjustment.
To remove the temporal trends the residuals after fitting an AR(1) model to the 13
time series for both the raw PM10 daily log-averages and those after imputation
and adjustment were obtained. The estimated autocorrelation functions of the
residuals (not shown) confirmed that there were no more temporal effects, then
the variation in the resulting data could be expected to have arisen from variation
due to space.

Let w(si, t) denote the residuals at location si (i = 1, . . . , 13), time t (t =
1, . . . , 365), assumed to be independent replications at location si since data were
time de-trended. We now consider an average variogram estimator (Sahu and
Mardia, 2005) defined by

γ̂(dij) =
1

2T

T∑
t=1

{w(si, t) − w(sj , t)}2

where dij is the distance between the spatial locations si and sj and T = 365. The
empirical variogram cloud is obtained by plotting γ̂(dij) against dij for the 13(13−
1)/2 = 78 possible pairs of locations. In figure 5 (b) smooth loess curves (obtained
by the R function loess with smoothing parameter equal to 0.1) interpolating
variogram clouds obtained with the previous method for time de-trended observed
and adjusted data are provided.

The ad hoc method, which has no consideration for the spatial variation,
flattens the variogram observed for the original data producing an almost “pure
nugget” spatial random field. On the contrary both Kriging-based methods tend
to preserve the spatial variation adjuststing the GECOM data by values perfectly
matching the fitted spatial structure and thus lead to a substantial reduction of
the nugget effect. This is a desirable feature of the procedure as we expect that
a large part of the measurement error is due to the different calibration of the
two networks. While sharing the small nugget with krg, the smooth variogram of
the s/t krg method increases more rapidly, implying that the method including
the time variability constraint produces more smoothing in the time series and a
higher overall spatial variation (sill).

5. Conclusions

In this paper we compare two approaches to the imputation of missing data
and calibration of measurements coming from different monitoring networks.
More precisely the two methodologies produce adjusted values of the log-average
PM10 concentrations for the GECOM network and allow missing data imputa-
tion at the ARPA monitoring stations. The first proposed technique (ad hoc)
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based on linear spatial regression and on a dynamic regression model, does not
explicitly account for the presence of spatial variation in the data. As a conse-
quence the initially observed spatial variability is almost eliminated from the final
adjusted data set. On the other hand this method preserves the time variability
structure quite well. Being based on two different statistical models operating
sequentially, the ad hoc method does not allow to exactly asses the precision of
the final estimates. The latter and the elimination of the spatial variation ob-
served in the data can be considered as serious drawbacks to the adoption of
the ad hoc approach in practice. The krg method, based on Bayesian Kriging,
explicitly accounts for spatial variation and its space-time version s/t krg for
time dynamic as well. Both methods rely on an iterative leave-one-out structure
and consider daily spatial models of PM10 concentrations: we avoid the com-
putational complexities implied by considering a full spatio-temporal model and
use iterations to reconstruct the spatial variation and the leave-one-out scheme
to obtain homogeneous predictions of data to be treated. Indeed temporal and
spatial variability prove to be appropriately rebuilt in the final series by these
two methods. Furthermore as the imputation/calibration procedure allows to
sample from the model predictive distribution, it is possible to build credibility
intervals for each treated observation in order to evaluate its precision and that
of the overall procedure. Small side effects of the use of Bayesian methods are
the computational complexity and time consumption. On the other hand both
krg and s/t krg can be easily implemented in the R environment using library
geoR. Thus if imputation and adjustment are prerequisites to the reconstruction
of spatial fields, the two alternative Kriging-based procedures are suggested. To
choose between the two one can consider that the purely spatial krg makes use
of current day data to set prior distributions and is thus more appropriate when
a purely spatial approach to data treatment is recommended.

The space-time Bayesian procedure s/t krg revealed to be the most appro-
priate for the Taranto log-PM10 data. It showed a good capability of spatial vari-
ation reconstruction and time dynamic preservation. The slightly higher degree of
temporal smoothing together with the larger overall spatial variability (variogram
sill) imply a preference of this algorithm with respect to krg from the informa-
tion conservation point of view. s/t krg is fairly computationally efficient, due
to its iterative nature it provides stable a posteriori estimates/predictions, and
enables to assess estimates precision. The exploitation of both temporal and
spatial structures to impute missing data, adjust observations and treat outliers
revelead to be the best strategy.
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