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Abstract: Mixed effects models are often used for estimating fixed effects and
variance components in continuous longitudinal outcomes. An EM based es-
timation approach for mixed effects models when the outcomes are truncated
was proposed by Hughes (1999). We consider the situation when the lon-
gitudinal outcomes are also subject to non-ignorable missing in addition to
truncation. A shared random effect parameter model is presented where the
missing data mechanism depends on the random effects used to model the
longitudinal outcomes. Data from the Indianapolis-Ibadan dementia project
is used to illustrate the proposed approach.
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1. Introduction

This paper is concerned with estimating the effects of putative risk factors
on cognitive decline in the elderly which is the focus of many longitudinal stud-
ies, both epidemiological or clinical trials in nature. Many cognitive assessment
instruments currently used in dementia studies have an upper ceiling due to the
limited time available for testing and the fact that the instruments are also func-
tioning as screening or diagnostic tools for dementia with much greater emphasis
on sensitivity at the lower end of the instruments. A well known example of
such an instrument is the Mini-Mental State Examination (MMSE) which has
a ceiling of 30. However, more extensive and lengthy neuropsychological tests
are shown to be normally distributed in a large cohort of subjects. But given a
shorter version of a lengthy test, many who would have scored in the tails of the
longer version are now scoring at either endpoint. Inference on cognitive function
or decline is concerned with the “true” cognitive ability or change that would
have been measured rather than the observed score on the shorter version with a
ceiling effect. The ceiling or truncation effect in neuropsychological tests was also
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observed in van Belle and Arnold (2000) although their focus was on measuring
reliability.

Analysis of cognitive decline data is further complicated by the fact that selec-
tive groups of subjects maybe missing some measurements either by study design
or by happenstance. For example, in large cohort studies of dementia, subjects
previously diagnosed with cognitive impairment no dementia (CIND), an inter-
mediate status between normal and dementia, were usually not re-screened with
the cognitive test and may directly proceed to clinical evaluations. Other missing
data due to death or nursing home placement may also raise the possibility of
non-ignorable missing data in this situation.

When measurements with ceilings are used in regression analysis, it has been
shown that the ordinary least square (OLS) estimator ignoring the ceiling is
biased and inconsistent (Goldberger, 1981). There have been efforts to correct
for the OLS bias in the regression model setting (Tsui, Jewell, and Wu, 1988).
Hasselblad, Stead and Galke (1980) considered a univariate regression model
with multiple truncation points using the EM algorithm. In the case of a single
truncation point with normally distributed data, the model is sometimes referred
to as the Tobit model in the econometric literature (Amemiya, 1984) after an
earlier econometric application (Tobin, 1958). Little and Rubin (2002) called this
type of truncation “non-ignorable missing data with known mechanism” since the
truncation point is known in this situation. When such outcomes are measured
repeatedly and factors associated with change in outcome over time is of interest,
special methods are also needed to ensure unbiased inferences. Hughes (1999)
proposed an EM based maximum likelihood approach for longitudinal outcomes
with truncated outcomes. Publications adopting the Hughes model are mostly
concerned with the modeling of viral load in HIV and related lab data with
various special mixed-effect models (Wu, 2002)).

Lyles (2000) considered the mixed-effect model in Hughes (1999) with the
additional problem when the outcomes are also subject to informative drop-out.
The authors adopted the approach of Schluchter (1992) by joint modeling of
outcome variable and a log-normal survival model for time remained in the study
for each subject. Thiebaut, Jacqmin-Gadda, Babiker and Commenges (2005)
and Pantazis, Gouloumi, Walker, and babiker (2005) also considered the joint
modeling of bivariate longitudinal data with a log-normal survival model for time
to dropout. In this paper, we propose to use a binary survival model proposed
by Wu and Carroll (1988) and previously adopted by by Pulkstenis, Ten Have,
and Landis (1998), and Ten Have, Kunselman, Pulkstenis, and Landis (1998) to
model the incidence of dropping out in a shared random effect model approach.
We present results from a simulation study and illustrate the proposed method
using data from a community-based dementia study.
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2. A Longitudinal Dementia Study

The Indianapolis Study of Health and Aging is one of two longitudinal cohorts
in the Indianapolis-Ibadan Dementia Project aimed at identifying risk factors for
dementia, Alzheimer’s disease and cognitive decline. The study population con-
sists of 2212 African Americans age 65 and older living in Indianapolis, USA, at
study baseline. Study participants were evaluated at study baseline and repeat-
edly evaluated at 2, 5, 8 and 11 years after baseline with a two-phase design at
each evaluation wave. At the first phase (screening phase), study subjects were
interviewed at their homes with a questionnaire designed to evaluate their cog-
nitive function. In addition, demographic information, family history of illness,
medical history of the subject, consumptions of alcohol and tobacco and blood
samples were collected during the screening interview. At the second phase (clin-
ical phase), selected subjects from a stratified sample based on screening results
received full physical and neurological examinations to determine disease status.
Subjects who received a full clinical evaluation were classified as demented, CIND,
or normal. Demented subjects were then followed using a separate protocol. The
CIND subjects were allowed to skip the screening phase and proceeded directly
to clinical evaluation at the next follow-up evaluation.

At each screening phase study subjects were interviewed using the Commu-
nity Screening Instrument for Dementia (CSID), a questionnaire designed for
dementia screening in diverse cultural and educational backgrounds. The CSID
consists of two parts: an interview with the study participant and an interview
with an informant. The interview with the study participant assesses cognitive
functioning, medical history, social involvement, and other putative risk factors.
The interview with informants assesses the study participant’s cognitive func-
tioning, activities of daily living (ADL) and functioning at work and in social
relationships.

The cognitive test of the CSID includes a number of test items measuring
multiple cognitive domains including language, memory, orientation, judgment,
comprehension and constructional praxis. Several neuropsychological tests in-
cluding the animal fluency test and East Boston story were also included. In
this paper, we consider a total cognitive score created by summing corrected an-
swers from 40 questions in which lower scores indicate more cognitive impairment.
These 40 questions were repeatedly administered at baseline and at each of the
four follow-up waves. Therefore, there is an interest in investigating the patterns
of cognitive decline and factors associated with cognitive decline. One particular
factor of interest is the influence of education on cognitive decline. Many cross-
sectional studies have reported low education is a risk factor for poorer cognitive
function. However, longitudinal studies have been inconsistent with some finding
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no effect suggesting the effect seen in cross-sectional studies was due to biases in
cognitive assessment favoring highly educated individuals.

The investigation of education on cognitive decline is complicated in the In-
dianapolis data by two facts. The first is the truncation of the CSID scores at
40. In Table 1, we show significant difference in mean CSID cognitive scores at
baseline in two groups defined by education level, namely, those who had 6 or
less years of education (low education group) and those who had 7 or more years
of education (high education). The cut-off of 6 years of education was chosen for
this cohort in previous report (Hall, Gao, Unverzagt, and Hendrie, 2000). The
percentages of subjects who scored at 40 also differed significantly in the two
groups.

Table 1: Comparisons of baseline characteristics between the two groups de-
fined by education levels

Characteristics Low Education High Education p-value

Mean Cognitive Score (SD) 35.0(3.7) 37.1(3.0) <0.0001
Score at Ceiling(%) 5.6 22.8 <0.0001

The second complication is the substantial proportions of missing data at
each of the follow-up evaluations. Only 425 (21%) subjects out of a total of
2028 eligible subjects at baseline had complete information for all evaluations.
The number of dropping out after baseline, 2, 5 and 8 years are 370, 469, 497
and 267, respectively. In Table 2, we show significant differences in percentages
of subjects with missing data at each follow-up evaluation by education groups.
Subjects with low education were more likely to drop out of the study than those
in the high education group. Statistical inference ignoring these two facts may
create a distorted conclusion regarding education’s effect on cognitive decline. In
the follow section, we adopt a shared parameter model approach to model the
longitudinal outcomes while accounting for both truncation and missing data.
We note that our setting differ somewhat with the HIV laboratory test setting
where a biomarker value below detectable range was considered censored. In our
setting, we considered the test responses at 40 truncated due to the design of the
questionnaire. We also assumed the test scores are measured without errors.

Table 2: Comparisons of percentages with missing data in the two groups
defined by education levels. Data from the Indianapolis cohort of the
Indianapolis-Ibadan Dementia Project

% Missing Total Eligible (n) Low Education High Education p-value

2 Year Follow-up 2028 22.5 17.6 0.0471
5 Year Follow-up 1658 34.4 27.4 0.0351
8 Year Follow-up 1240 61.8 39.3 < 0.0001
11 Year Follow-up 728 64.3 36.3 0.0002
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3. Shared Random Effect Models

Let y be the true cognitive outcome that would be measured if the instrument
used for assessing cognitive ability did not have an upper ceiling. yij denotes the
jth measurement from the ith subject. Instead of yij , we observe a pair of random
variables (Qij , Tij), where Qij is the truncated response and Tij is the truncation
indicator. Therefore, we have Qij = yij if Tij = 0;Qij ≤ yij if Tij = 1. Note
that Hughes (1999) considered truncation at both the floor and ceiling by having
three levels of Tij . In our example data setting, we have a uniform truncation
point, i.e. Tij = T .

3.1 The longitudinal model

We assume the following mixed-effect model for the true cognitive outcome,
yij :

yij = Xijβ + Zijγi + eij (3.1)

where Xij is a 1 × p vector of fixed effect covariates, β is a p × 1 vector of fixed
effect, Zij is a 1 × q vector of random effect covariates, γi is a q × 1 vector of
random effect, γi ∼ N(0, D), and eij ∼ N(0, σ2I).

Note that y has a multivariate normal distribution with mean Xβ and variance-
covariance matrix of V = ZDZ ′+σ2I, where X is the design matrix for the fixed
effect where it has Xij as its rows and Z is the design matrix for the random effect
where Zij forms its rows. Our interest is in estimating the fixed effect parameter
β, the variance-component matrix D and the random error parameter σ2 using
the observed data Qij and Tij . An EM algorithm can be used to derive param-
eter estimates from (3.1) when there is no missing data. We refer the details of
the EM algorithm to Hughes (1999) and concentrate instead to describing the
methods for dealing with nonignorable missing data.

3.2 The drop out model

Let Rij be an indicator variable for missing observation for the ith individual
at the jth follow up wave: Rij = 0, if an outcome is observed; Rij = 1, if an
outcome is missing. Using the framework of the shared random effect model, we
assume the following model for the probability of a subject having missing data at
evaluation wave j conditional on this individual being followed up at evaluation
wave j − 1:

η[Prob(Rij = 1|Rij−1 = 0)] = Wijα + δUijγi (3.2)

where η is a link function for a generalized linear model, Wij is a 1 × r vector
of covariates, α is a r × 1 vector of fixed effect, δ is a parameter for the random



18 Sujuan Gao and Rodolphe Thi/’ebaut

effect, Uij is a 1× q vector of covariates for the random effect, and γi is the same
subject-specific random effect defined in the longitudinal outcome model (3.1).

The shared random effect model has an attractive appeal to biomedical re-
searchers who generally believe that there may be some latent yet to be measured
quantity underlying a person’s susceptibility to both cognitive decline and miss-
ing data due to adverse outcome (nursing home entrance or death). In addition,
the shared random effect model does not explicitly assume that missingness de-
pends on the unobserved outcome; rather, it depends on a latent variable that is
inherent in all outcomes from the same subject.

3.3 The Joint Likelihood

Without loss of generalizibility, we assume that for each completely followed
up subject, the first mi of the total ni observed outcomes are not truncated. We
also assume that for subjects who were lost to follow-up, the first mi observations
were not truncated (mi ≤ ni), the next ni −mi observations were truncated and
the last observation was unobserved. This can be easily achieved by re-arranging
the observations for each subject along with all relevant covariates.

Let pij = Prob(Rij = 1). Assuming that yij and Rij are independent given
γi, the joint likelihood function of observed yij and Rij can be written as

L =
n∏

i=1

∫ mi∏
j=1

(1 − pij)f(yij |Xij , Zij , γi) ×

ni∏
j=mi+1

(1 − pij)[
∫ ∞

T
f(yij |Xij , Zij , γi)dyij ]

∏
Rij=1

pini+1dγi (3.3)

Note that the joint likelihood can be divided into three parts. The first
product in (3.3) is the likelihood function for the regular mixed-effect model for
measures with observed outcome and no truncation; the second product involves
those subjects with observed, but truncated outcomes; the third product is the
probability of missing data conditional on random effects. Various link functions
may be considered in the missing data model. We consider, for example, when η
is a logit link function.

Since the missing data model is built on the incidence function of the missing
data variable, we use the following recursive relationship to define the marginal
probability of Rij :

pij = ηij(1 − pij−1) + pij−1, j = 2, . . . , ni, and pi1 = 0

Assuming the shared random effect parameter follows a normal distribution,
the maximum likelihood estimates can be derived using numerical integration
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techniques offered in the NLMIXED procedure in the SAS software package.
Programming codes for the implementation are available upon request. In the
following section we investigate the empirical properties of the shared random
effect models and compare the proposed approach to other methods in simulation
studies.

4. Simulation Results

We conducted a simulation to compare three different approaches in data with
truncation and missing data. The first method is a so-called naive approach where
a regular mixed-effect model is fit for the longitudinal data ignoring both the
truncation and missing data. The second method considers the truncation process
but ignores the missing data and the third method utilizes the shared random-
effect models to obtain maximum likelihood estimates for the joint likelihood
function. We designed the simulation studies using the data structure of the
Indianapolis Study of Health and Aging. Number of baseline eligible cohorts and
covariates were fixed to be those in the Indianapolis data set. We considered three
covariates in the simulation. One is an indicator variable for age: 0 for those 75
and younger and 1 for those over 75 years at each evaluation. This variable is a
time-dependent variable. The Second covariate included in the simulation is the
dichotomized education variable discussed in Section 2. The third covariate is
follow-up time in years since baseline.

We simulated longitudinal true outcomes according to the following model:

score = β0 + β1age group + β2low education
+ β3time + β4low education ∗ time + γi + eij (4.1)

where γi ∼ N(0, σ2
g), and eij ∼ N(0, σ2

e). All generated scores above 40 were
then truncated to 40.

We also simulated missing data by using the following missing data model:

logit[Prob(Rij = 1|Rij′ = 0, j′ < j)]
= α0 + α1age group + α2low education + α3time + δγi (4.2)

where γi ∼ N(0, σ2
g). δ is the parameter controlling the degree and the direction

of the ”closeness” between the longitudinal model and the missing data process.
We consider three scenarios in this paper. δ=0 indicates that missing data is
not linked to the outcomes, hence the method considering truncation only is
adequate. We also consider the scenario when δ = −1 where those subjects with
higher cognitive scores are less likely to drop out, consistent with our dementia
data. The last scenario we consider is when δ = 1 where those with higher
cognitive scores are more likely to drop out. Other parameter values used for



20 Sujuan Gao and Rodolphe Thi/’ebaut

Table 3: Parameter estimates and percent bias (second entry) of model param-
eters assuming various missing data models in simulations

δ=0 δ=1
Parameters Naive Truncation Missing Naive Truncation Missing
Model (1)
β0 0.5225 1.0022 1.0024 0.5228 1.0051 1.0039

47.75 0.22 0.24 47.72 0.51 0.39
β1 -1.6527 -1.9993 -2.0007 -1.6254 -1.9636 -2.0019

17.36 0.04 0.04 18.73 1.82 0.09
β2 -0.7707 -0.9970 -0.9943 -0.7511 -0.9887 -0.9940

22.93 0.30 0.57 24.89 1.13 0.60
β3 -0.2438 -0.3002 -0.3004 -0.1965 -0.2634 -0.2901

18.75 0.07 0.12 34.51 12.19 3.31
β4 -0.2257 -0.2012 -0.2016 -0.2036 -0.1776 -0.1980

12.85 0.59 0.81 1.82 11.21 1.02
σ2

g – 0.9915 0.9918 – 0.8999 1.1077
– 0.85 0.82 – 10.02 0.87

σ2
e – 0.9991 0.9990 – 1.0061 0.9804

– 0.09 0.10 – 0.61 1.96
Model (2)
α0 – – -1.6585 – – -1.5573

– – 17.07 – – 22.13
α1 – – 0.7041 – – 0.7037

– – 29.59 – – 29.63
α2 – – 0.7242 – – 0.7084

– – 27.58 – – 29.16
α3 – – -0.0930 – – -0.1140

– – 161.97 – – 175.97
δ – – 0.0032 – – 0.5104

– – – – – 34.58

generating the simulations are fixed to be: β0 = 1.0, β1 = −2.0, β2 = −1.0,
β3 = −0.3, β4 = −0.2, σ2

g = 1.0 and σ2
e = 1.0 for the longitudinal model (1), and

α0 = −2.0, α1 = 1.0, α2 = 1.0, α3 = 0.15 for the missing data model (2). These
parameters were chosen to make the truncation and missing data patterns similar
to our dementia example data. Approximately 35% of subjects have truncated
scores at baseline and the percentages decline with time. Drop-out ranged from
about 25% at the first follow-up to about 50% at the last follow-up.

We present simulation results in Tables 3, 4 and 5. For space’s sake, we
omitted results for the δ=-1 scenario which are similar to δ=1. In Table 3,
we present parameter estimates, and percent bias defined as |estimates-true pa-
rameter value|/(true parameter value). The naive estimates were shown to be
consistently biased from the true parameters. The truncation only approach was
adequate when δ = 0 (missing at random) with minimum bias. When δ 6= 0, the
approach considering truncation and ignoring the missing data also showed some
bias. If we focus on the parameter for interaction, β4, the truncation only method
showed about 11% relative bias in estimating β4 where the shared random effect
approach had bias smaller than 1%. It should also be noted that the shared ran-
dom effect model approach showed considerable bias in estimating parameters of
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the missing data model (2), although the β estimates for model (1) do not seem
to be affected as a consequence. It is worth noting that the shared random-effect
model approach underestimated the magnitude of the δ parameter.

In Table 4, we present standard error estimates using the information matrices
of each likelihood function for the three methods, compared to the empirical
standard error estimates based on the estimates in the simulations. Our results
demonstrate that these standard error estimates are fairly consistent with the
empirical standard error estimates for all three methods.

Table 4: Standard error estimates and empirical standard errors from simula-
tions assuming various missing data models

δ=0 δ=1
Parameters Naive Truncation Missing Naive Truncation Missing
Model (1)
β0 0.0382 0.0510 0.0510 0.0362 0.0496 0.0506

0.0303 0.0498 0.0498 0.0297 0.0489 0.0494
β1 0.0654 0.0832 0.0833 0.0617 0.0804 0.0824

0.0720 0.0811 0.0812 0.0720 0.0834 0.0847
β2 0.0975 0.1226 0.1226 0.0922 0.1184 0.1209

0.1071 0.1229 0.1230 0.1093 0.1252 0.1259
β3 0.0064 0.0080 0.0082 0.0057 0.0076 0.0077

0.0069 0.0077 0.0080 0.0065 0.0076 0.0077
β4 0.0311 0.0372 0.0373 0.0240 0.0295 0.0289

0.0376 0.0376 0.0374 0.0290 0.0297 0.0292
σg – 0.0684 0.0685 – 0.0670 0.0694

– 0.0655 0.0654 – 0.0660 0.0671
σe – 0.0387 0.0387 – 0.0396 0.0375

– 0.0387 0.0387 – 0.0397 0.0377
Model (2)
α0 – – 0.0848 – – 0.0944

– – 0.0822 – – 0.0913
α1 – – 0.0766 – – 0.0937

– – 0.0714 – – 0.0847
α2 – – 0.1070 – – 0.1294

– – 0.1033 – – 0.1271
α3 – – 0.0110 – – 0.0125

– – 0.0097 – – 0.0107
δ – – 0.0411 – – 0.0562

– – 0.0356 – – 0.0518

We then constructed 95% confidence intervals using the derived parameter
estimates and standard error estimates based on asymptotic normality assump-
tion for each of the parameters in the two models. In Table 5, we present esti-
mated coverage probabilities for parameters in the two models using the three
approaches. The naive method provided poor coverage for almost all parameters
under all three scenarios, while the approach considering truncation but ignoring
missing data provided adequate coverage when δ = 0, as expected. However,
when δ 6= 0, the truncation only approach had poor coverage on some parame-
ters, especially on time-dependent covariates, such as time and time by education
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interaction. In addition, the truncation only approach also had poor coverage of
the within-person variance parameter, σ2

g .

Table 5: Estimated coverage probabilities of 95% confidence intervals for model
parameters using asymptotic normality assumptions from simulations with var-
ious missing data models

δ=0 δ=1
Parameters Naive Truncation Missing Naive Truncation Missing
Model (1)
β0 0 95.6 95.6 0 94.6 94.6
β1 0.2 95.8 96.2 0 91.4 94.6
β2 33.6 94.8 94.6 26.8 92.6 93.2
β3 0 95.6 95.6 0 0 75.8
β4 81.6 94.6 94.6 89.0 88.2 94.8
σg – 94.6 94.8 – 67.8 95.2
σe – 95.6 95.6 – 94.8 94.8
Model (2)
α0 – – 2.0 – – 0.6
α1 – – 1.6 – – 8.4
α2 – – 26.0 – – 38.0
α3 – – 0 – – 1.3
δ – – 98.0 – – 0.2

The shared random-effect model approach provided adequate coverage for all
parameters in the longitudinal model with the exception of the time covariate,
where the coverage was below the 95% norminal level. Coverage for the two
variance component parameters are also excellent. However, the shared random-
effect approach gave very poor coverage to the missing data model parameters
indicating that inferences on the missing data model parameters are not reliable
and better estimation approaches may be needed.

5. The Dementia Data

We also used the three estimating approaches on the dementia data described
in Section 2. We present parameter estimates, standard error estimates and p-
values by the three methods in Table 6. Note that the shared random-effect model
estimated δ̂=-0.3416. Based on the simulation results, we believe that this may be
an underestimate of the true parameter value and the estimate seems to confirm
our observation that the high cognitive functioning subjects are less likely to have
missing outcomes. We illustrate the estimated trend of cognitive decline for the
two groups defined by education levels using the three methods in Figure 1. The
truncation only method provided very similar result with the shared random-
effect model approach, differing slightly toward the end of the follow-up period
by estimating lesser declines for both groups. This difference is expected because
the truncation approach assumes missing at random for those subjects dropped
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out during follow-up while the shared random-effect model approach assumes
that the drop-outs are more likely to be worse in cognitive functioning. The
naive approach, however, differed from the other two approaches by estimating a
much lesser decline especially in the high education group since it neglected the
truncation in the scores.

Table 6: Results from the dementia data using the three different approaches

Naive Truncation Missing
Parameters Est(StdErr) p-value Est(StdErr) p-value Est(StdErr) p-value
Model (1)
β0 0.4053(0.0232) <0.0001 0.6149(0.0278) < 0.0001 0.6140(0.0279) < 0.0001
β1 -0.4683(0.0360) < 0.0001 -0.5607(0.0425) < 0.0001 -0.5661(0.0426) < 0.0001
β2 -0.4689(0.0554) < 0.0001 -0.5924(0.0648) < 0.0001 -0.5911(0.0650) < 0.0001
β3 -0.0722(0.0032) < 0.0001 -0.0895(0.0038) < 0.0001 -0.0946(0.0039) < 0.0001
β4 -0.0384(0.0110) 0.0005 -0.0274(0.0127) 0.0303 -0.0280(0.0126) 0.0264
σ2

g – – 0.4704(0.0264) < 0.0001 0.4780(0.0264) < 0.0001
σ2

e – – 0.7814(0.0192) < 0.0001 0.7660(0.0189) < 0.0001
Model (2)
α0 -0.9781(0.0608) < 0.0001
α1 0.2773(0.0581) < 0.0001
α2 0.2890(0.0770) 0.0002
α3 -0.2603(0.0091) < 0.0001
δ -0.3416(0.0444) < 0.0001

For our dementia data, all three approaches found the interaction between
education level and time since baseline significant, providing evidence supporting
an education effect on cognitive decline in this cohort. Therefore, application of
the shared random-effect model did not alter conclusions reached by the naive
method or the truncation only method. However, it is conceivable in other data
set with a less strong interaction that the application of the shared random-effect
model approach may lead to different conclusion reached using the other two
methods.

6. Conclusion

We propose to use the shared random-effect model for longitudinal data with
both truncation and missing data. We showed that maximum likelihood ap-
proach under the correctly specified models can provided unbiased estimates for
the parameters in the longitudinal outcome model. More research is needed to
provide adequate estimation and inference procedures for the missing data model
parameters.
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