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Abstract: Here we develop methods for applications where random change
points are known to be present a priori and the interest lies in their esti-
mation and investigating risk factors that influence them. A simple least-
square method estimating each individual’s change point based on one’s
own observations is first proposed. An easy-to-compute empirical Bayes
type shrinkage is then proposed to pool information from separately esti-
mated change points. A method to improve the empirical Bayes estimates
is developed. Simulations are conducted to compare least-square estimates
and Bayes shrinkage estimates. The proposed methods are applied to the
Berkeley Growth Study data to estimate the transition age of the puberty
height growth.
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model.

1. Introduction

In longitudinal studies, the change rate over time of the expected values of
outcomes may vary after a random time point. For example, the pubertal height
growth shows a rapid increasing period followed by a sharp declination of growth
rate until the height stops to increase towards the end of puberty (Tuddenham
and Snyder 1954, Berkeley Growth Study). The age at which the growth rate
changes is usually not observed.

Another example where random change points are present is described in
Alzheimer’s disease research. In the preclinical phases, declination in cognitive
function can be gradual and hard to distinguish from the normal aging. As
dementia progresses, cognitive impairment declines more rapidly (Hall et al. 2000
and 2003). When the declination in cognitive function begins to accelerate in
demented patients is not observed. To estimate the change points in cognitive
impairment and to understand risk factors that contribute to their variation are
of interest.
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A third example involving random change point is a study of patterns of de-
velopmental transitions in the emerging adulthood period (Cohen et al. 2003).
In this study, one of the primary goals was to examine when the young adults
transit to independent adulthood. Two hundred and forty subjects were inter-
viewed and scored on several measures of independence (for example, leaving the
parental home, being financially independent and so on). Each subject may tran-
sit to adulthood at a different age. The interest lies in estimating transition ages
and investigating influences of factors such as parental marital status, parental
socioeconomic status on the individual differences of the transition ages.

Several methods including both frequentist and Bayesian are proposed to
analyze data with change points. See for example, Carlin et al. (1992), Hall et
al. (2000) and (2003), Hinkley (1970), and Jacqmin-Gadda et al. (2006). Hall et
al. (2000) modeled the change point as a fixed value for all subjects and maximized
the profile likelihood in a piecewise linear mixed model. However, it is not clear
whether the change point of the cognitive function for each Alzheimer patient
should be the same. Hall et al. (2003) proposed a random change point model
with parameters estimated in Bayesian framework. They warned against the
sensitivity to choice of prior distribution and identifiability. Jacqmin-Gadda et
al. (2006) proposed a joint model for time-to-event and repeated measure of a
disease marker where the time-to-event data had unknown random change points.
The distribution of change point is assumed to be log-normal and the parameters
are estimated by MLE. However, these methods are not easy to implement.

Here we develop methods for applications where random change points are
known to be present a priori and the interest lies in estimation and investigating
risk factors that influence them. A simple least-square method estimating each
individual’s change point based on one’s own observations is first proposed. An
easy-to-compute empirical Bayes type shrinkage is then proposed to pool infor-
mation from separately estimated change points. A method to improve empirical
Bayes estimates is developed. Simulations are conducted to compare least-square
estimates and Bayes shrinkage estimates. The proposed methods are applied to
the Berkeley Growth Study data to estimate the transition age of the puberty
height growth.

2. Methods

Let Yij denote the observed response for the ith subject at the jth occasion
and let tij denote the time at the same occasion. Let τi denote the unobserved
change point of the ith subject. For the purpose of illustration, we consider the
simple case where there are no covariates in the linear model. It is straightforward
to add covariates to the model.

Two models are considered here. The first one is a simple piecewise linear
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model with one random change point and random intercepts:

Yij = (αi1 + β1tij)1{tij<τi} + (αi2 + β2tij)1{tij>τi} + εij . (2.1)

Here αi1, τi and εij are independent. Since the lines before and after the change
point intersects at τi, we have the expression

αi2 = αi1 + (β1 − β2)τi,

or equivalently,

τi =
αi1 − αi2

β2 − β1
.

We will exploit this relationship in the estimation. Note that the difference
between (2.1) and a traditional piecewise linear mixed effects model is that the
change points τi are unknown and are different for each subject.

In the second model, it is assumed that each individual has random intercept
and random slope:

Yij = (αi1 + βi1tij)1{tij<τi} + (αi2 + βi2tij)1{tij>τi} + εij . (2.2)

Here we assume βi1 and βi2 are independent random slopes before and after the
change point, respectively.

2.1 Least-square approach

A simple and intuitive approach to estimate change points is to apply least-
square estimation on observations from each individual separately. To be specific,
least square estimation of τi based on each individual’s observations is

min
αi1,τi,βi1,βi2

∑
j

[yij − (αi1 + βi1tij)1{tij<τi} − (αi2 + βi2tij)1{tij>τi}]
2, (2.3)

i = 1, · · · , n.
This method is very easy to implement. However, estimating each individ-

ual change point separately using only observations on the same subject ignores
the information on the distribution among the change points. The mean square
error for such least-squares estimates is large especially when the are not many
observations per subject. We introduce an empirical Bayes method to pool to-
gether information among individual change points which will give smaller mean
squared error.
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2.2 Empirical Bayes approach

To improve upon the least square estimation of change points in section (2.1)
we apply empirical Bayes estimation to combine information across subjects.

Let Yi denote the vector of the responses from the ith subject. Let Y
(1)
i

denote the vector of responses that satisfy tij < τi. Let ni1 denote the number of
observations in Y

(1)
i . Observe that given the change points, the empirical Bayes

estimation of the random intercept is (Laird and Ware 1982)

α̂i1 = (1 − σ̂2
α1

σ̂2
α1 + σ̂2

ε/ni1
)µ̂α1 +

∑
j: tij<τi

σ̂2
α1

σ̂2
α1 + σ̂2

ε/ni1
(Yij − β̂1tij). (2.4)

Here µ̂α1 is the estimated population mean, and σ̂2
α1 and σ̂2

ε are the estimated
variance of the random effect αi1 and the residual εij , respectively. The empirical
Bayes estimation is shrunken towards the population mean. The estimation of
population mean and variance terms involves all subjects and is the source of the
strength of pooling. Note that when given τi, (2.4) is the “best linear unbiased
predictor” or BLUP of the random effect in a linear mixed effects model (Robinson
1991).

We develop procedures to estimate unknown parameters in (2.4) and provide
estimation of τi and β. The algorithm for model (2.1) is
Step 1. Given β1 and β2, for each i, compute τi as the solution of

min
αi1,τi

∑
j

‖Yij − (αi1 + β1tij)1{tij<τi} − (αi2 + β2tij)1{tij>τi}‖
2.

Step 2. Given τi from step 1, compute empirical Bayes estimates of the random
intercept αi1 and αi2 as in (2.4) by fitting a mixed effects model with random
intercepts using observations occurring before and after τi, respectively. Estima-
tion of the fixed effects β1 and β2 are also obtained through the fitting. Iterate
the steps 1 and 2 until the algorithm converges.
Step 3. After steps 1 and 2 converges, the empirical Bayes estimation of the
change point is

τ̂i =
α̂i1 − α̂i2

β̂2 − β̂1

. (2.5)

From (2.4), the empirical Bayes estimation of αi is shrunken from the indi-
vidual estimation towards the population mean. Therefore the estimation of τi in
the expression (2.5) is also shrunken towards its population mean. The amount
of shrinkage depends on the relative magnitude of the variation of the within sub-
ject residual, σ2

ε , and the variation of the random effect, σ2
τ . When σ2

τ is small
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compared to σ2
ε , indicating a more homogeneous population, the empirical Bayes

estimation is shrunken more towards the population mean.
To compute the variance of β̂, we need to take into account of the extra

variability introduced by τ̂i. The variance of β̂ can be expressed

var(β̂) = var(E(β̂|τ̂)) + E(var(β̂|τ̂)). (2.6)

The second term on the right hand side is obtained by variance estimates in
least-square method. Computation of the first term is less straightforward; we
resorted to bootstrap re-sampling. To be specific, for each i, we simulated 200
replications of τ?

i , where
τ?
i ∼ N(τ̂i, var(τ̂i|τi)).

Given each replication of τ?
i , we computed a β̂? as described before. The term

var(E(β̂|τ)) is then estimated by the sample variance of β̂?.
To get an estimate of the variance of τi, observe that from the relationship

αi2 = αi1 + (β1 − β2)τi, we have

var(τi) =
var(αi2) − var(αi1)

(β1 − β2)2
. (2.7)

The variance of αi1 and αi2 are estimated when fitting the mixed effects model,
and the variance of the change points is then estimated by plugging in estimates
of each component on the right hand side of (2.7). The variance of β̂ is computed
as in (2.6).

The algorithm for fitting model (2.2) in which the individual slopes are ran-
dom is similar. In step 1, the change points τi are computed as in (). In step 2,
given τi from step 1, a mixed effects model with random intercept and random
slope is fitted. In step 3, the empirical Bayes estimate of the change point is

τ̂i =
α̂i1 − α̂i2

β̂i2 − β̂i1

. (2.8)

Since the slopes are random in model (2.2), the variance of τi has a different
form:

var(τi) =
var(αi2) − var(αi1) + [E(β1 − β2)E(τi)]2

var(β1 − β2) + [E(β1 − β2)]2
− (E(τi))2. (2.9)

The estimated variance of τi is obtained by plugging in the estimates of each
component on the right hand side. The variance of β̂ is again estimated by (2.6).

After estimating the change points as in (2.5) and (2.8), a regression with
estimated change points as outcome can be used to investigate covariates con-
tributing to the variation in individual change points.
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2.3 Improved empirical Bayes approach

Because the variability in estimating τi affects the estimation of slope and
variances (2.7) and (2.9), we develop an intuitive improvement of the empiri-
cal Bayes approach to minimize the influence of variability in τ̂i. Since τ̂i are
estimated with error, whether the observations around τ̂i should contribute to
the group before or after the change point cannot be determined with certainty.
Therefore based on τ̂i and σ̂τi , we exclude the observations that are within the
interval (τ̂i−z?σ̂τi , τ̂i+z?σ̂τi) to remove the influence of these observations around
the change points. We then re-estimate slopes, change points, and variances. The
values of z? are chosen a priori by normal quantiles. When the slopes are fixed
effects, the influence of estimating τi is negligible, therefore in the simulations we
only apply this improvement to the random slope model.

3. Simulation

To investigate performances of proposed methods, we conducted two sets of
simulations. The simulation settings are closely related to the Berkeley Growth
data. The first set of simulations generates growth rate over time as a fixed effect
for all individual and the second set simulates the growth rate as a random effect.
In each set of the simulations, 100 subjects were generated. Each subject had
31 observations and the time spacing is the same as observed in the Berkeley
Growth Study.

In the first setting, the slopes were treated as fixed effects. The true values of
the slopes before and after the change point were 2.8 and 0.5, respectively. The
random intercepts were simulated from αi1 ∼ N(28, 1). The change points were
simulated from τi ∼ N(12, 0.52). The residuals had a normal distribution with
mean zero and standard deviation one.

In the second setting, the random slopes were simulated from

βi1 ∼ N(2.8, 0.12), βi2 ∼ N(0.5, 0.12).

The random change points were simulated from a normal distribution with mean
nine and standard deviation 0.5. The distribution of random intercepts and the
residuals were the same as the first setting.

Table 1a recorded properties of the slope estimates in the first setting where
the slopes were fixed effects. The algorithm described in section (2.2) converges
very fast, normally within five steps. The slopes were estimated accurately. The
estimate of the variance of β̂ was close to the empirical variance of β̂. The mean
squared error (MSE) was 0.007 for the first slope and 0.016 for the second.
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Table 1a: Properties of the slope estimates in 200 simulations: setting 1

EB†

β1 = 2.8 β2 = 0.5
Mean(β̂) 2.80 0.50
Empirical S.E. of β̂ 1 0.007 0.016
Mean ŜE(β̂) 0.007 0.019√

MSE(β̂) 0.007 0.016

†: Empirical Bayes method

Table 1b: Properties of the slope estimates in 200 simulations: setting 2

LS† EB EB improved‡

µ(βi1) µ(βi2) µ(βi1) µ(βi2) µ(βi1) µ(βi2)
=2.8 =0.5 =2.8 =0.5 =2.8 =0.5

Mean(β̂i) 2.78 0.55 2.78 0.56 2.79 0.53
Mean(σ̂βi

) 0.10 0.11 0.10 0.11 0.10 0.11√
MSE(β̂i) 0.18 0.15 0.074 0.11 0.066 0.098

Improvement in

√
MSE(β̂i)

∗
- - 59% 56% 64% 76%

†: †: Least square method
‡:Empirical Bayes method excluding observations close to τ̂i
∗: Proportionate reduction in MSE using EB and EB corrected over least-
square method.

Table 1b recorded properties of the slope estimates in the second setting where
the slopes were random. All methods provide adequately good estimations for
the mean and the variance of the slopes. Note that the improved empirical Bayes
method excluding observations close to the τ̂i provides slightly more accurate
estimate of the mean of βi, and offers some improvement in MSE. Here we
computed MSE(β̂i) by

1
Nn

∑
k

∑
i

(β̂(k)
i − βi)2,

where k indexes simulation, i indexes subject, and N is the total number of
simulations. Compared to the empirical Bayes method without improvement,

the improved approach lowered the
√

MSE(β̂i) by 5% and 10% for the first
and the second slope, respectively. Note that in this table σ̂βi

is the estimated
standard deviation of the random variable βi, not the standard error of β̂i, so
that it is possible that MSE(β̂i) is smaller than σ̂2

βi
.
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Table 2: Properties of the change points estimates in 200 simulations

Setting 1 Setting 2

LS EB LS EB EB improved
µ(τi) = 12, σ(τi) = 0.5 µ(τi) = 9, σ(τi) = 0.5

Mean(τ̂i) 11.13 11.99 8.14 8.88 8.93
σ̂τi 0.43 0.49 0.48 0.46 0.53√

MSE(τ̂i) 1.22 0.16 1.26 0.33 0.03

Improvement in
√

MSE(τ̂i) - 87% - 74% 97%

Figure 1: Height growth for ten girls

Table 2 recorded properties of the predicted change points. The mean of
the predicted change points computed by the least square method was notably
smaller than the true value. In contrast, the mean of τ̂i was close to the true value
for the empirical Bayes method and its improved version in both settings. The
true standard deviation of τi was 0.5, where the estimated values were close to 0.5.
The MSE of the change points computed by the empirical Bayes based methods
was substantially lower than the least square method. The improved empirical
Bayes estimates offer more reduction in MSE: the proportionate reduction in√

MSE(τ̂i) obtained by the empirical Bayes method was 74% in the second
setting, while the corresponding reduction computed by the improved method
was 97%.
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Finally, the residual variance was estimated well by all methods in all settings.
The true value of the residual standard deviation was one, where the estimated
value was 0.99 in all cases.

4. Data Analysis

In this section the proposed methods are applied to the data in Tuddenham
and Snyder (1954). The data recorded heights for 54 girls and 39 boys at 31 ages.
The ages were not equally spaced. There were four measurements from age one
to two, annual measurement from age two to eight, and biannual measurements
from age eight to eighteen. Here we analyze the data on girls. Figure 1 displays
height data for ten girls. The height growth can be approximately summarized
by two linear growth phase: a sharp increase followed by a slow increase. We are
interested in at what age the change of height growth rate happens.

Table 3a: Properties of the estimates in Berkeley Growth Data: fixed slope

EB EB Improved

β1 β2 β1 β2

Mean(β̂) 2.72 0.43 2.72 0.38
ŜE(β̂) 0.02 0.16 0.02 0.14
Mean(τ̂i) 12.86 12.92
σ̂τi 0.78 0.76
σ̂ε 1.27 1.27

Table 3b: Properties of the estimates in Berkeley Growth Data: random slope

EB EB Improved

β1 β2 β1 β2

Mean(β̂i) 2.76 0.62 2.76 0.43
σ̂βi 0.21 0.32 0.21 0.34
Mean(τ̂i) 12.29 12.63
σ̂τi 1.61 1.29
σ̂ε 1.00 1.02

Since the least square method did not show promising results in the simulation
studies, we only applied empirical Bayes method and its improved version to
analyze the height data.

Table 3a recorded results from model (2.1) where fixed slopes were assumed.
The estimated first slope was 2.72 (SE: 0.02) for both un-adjusted and improved
empirical method; the estimated second slope was 0.43 (SE: 0.16) and 0.38 (SE:
0.14) for the two methods, respectively. The mean of the estimated change points
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were 12.86 and 12.92, and the estimated standard deviation of the change points
were 0.78 and 0.76, respectively for the two methods. The residual standard
deviation was estimated at 1.27 by both approaches.

Table 3b recorded results from model (2.2) where random slopes were as-
sumed. The estimated first slope had mean 2.76 for both un-adjusted and im-
proved empirical Bayes method; the second slope had mean 0.62 and 0.43 for the
two methods, respectively. The estimated standard deviation of the two slopes
were around 0.2 and 0.3. The mean of the estimated change points were 12.29
and 12.63 for the two methods, respectively, and the estimated standard devia-
tion were 1.61 and 1.29. The residual standard deviation was estimated at 1.0
by both approaches.

Noticing that the magnitude of the estimated standard deviations of the slopes
are non-negligible, we consider the random slope model to be more appropriate
for this data. These results show that height increasing rate for girls changes at
around age 12.6: height increases much faster from age zero to age 12.6, at a rate
of 2.8 inches per year; compared to a rate of 0.4 inches per year from age 12.6 to
age 18.

5. Discussion

An empirical Bayes based method and its improvement are proposed to es-
timate random change points. The methods are easy to implement and easy to
interpret. The empirical Bayes methods shrink the individual change point esti-
mates towards their population mean, therefore reduces the mean squared error.
Compared to the least square approach estimating individual change point only
using observations on the same subject, the empirical Bayes methods decreased
the mean squared error substantially.

The proposed methods explore the first order trend in the data and does
not use information on higher derivatives. Exploiting information on the sec-
ond derivatives was proposed in Ramsay and Silverman (2005) to analyze the
same data, which revealed detailed features in the data. Methods developed here
provide simple-to-implement and easy-to-interpret alternatives.

It is possible that the relationship between outcome and time is not linear.
The proposed methods can be extended to non-linear models. However, the
computation burden for fitting these models increases. Another alternative is
to project the data onto several basis and use functional data analysis tools to
estimate parameters as in Ramsay and Silverman (2005). However, these methods
can be hard to interpret.

It is straightforward to extend the current model to handle more than one
change point, given that there is prior knowledge that multiple change points
exist. However, the methods developed here can not be used to determine how
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many change points are present.
Finally, here the outcomes do not encounter censoring. A maximum likelihood

type estimation such as in Jacqmin-Gadda et al. (2006) can be adapted to account
for censoring. However, in those cases the empirical Bayes shrinkage are more
complicated and do not have close-form solutions.
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