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Abstract: The assumption that is usually made when modeling count data
is that the response variable, which is the count, is correctly reported. Some
counts might be over- or under-reported. We derive the Generalized Poisson-
Poisson mixture regression (GPPMR) model that can handle accurate, un-
derreported and overreported counts. The parameters in the model will
be estimated via the maximum likelihood method. We apply the GPPMR
model to a real-life data set.
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1. Introduction

Many real world applications involve count data. There are a lot of regres-
sion models that have been used in modeling count data. Some of these re-
gression models have been applied to data on number of bottles of port wine
purchased (Ramos, 1999); number of absenteeism in the workplace (Barmby et.
al, 1991); underreporting of needlestick injuries by medical students (Watermann,
Jankowski and Madan, 1994), the frequency of criminal victimization, (Li, Trivedi
and Guo, 2003), to mention only a few. A good compilation on regression analy-
sis of count data is given by Cameron and Trivedi, (1998). In most of these cases,
the number of counts could have been potentially overreported, underreported or
correctly reported. In the case of the counts having been correctly reported, then
the appropriate count data regression model such as negative binomial, Poisson
and generalized Poisson can be applied to such data. In real life there is potential
of misreporting and it is necessary to check count data for this kind of reporting.

Winkelmann (1996) proposed a Poisson regression model that takes underre-
porting into account. This model is a mixture of the Poisson and the binomial
distributions. The number of reported events, yi, that result only if absenteeism
occurs was assumed to be Poisson distributed with probability πi, captured by
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the binomial distribution that each individual event is reported. The Poisson
regression model for underreported counts is given by

P (Y = yi) =
eπiµi(πiµi)yi

yi!
for yi = 0, 1, 2, ..., (1.1)

with mean, E(Yi) = πiµi, where µi = µi(xi) = exp(
∑k

j=1 xijβj) and logit(πi) =
log( πi

1−πi
) =

∑m
j=1 zijδj .

The negative binomial regression model that takes underreporting into ac-
count (Mukhopadhyay, 1997) was derived as a mixture of the negative binomial
and the binomial distributions. The resulting mixture regression model for un-
derreported counts is the negative binomial regression model given by Mukhopad-
hyay (1997) as

P (Y = yi) =
Γ(yi + α−1)

Γ(yi + 1)Γ(α−1)

(
α−1

α−1 + πiµi

)α−1(
πiµi

α−1 + µiπi

)yi

for yi ≥ 0.

(1.2)
where α is the dispersion parameter and 0 < πi < 1 is the probability of un-
derreporting an event and is conditional on some covariates zi = (zi1, zi2, ..., zim)
and µi = µi(xi) = exp(

∑k
j=1 xijβj). The probability πi is modeled through the

logit link function specification. The mean and variance of this model are given
by Mukhopadhyay (1997) as E(Yi) = πiµi and V ar(Yi|xi, zi) = πiµi(1 + απiµi).
Mukhopadhyay (1997) applied this regression model to a data set from the Na-
tional Longitudinal Survey for Youth for the year 1980 with the response variable
being the number of times one had been convicted of some illegal activity.

The generalized Poisson regression (GPR) model (Famoye, 1993) is given by

P (Y = yi) =
(

µi

1 + αµi

)yi (1 + αyi)yi−1

yi!
exp

[
−µi(1 + αyi)

1 + αµi

]
, (1.3)

for yi ≥ 0 and µi is the log-link function. When α = 0, the GPR model becomes
the Poisson regression model. When α > 0 the GPR model can be used for
overdispersed data and when α < 0, the GPR model can be used for underdis-
persed data. The generalized Poisson regression model for underreported counts
(GPRUC model) was derived by Pararai, Famoye and Lee (2006). The GPRUC
model was applied to data on number of sexual partners. The models mentioned
are appropriate if the counts are underreported.

Li, Trivedi and Guo (2003) suggested a mixture model of the Poisson and
negative binomial regression models that can be used to handle data that that
is under-, over- and accurately reported. In the regression model by Li et al.
(2003), misreporting would occur when an individual reports the number of events
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as yi, i = 1, 2, ..., n which may differ from the true count y∗i , i = 1, 2, ..., n.
The negative binomial regression mode1 took care of the accurate counts while
the Poisson regression model took care of the underreported and overreported
counts. The means of the accurate, overreported and underreported counts were
given respectively by λi = exp(xijγj), µi = exp(zijδj) and ψi = y∗i exp(xijβj),
where xij and zij represent the covariates on which these means depend. The
regression model for handling data with accurately reported, overreported and
underreported counts derived by Li et al. (2003) is given as

P (Y = yi|xi, zi, γ, δ, β, α) =
e−µiµyi

i

yi!

(
α−1

α−1 + λi

)α−1

+
∞∑

y∗
i =1

[
e−y∗

i ξiψyi
i

y∗i !

× Γ(y∗i + α−1)
Γ(y∗i + 1)Γ(α−1)

(
α−1

α−1 + λi

)α−1(
λi

α−1 + λi

)yi
]
.

(1.4)

Li et al. (2003) applied the regression model in (3.1) to school crime victimization
data drawn from the National Crime Victimization Survey for the year 1995. The
response variable was the number of stolen items from one’s locker in school.

In many cases the negative binomial regression model and the generalized
Poisson regression model are competitors when fitting count data. It is therefore
reasonable to derive a generalized Poisson regression model that accommodates
misreported counts along the same way as its negative binomial counterpart by
Li, Trivedi and Tong (2003).

The remainder of the paper is organized as follows: In section 2 a description
of the National Pregnancy and Health Survey (NPHS) data is given. Section 3
gives an outline of how the GPPMR model is developed. The parameters of the
model are estimated via the maximum likelihood method and this is explained in
section 4. Some goodness-of-fit tests are given in section 5. The GPPMR model
is applied to the NPHS data in section 6 and the results are also discussed. The
concluding remarks will be given in section 7.

2. National Pregnancy and Health Survey Data

The data was collected from the National Pregnancy and Health Survey:
Drug Use Among Women Delivering Live Births, 1992. The data can be accessed
from http://webapp.icpsr.umich.edu/cocoon/icpsr-study/02835.xml. One of the
objectives of the study was to describe the use of illegal drugs by expecting
mothers. The data on substance use was collected through a questionnaire that
was administered to women during pregnancy. One of the variables measured
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Table 1: Description of variables for the NPHS data

Variable Definition
numcig (y) Number of cigarettes smoked a day
mstatus Marital status: 1=married, 0=unmarried
hispanic Race: 1=Hispanic, 0=Other
black Race: 1=Black, 0=Other
college Has a college degree: 1=yes, 0=no
wages Source of income was wages and salaries, 1=yes, 0=no
public Received public assistance or welfare, 1=yes, 0=no
foodstamp Received food stamps, 1=yes, 0=no
housing Received housing assistance, 1=yes, 0=no
ssi Received supplementary income, 1=yes, 0=no
unemp Received unemployment insurance, 1=yes, 0=no
livesmoker Lived with a smoker, 1=yes, 0=no
help Tried to get help to quit smoking, 1=yes, 0=no
last3smoke Smoked in the last 3 months of pregnancy, 1=yes, 0=no

Table 2: Descriptive statistics for the NPHS data

Variable Mean Std Deviation % of 1’s

numcig(y) 4.2895 9.2456
smoke 23.58
mstatus 66.57
hispanic 16.40
black 19.10
college 19.57
wages 91.08
public 17.16
foodstamp 22.74
housing 4.78
ssi 6.26
unempinc 7.14
livesmoker 33.39
help 1.23
last3smoke 14.29

was the number of cigarettes a woman smoked each day during the first trimester
of pregnancy. To demonstrate the GPPMR model, the NPHS data is considered
with the number of cigarettes a woman smoked in the first trimester of pregnancy
as the response variable. The explanatory variables and the response variable
used in modeling the data are described in Table 1. The descriptive statistics for
this data are shown in Table 2.

The mean of the number of cigarettes smoked in Table 2 is less than its vari-
ance showing that the data is overdispersed. The variables chosen in illustrating
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the GPPMR model pertain to source of income of the respondent.

3. Generalized Poisson-Poisson Mixture Model

The generalized Poisson-Poisson mixture regression (GPPMR) model accom-
modating over-, under- and accurately reported counts is a mixture of the gener-
alized Poisson regression model in (1.3) and the Poisson regression model. The
justification for mixing Poisson and generalized Poisson is that we want two data
generating processes that result in count data. The Poisson model provided the
most reasonable choice after trying other models such as negative binomial and
generalized Poisson. Also, in the simulations that were carried out, convergence
was much quicker when mixing the generalized Poisson and Poisson models. The
assumptions used in deriving the GPPMR model are the same as those used
by Li et al. (2003) in deriving the NBPMR model in (3.1). Let y∗i denote the
total number of true events for individual i where i = 1, 2, ..., n. Assume that
y∗i conditional on covariates xi = (xi1, xi2, ..., xik) follows the generalized Poisson
distribution with probability function

P (y∗i |xi) =
(

λi

1 + αλi

)y∗
i (1 + αy∗i )

y∗
i −1

y∗i !
exp

[
−λi(1 + αy∗i )

1 + αλi

]
, (3.1)

where the mean function λi = exp(xiγ) and γ is a k−dimensional vector of
unknown regression coefficients. The variance of the regression model in (6) is
λi(1+λi)2. The distribution of y∗i in (3.2) will be denoted as GPR[λi, λi(1+λi)2].
The counts are reported incorrectly when an individual reports the number of an
event as yi, different from y∗i , i = 1, 2, .., n.

Assume that when y∗i = 0, the observed count yi is Poisson distributed with
mean and variance µi = exp(ziδ) denoted by P (µi) where zi = (zi1, ..., zip) are
some explanatory variables and δ is a vector of some unknown parameters. This is
a situation when potential overreporting may occur since an individual is report-
ing a value yi while the true value is y∗i . Furthermore, conditional on y∗i > 0, yi is
Poisson distributed with mean and variance given by y∗i exp(ziβ) (Li, Trivedi and
Guo, 2003). This distribution shall be denoted by P (y∗i ξi) where ξi = exp(ziβ)
is dependent on the covariates zi = (zi1, ..., zip) and β is a vector of unknown
parameters. T his is a situation where potential underreporting of events occurs.
The covariates used in modeling the accurate portion of the regression model
maybe the same as those used in modeling the over and underreported portions.
These assumptions from Li et al. (2003) can be summarized as:

(1) Overreporting occurs for yi|y∗i = 0 ∼ P [exp(ziδ)] = P (µi),
(2) Underreporting occurs for yi|y∗i > 0 ∼ P [y∗i exp(ziβ)] = P (y∗i ξi),
(3) Accurate reporting occurs for y∗i ∼ GPR[λi, λi(1 + λi)2].
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The probability distribution of the reported count yi can be obtained as the
marginal density of the joint distribution of the generalized Poisson and the Pois-
son regression models. The model for the reported counts is:

P (yi|xi, zi, γ, δ, β, α) =
∞∑

y∗
i =0

P (yi|y∗i , zi, δ, β)P (y∗i |xi, γ, α)

= P (yi|y∗i , zi, δ, β)P (y∗i = 0|xi, γ)

+
∞∑

y∗
i =1

P (yi|y∗i , zi, δ, β)P (y∗i |xi, γ, α)

=
e−µiµyi

i

yi!

(
−λi

1 + αλi

)
+

∞∑
y∗

i =1

[
(y∗i ξi)yie−(y∗

i ξi)

yi!

×
(

λi

1 + αλi

)y∗
i (1 + αy∗i )

y∗
i −1

y∗i !
exp

[
−λi(1 + αy∗i )

1 + αλi

]
.(3.2)

The mean and variance of the GPPMR model are

E(Yi|xi, zi) = E(Yi|Y ∗
i = 0) + E(Yi|Y ∗

i > 0)

= exp
(

−λi

1 + αλi

)
µi + ξiλi. (3.3)

and

V ar(Yi|xi, zi) = E(Y 2
i |xi, zi) − [E(Yi|xi, zi]2

= exp
(

−λi

1 + αλi

)
µi + ξiλi + µ2

i exp
(

−λi

1 + αλi

)
×

[
1 −

(
−λi

1 + αλi

)]
+ ξiλi

[
ξi(1 + αλi)2 − 2µi exp

(
−λi

1 + αλi

)]
, (3.4)

respectively.

4. Estimation of Model Parameters

The log-likelihood function of the GPPMR model in (3.3) is

L(yi, γ, δ, β, α) =
n∑

i=0

log

{
e−µiµyi

i

yi!

(
−λi

1 + αλi

)
+

∞∑
y∗

i =1

[
(y∗i ξi)yie−(y∗

i ξi)

yi!

×
(

λi

1 + αλi

)y∗
i (1 + αy∗i )

y∗
i −1

y∗i !
exp

(
−λi(1 + αy∗i )

1 + αλi

)]}
.(4.1)
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To estimate the parameters α, β, δ and γ, the Statistical Analysis Software (SAS,
1999) was used. The NLPNRA algorithm, which is a nonlinear optimization
based on the Newton-Raphson method is used to estimate the parameters α, β, δ
and γ. The variance-covariance matrix of the estimated parameters is obtained
from the NLPFDD subroutine in SAS. This subroutine can approximate deriva-
tives by using finite differences and computes the gradient vector and the Hessian
matrix H, all evaluated at α̂, β̂, δ̂ and γ̂.

5. Goodness-of-fit Tests

The GPPMR model in (3.3) reduces to the Poisson-Poisson mixture regression
model when the dispersion parameter α = 0. To assess the appropriateness of
the GPPMR model over the Poisson-Poisson mixture regression model one can
test the hypothesis: H0 : α = 0 against Ha : α 6= 0. To carry out the test, one
fits the GPPMR model and uses the asymptotic Wald t-test. The statistic to be
computed is given by

W =
α̂

se(α̂)
, (5.1)

where α̂ is the maximum likelihood estimate of α and se(α̂) is its corresponding
standard error. This statistic is compared to the t distribution with n − ν − 1
degrees of freedom, where ν is the total number of parameters in the GPPMR
model.

The GPPMR and NBPMR models for underreported, overreported and accu-
rate counts are non-nested. In order to discriminate between the two non-nested
models the Vuong (1989) test will be used. The hypothesis to be tested is H0 :
GPPMR and NBPMR models are equivalent against the two alternatives Hf :
GPPMR model is better than NBPMR model, or Hg : NBPMR model is bet-
ter than GPPMR model,where Hf and Hg are the two competing alternative
hypotheses for the GPPMR and NBPMR models respectively.

6. Results and Discussion

The independent variables described in Table 1 are taken as the covariates
that affect λi, the mean of the accurately reported counts. The covariates mar-
ital status, hispanic, black, wages and salaries, food stamps, and unemployment
income are used to model µi and y∗i exp(ziβ) which represent the mean of the
overreported and underreported counts respectively. The proportion of zeros in
the response variable was 76.42%. The results obtained from fitting the GPPMR
and NBPRM models are shown in Table 3.
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Table 3: Estimates for NBPRM and GPPRM models

Variables NBPRM Model GPPRM Model
Estimate±Std Error Estimate±Std Error

Accurate Reporting
const 0.4859±0.1601* 0.5234±0.1570*
mstatus -0.5712±0.1398* -0.5686±0.1233*
hispanic -1.1976±0.1750* -1.1916±0.1688*
black -0.9493±0.1453* -0.9837±0.1383*
college -0.6263±0.1616* -0.5968±0.1564*
wages -1.8169±0.1678* -1.8861±0.1540*
public 0.0305±0.1429 0.0366±0.1413
foodstamps 0.4007±0.1600* 0.3094±0.1413*
housing 0.2640±0.1523 0.2752±0.1557
ssi -0.1810±0.1493 -0.2083±0.1469
unempinc 0.2631±0.1669 0.2733±0.1627
livesmoker 0.8180±0.093* 0.8040±0.0868*
help 0.6253±0.2504* 0.6163±0.2489*
last3smoke 2.0865±0.0865* 2.1055±0.0835*

Overeporting
mstatus -1.3579±0.7357 -1.3675±0.7747
hispanic -1.0944±0.7394 -1.0842±0.7406
black -1.4933±0.7757 -1.4460±0.7580
wages -4.1371±0.6360* -4.1361±0.6309*
foodstamps 15.8541±152.1260 -14.3106±138.2111
unempinc 0.3289±1.0975 0.3686±1.0996

Underreporting
mstatus 0.2244±0.0978* 0.1949±0.0786*
hispanic 0.0662±0.0913 0.0427±0.0839
black 0.0025±0.1007 0.0172±0.0928
wages 1.9564±0.1035* 2.0100±0.0816*
foodstamps -0.1934±0.0917* -0.1233±0.0825
unempinc 0.0018±0.0964 -0.0010±0.0908
α 1.3092±0.1956 0.1930±0.0282*
Log Likelihood -3116.535 -3128.560

A test of the null hypothesis α = 0 by using the asymptotic Wald t− statistic
shows that α, the dispersion parameter, is different from zero in Table 3. The
Poisson-Poisson Mixture Regression model is not appropriate and hence cannot
be used to describe this data based on the Wald’s t− test result. A comparison
between the fitted NBPMR and the GPPMR models is made using the Vuong
(1989) test. The Vuong (1989) statistic calculated is equal to -0.0363. Since
|T∗| = 0.0363 < Z0.025 = 1.96, the null hypothesis that states that the GPPMR
and the NBPMR models are equivalent cannot be rejected. This result shows that
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the NBPMR and GPPMR models are similar in their performance. In Table 3 the
log-likelihood values for the NBPMR and GPPMR models are given respectively
by -3116.535 and -3128.56 showing no significant difference in the performance
of the two models.

6.1 Results on accurate reporting

The probability of accurately reporting the number of cigarettes smoked in a
day by a woman during the first 3 months of pregnancy is given by P (y∗i |xi, γ).
The results from the GPPMR model in Table 3 suggest that this probability is
greater among women who lived with a smoker, tried to get help to quit smok-
ing, smoked in the last 3 months of pregnancy, received food stamps, unmarried
women, non-hispanics, non-blacks, women with no college education and women
who do not have wages and salaries as sources of income. This probability does
not seem to be affected by women who receive social security income, public
assistance, housing assistance and unemployment income.

6.2 Results on overreporting and underreporting

The probability of overreporting of events is given by P (yi|y∗i = 0, zi, δ). The
GPPMR model shows the only covariate that affects the probability of overre-
porting the number of cigarettes smoked by a pregnant woman in the first 3
months of pregnancy is wages and salaries. The probability of overreporting an
event is negatively related to wages and salaries. Women who did not have wages
and salaries as sources of income tend to overreport the number of cigarettes
smoked in a day during the first 3 months of pregnancy.

The probability of underreporting the number of cigarettes smoked is pos-
itively related to marital status and wages and salaries. Married women who
smoked during the first 3 months of pregnancy tend to underreport the number
of cigarettes smoked in a day compared to their unmarried counterparts.

7. Concluding Remarks

In this paper we presented and examined the mixture model of the Poisson and
generalized Poisson regression models, namely, the generalized Poisson-Poisson
mixture regression model. This was an attempt to come up with a model that
can be used to model counts that could be potentially misreported. The model is
capable of capturing all 3 potential forms of reporting namely, accurate, under-
and over-reporting. Other methods of estimating the parameters other than the
maximum likelihood method could also be explored. The issue of variable selec-
tion could further be explored in as far as determining how to choose the variables
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that affect the accurate, under- and over-reported portions of the model. Other
data sets could possibly yield results in which the GPPMR model outperforms
the NBPMR model.
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