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Abstract: Good inference for the random effects in a linear mixed-effects
model is important because of their role in decision making. For example,
estimates of the random effects may be used to make decisions about the
quality of medical providers such as hospitals, surgeons, etc. Standard meth-
ods assume that the random effects are normally distributed, but this may
be problematic because inferences are sensitive to this assumption and to the
composition of the study sample. We investigate whether using a Dirichlet
process prior instead of a normal prior for the random effects is effective in
reducing the dependence of inferences on the study sample. Specifically, we
compare the two models, normal and Dirichlet process, emphasizing infer-
ences for extrema. Our main finding is that using the Dirichlet process prior
provides inferences that are substantially more robust to the composition of
the study sample.

Key words: Bayesian nonparametric method, extrema, heterogeneity, out-
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1. Introduction

Linear mixed-effects models are used extensively in practice when there are
clustered observations. For example, in longitudinal studies repeated measure-
ments are collected on the same subjects. In studies evaluating the performance
of medical providers patients are clustered in hospitals.

Letting the response y;; denote the jth observation in the 7th cluster, the
simplest model of this type is

Yij = ptoitei, i=1,....m,j=1,...,n; (1.1)

where there are m clusters with n; observations in cluster . It is customarily as-
sumed that the o; and ¢;; are mutually independent, normally distributed random
variables with E(a;) = E(e;j) = 0, var(a;) = 62 and var(e;;) = 0. Extensions
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of (1.1) to include covariates are common (see, e.g., Verbeke and Molenberghs,
2000); a typical model is

Y, = XB+Zb+e, i=1,....m (12)

where Y] is a (n; x 1) vector of response measurements for cluster ¢, 3 is a vector
of fixed-effects parameters, b; is a vector of random-effects parameters, and ¢;
is a (n; x 1) vector of random errors. In (1.2), X; and Z; are design matrices.
Typically, b; and ¢; are assumed to be normally distributed.

Analyzing (1.1) or (1.2) with an assumption of normality for the random
effects, a; in (1.1) or b; in (1.2), may be problematic. It is well known (e.g.,
Box and Tiao, 1973; Verbeke and Lesaffre, 1996) that inferences are sensitive
to the assumption of normality and also to the presence of outliers. For these
reasons there has been extensive research to relax the assumption of normality of
the random effects. The use of heavy-tailed distributions for the random effects
is often more robust than the standard choice of a normal distribution (e.g.,
Pinheiro, Liu and Wu, 2001; Rosa, Gianola and Padovani, 2004). Verbeke and
Lesaffre (1996) and Frithwirth-Schnatter, Tiichler and Otter (2004) assume that
the distribution of the random effects is a mixture of normal distributions while
Tao et al. (1999) use a predictive recursion method to obtain a nonparametric
smooth density estimate.

A further problem is that the units being analyzed may not be a random
sample from a single distribution, an important assumption for the «; in (1.1)
or the b; in (1.2). For example, in a study of hospitals to identify outliers, the
effects aq, ..., a;, corresponding to the m hospitals may not come from a single
distribution. This situation often occurs because covariates associated with the
hospitals cannot always be measured or controlled. In such situations a standard
analysis of (1.1) or (1.2) may not recognize this heterogeneity of the random
effects (Verbeke and Lesaffre, 1996).

To reduce the sensitivity of inferences to the assumption of normality and,
especially, to take into account the possible heterogeneity of the random effects
a potentially useful method is to replace the normal distribution assumption
for the random effects with a nonparametric distribution using a Dirichlet pro-
cess prior (DPP). Specifically, in a linear mixed-effects model, using a Dirichlet
process (DP) as a prior distribution on the family of distributions for the ran-
dom effects reflects our uncertainty about the distribution of the random effects.
There is an extensive literature about the Dirichlet process: Dey, Miiller and
Sinha (1998), MacEachern and Miiller (2000), and Miiller and Quintana (2004)
provide a good overview, additional references, applications and methodology.
Applications where the usual parametric distribution for random effects has been
replaced with a nonparametric distribution using a DPP include Kleinman and
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Ibrahim (1988) and, more recently, Krnjajic, Kottas and Draper (2008), Miiller,
Quintana and Rosner (2007), Ohlssen, Sharples and Spiegelhalter (2007), van der
Merwe and Pretorius (2003) and others. Implementation has been enhanced by
the recent development of a package in R (Jara, 2007).

We believe, like many others, that using a DPP model will result in inferences
that are more robust than those from a standard analysis, and investigate the
extent to which this is true. Our specific focus is to examine the extent of changes
in inference for random effects that may occur when additional, outlying units
(i.e., outlying random effects) are included. That is, we start with a set of units,
add outlying units and investigate the changes in inference about the original
set of units (which may, before the additions, include both inlying and outlying
units).

Although there has been published research that has compared parametric
and semiparametric models with a DP prior, no one has studied the effect on
inferences of the composition of the study sample as we do. Moreover, many
of these comparisons have been concerned with inference for the fixed-effects
(i.e., the population average effects) but not the random effects (i.e., subject-
specific effects); see, e.g., Krnjajic, Kottas and Draper (2008). We believe that
understanding how inference for the random effects changes is important as there
are many applications where inference for the random-effects is desired and the
results have a significant impact on decision-making. For example, in studies
evaluating the performance of medical providers (“provider profiling”) inference
about the random effects is used to identify non-compliant hospitals, surgeons,
etc. (Normand, Glickman and Gatsonis, 1997). In others such as child growth
studies the individual growth trajectories (bi,...,b,,) are of interest (Verbeke
and Molenberghs, 2000; Hui and Berger, 1983; Diggle, Liang and Zeger, 1994).

Our study uses eight datasets. We start with the initial dataset, analyzed by
Morris and Christiansen (1996), which consists of 23 kidney transplant hospitals
where the outcome variable is graft failure. We use this dataset as a basis and then
construct a second dataset by adding four hospitals whose data are simulated from
populations different from those associated with the first 23. We then extend this
study to other datasets with varying characteristics. We fit the customary one-
way random-effects model, (1.1), and the associated DPP random-effects model,
respectively, to these datasets. We contrast the results from the two models,
focusing on two widely used summary measures, i.e., the posterior mean and the
posterior probability that the outcome (failure rate) exceeds a threshold. The
latter is chosen because it is of particular interest in quantifying the likelihood
that the hospital is an outlier, an important aspect of “provider profiling.” To
make the results more transparent, we focus on the simpler model, (1.1), and
clearly, the results can be applied to the general situation, (1.2).



582 Guofen Yan and J. Sedransk

In Section 2 we present the data and methods. We describe the remaining
data sets and give all of our results in Section 3. There is additional discussion
and a summary in Section 4.

Table 1: Posterior estimates in the normal and DPP random-effects models
using the original sample (23 hospitals)

Hospital # failures n; Yi Vi E(6;]y) P(6; > 0.25]y)
ID Normal DPP Normal DPP
1 16 53 0.302 0.055  0.240 0.237 0.369 0.361
2 8 57 0.140 0.063  0.180 0.188 0.017 0.010
3 12 59  0.203 0.052 0.204 0.198 0.081 0.050
4 20 60 0.333 0.052 0.255 0.261 0.528 0.558
5 25 72 0347 0.047 0.266 0.274 0.649 0.662
6 16 74 0216 0.046  0.209 0.200 0.100 0.065
7 12 77 0156 0.046  0.183 0.188 0.013 0.007
8 11 77 0.143 0.046  0.177 0.186 0.008 0.004
9 18 82 0.220 0.044 0.211 0.201 0.104 0.073
10 17 83 0.2056 0.044  0.204 0.197 0.067 0.041
11 19 91 0.209 0.042  0.207 0.197 0.072 0.041
12 25 94 0.266 0.041  0.235 0.226 0.305 0.278
13 23 96 0.240 0.041 0.222 0.210 0.165 0.133
14 32 122 0.262 0.036 0.236 0.228 0.303 0.294
15 18 125 0.144 0.036  0.170 0.184 0.002 0.001
16 15 129 0.116 0.035 0.154 0.179 0.000 0.000
17 29 144 0.201 0.033  0.202 0.195 0.032 0.020
18 33 156 0.212 0.032  0.208 0.198 0.053 0.032
19 32 169 0.189 0.031 0.195 0.191 0.014 0.005
20 39 184 0.212 0.029  0.209 0.198 0.048 0.033
21 31 187 0.166 0.029  0.179 0.186 0.002 0.001
22 39 226 0.173 0.027  0.183 0.187 0.002 0.001
23 43 261 0.165 0.025 0.176 0.185 0.000 0.000

2. Data and Methods

Table 1 shows the original sample of the 23 kidney transplant hospitals (Morris
and Christiansen 1996). The data, recorded during a 27-month period in the
late 1980s, include the number of graft failures during this period (column 2),
and the total number of kidney transplant operations performed (n;) (column
3). Column 4 presents the proportions, y; = # graft failures/n;. Since the
average of the observed failure rates is 20.5%, Morris and Christiansen (1996) use
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v/ (0.2)(0.8)/n; to approximate the standard deviations \/@; of the proportions

(column 5).

Table 2: Posterior estimates in the normal and DPP random-effects models
using the second sample (27 hospitals)

Hospital # failures n; Yi N E(6:]y) P(6; > 0.25]y)

ID Normal DPP Normal DPP
Original sample

1 16 53 0.302 0.065 0.298 0.239 0.820 0.376
2 8 57 0.140 0.063  0.155  0.189  0.029 0.006
3 12 59 0.203 0.062 0.210 0.195  0.209 0.038
4 20 60 0.333 0.052 0.326 0.276 0.944 0.633
5 25 72 0.347 0.047 0.340 0.298 0.978 0.774
6 16 74 0.216 0.046 0.221  0.197  0.254 0.052
7 12 77 0.156 0.046 0.165 0.189  0.026 0.005
8 11 77 0.143 0.046 0.153  0.188  0.012 0.003
9 18 82 0.220 0.044 0.223  0.198  0.269 0.052
10 17 83 0.205 0.044 0.209 0.194 0.166 0.030
11 19 91 0.209 0.042 0.213 0.195 0.182 0.034
12 25 94 0.266 0.041 0.266 0.223 0.658 0.263
13 23 96 0.240 0.041 0.241 0.204 0.410 0.106
14 32 122 0.262 0.036 0.263  0.223 0.645  0.267
15 18 125 0.144 0.036  0.151  0.187  0.003 0.000
16 15 129 0.116 0.035 0.125  0.183  0.000 0.000
17 29 144 0.201 0.033 0.204 0.193 0.078 0.011
18 33 156 0.212 0.032 0.214 0.195 0.131 0.026
19 32 169 0.189 0.031  0.192  0.191  0.029 0.004
20 39 184 0.212 0.029 0.214 0.195 0.106 0.019
21 31 187 0.166 0.029 0.170  0.188  0.003 0.000
22 39 226  0.173 0.027 0.175  0.188  0.002 0.000
23 43 261 0.165 0.025 0.168  0.187  0.000 0.000
Four additional hospitals

24 82 120 0.683 0.037 0.660  0.632  1.000 1.000
25 7 130 0.592 0.035 0.575  0.590  1.000 1.000
26 74 140 0.529 0.034 0.516  0.567  1.000 1.000
27 89 150 0.593 0.033 0.578  0.591  1.000 1.000

The second dataset was constructed by adding four hospitals with characteris-
tics different from those in the original sample. We generated their (failure) data
independently from binomial distributions with n; taken as 120, 130, 140, and
150, respectively, and a common failure rate, 0.6. These four simulated failure
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rates are 0.683, 0.592, 0.529, and 0.593, shown as IDs 24, 25, 26, and 27 in the
lower panel of Table 2. Clearly, the second set (with 27 hospitals) is much less
homogeneous than the first set. We have extended this study by modifying the
characteristics of both the initial set of hospitals and the added set: see Section
3.3 for the description of the remaining data sets.

In practice, datasets containing outlying clusters will occur when the study
population consists of two or more subpopulations. Alternatively, the clusters
studied may be sampled from a single population of clusters but several were
selected from the tail of the distribution.

Let y; denote the observed graft failure rate in hospital i. Morris and Chris-
tiansen (1996) approximated the distribution of y; as normal. While this as-
sumption is simplistic we proceed in the same way because our conclusions are
clearer than they would be if we used a more complex model for the ;. Then
the customary random-effects model is

yi=p+oi+e, €~N(0 ),
{aii=1,....m} |62 % N(0,82), (2.1)
7T(/~L752) = mi(p) 7F2(52)

where m = 23 for the first sample and m = 27 for the second sample. The
{¢i : i = 1,...,m} are known and given in Tables 1 and 2. We took proper
diffuse priors for p and §2; i.e., a normal prior on p with mean 7 and variance
100,000, and an inverse gamma on ¢2 with parameters (0.001,0.001).

A DPP random-effects model replaces the normal prior on the a; in (2.1) with
a DP prior; i.e.,

yi=p+a;+e, €~N(0, ),
{aj:i=1,....m} | G~G(),

G|v, 7> ~DP(vGy), Go=N(0,7%), (2.2)
(p, ) = m () m2(7°)

where DP denotes the Dirichlet Process prior for the cumulative distribution
function, G. The prior for  and 72 is the same as in (2.1).

There are two components in the DP: The base distribution Gg defines the
location of the DP prior, and the positive scalar v is the precision parameter mea-
suring the concentration of the prior for G around Gy. We take Gy as the prior
used in the normal random-effects model and consider v to be a tuning constant.
The additional stage of the DP prior for G expresses our uncertainty about the
true distribution of the random effects relative to the prior, Go = N(0,72), the
distribution assumed for the random effects a; in the normal model, (2.1). There-
fore, the random-effects model with the DP prior generalizes the normal model
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(2.1). The tuning parameter v, which controls the number of distinct compo-
nents in the distribution of the random effects, (G, has been discussed extensively
in the literature (see, e.g., Escobar and West, 1995, 1998). When v is small,
the random effects (corresponding to the hospital units) tend to form very few
clusters, thus the resulting inference is close to that from a finite mixture model.
In contrast, when v is large, inferences under (2.1) and (2.2) are similar. Liu
(1996) developed the relationship between v and the number of distinct clusters
k,i.e., E(k) ~ vlog(l+m/v), where m is the number of random effects. We used
small values, v = 0.5 and v = 1.0, corresponding to E(k) =~ 2 and 3, respectively.
Subsequently, we found that using v = 0.5 and v = 1 gave very similar results.

Implementing this DPP random-effects model is straightforward: the DPpack-
age in R recently developed by Jara (2007) is available for applications. Following
the computational strategies suggested in Escobar and West (1998), we analyzed
the data using the Gibbs sampler and ran a burn-in of 10,000 draws with infer-
ence based on the next 10,000 draws. We examined the convergence by running
several parallel chains with each of length 20,000 and using the second 10,000
draws to calculate R (Gelman et al., 2004, chap. 11). The R is the suggested
quantity that can be used to measure the extent to which the parallel chains are
mixed. For the parameter of interest, say, 72 in (2.2), R = /var(r2|y)/W where
var(r2|y) = (n — 1)W/n + B/n, the estimate of the marginal posterior variance,
var(72|y). Here, n is the length of chains after discarding the first half of the
draws (n = 10,000), and W and B are the within-chain and between-chain sam-
ple variances calculated using the second half of the draws, respectively. When
the chains have mixed, B and W should be similar. Thus, R near 1 indicates
that the second half of the draws are simulated from the target distribution, and
can be used for inference. We calculated R for parameters (72, u, o;) which were
all around 1. Also, the trace plots did not indicate any abnormal divergence.

We have fitted these two models to the two datasets as described above. Our
inference about the hospital effects is based on summary statistics obtained from
the posterior distributions of the 6; where 6; = (1 + «;). The first one is the
posterior mean of #;. The second is the posterior probability that the failure rate
(i.e., 0;) exceeds a given threshold; i.e.,

P6; > c|y).

A large value of this probability suggests further investigation of this hospital as
a possible outlier. Since it is acknowledged (Morris and Christiansen, 1996) that
a graft failure rate that exceeds 25% is deemed unacceptable, we take ¢ = 0.25.
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3. Results

3.1 Comparing the two models

Analyzing the sample of 23 hospitals first, the posterior means and posterior
probabilities, P(6; > 0.25|y), from the fit of the normal model, (2.1), are shown in
columns 6 and 8, respectively, in Table 1. Among these 23 hospitals, hospitals 4
and 5 had the highest posterior means which also were greater than the threshold
failure rate of 25% (25.5% and 26.6%, respectively). Their posterior probabilities
of exceeding 25% were also highest, 52.8% and 64.9%, respectively. Results from
the DPP model, (2.2), with v = 1 are shown in columns 7 and 9 of Table 1.
(The results with v = 0.5 are similar.) Note that the same hospitals (4 and 5),
regarded by Morris and Christiansen (1996) as “noncompliant”, were identified
in the DPP model. Based on these data we do not regard these two hospitals as
“noncompliant,” but ones where further investigation is indicated.
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Figure 1: Scatterplots of the 23 paired posterior probabilities (corresponding
to the 23 hospitals) that the failure rate exceeds a threshold of 0.25, one from
the fit of the normal model and the other from the fit of the DPP model. Plot
(a) uses the original sample of 23 hospitals, and plot (b) uses the second sample
of 27 hospitals.

Figure 1(a) is a scatter plot of the 23 pairs of the posterior probabilities
corresponding to the 23 hospitals, one from fitting the normal model and the other
from fitting the DPP model. Since the points cluster along the 45 degree line
the posterior probabilities from the two models are very similar. The posterior
means from the two models are also similar (compare columns 6 and 7 in Table
1). In this case, where the data are homogeneous, inference about the individual
hospital effects under these two approaches are very similar, i.e., the normal
model, (2.1), fits the data appropriately.
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Figure 2: Scatterplots of the 23 paired posterior means corresponding to the
original 23 hospitals, one from the analysis of the 23 hospitals and the other
from the analysis of the 27 hospitals. Plot (a) is the fit of the normal model
and plot (b) is the fit of the DPP model.
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Figure 3: Scatterplots of the 23 paired posterior probabilities (corresponding to
the 23 hospitals) that the failure rate exceeds a threshold of 0.25, one from the
analysis of the 23 hospitals and the other from the analysis of the 27 hospitals.
Plot (a) is the fit of the normal model and plot (b) is the fit of the DPP model.

Proceeding in the same manner, we fit the normal random-effects model, (2.1),
and the DPP model, (2.2), to the second sample (27 hospitals). Do the compatible
results from the two models seen in the original sample remain the same with the
addition of these four hospitals? The results are summarized in Table 2. Unlike
the compatible results seen in Table 1, there are substantial differences in both
the posterior means and posterior probabilities; compare columns 6 and 7, and
columns 8 and 9. Additionally, Figure 1(b) compares the posterior probabilities,
one from the normal model and the other from the DPP model, for the same set of
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23 hospitals. As we see, the posterior probabilities in Figure 1(b) are dramatically
different for the two models. Since all of the posterior probabilities for the normal
model are higher than those for the DPP model, the normal model apparently
overstates the likelihood of the event. In this analysis (using 27 hospitals), the
normal model yielded five hospitals (1, 4, 5, 12, 14) among the original 23 that
had posterior probabilities larger than 0.5 whereas the DPP model had only two
hospitals (4, 5) (see columns 8 and 9 in Table 2). Here, the conclusions from
the normal random-effects model are very different from those from the DPP
model. Again considering inference for the original 23 hospitals, there are larger
discrepancies in the posterior means between the two models (normal vs. DPP)
when the data from the 27 hospitals are used rather than the data from the 23
hospitals - compare columns 6 and 7 in Tables 1 and 2. Summarizing, it is clear
that inferences about the 23 individual hospital effects are very different under
these two models in the 27 hospital sample, but similar in the 23 hospital sample.

We next present the same results in a different way. We do this to highlight
the difference between the two models regarding how inferences are affected by the
composition of the study sample. Figure 2(a) compares the 23 pairs of posterior
means in the normal model with one using data from the initial sample (23
hospitals) and the other using the second sample (27 hospitals), whereas Figure
2(b) provides the same comparison for the DPP model. Figures 3(a)-(b) present
the results for the posterior probabilities. These Figures clearly show that for
the normal model there are important changes in inference by using the two
different samples. Conversely, by using a DPP model, there are only minor
changes. This is so because in the normal model the addition of the four outlying
hospitals shifted the posterior distributions for the random effects to the right,
resulting in more hospitals having larger right tail-area probabilities. Since the
DPP model automatically downweights outliers, the DPP estimates exhibit only
small changes over the two samples. These results illustrate that conclusions from
the normal model are not robust to different study samples and are vulnerable
to the presence of outlying data.

The effects of including the outlying clusters can also be seen from the indi-
vidual profiles of the hospital effects. Figure 4 displays the posterior distributions
of the hospital effects for nine hospitals. Fitting the normal model (dotted lines),
the posterior distributions exhibit nontrivial changes both in the scale and shape
when the study sample changes (thin dotted line for the original sample and thick
dotted line for the second sample). However, the posterior distributions from the
DPP model (solid lines) are less influenced by the presence of the outlying hos-
pitals.

Clearly, these results show that the DPP model is effective in reducing the
dependence of inferences on the composition of the study sample.
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Hospital 1 Hospital 2 Hospital 4

Hospital 5 Hospital 7 Hospital 9

Hospital 12 Hospital 14 Hospital 17

T T T T T T T T T
0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.45 0.05 0.15 0.25 0.35 0.45

Figure 4: The posterior distributions of the failure rate for nine hospitals. Solid
lines: the DPP model; Dotted lines: the normal model; Thin lines: using the
original sample; Thick lines: using the second sample.

3.2 Shrinkage

Writing 6; = p + o, it is well known that under the normal random effects
model, (2.1),

E{0ily, 6%} = Niyi + (1 = Ay (3.1)

where \; = 02/(6%+¢;) and § = >_j; Aeyr/ Dopeq Ak- Thus, the relative weights
on y; and ¢ in (3.1) depend on the ratio, ¢;/62. Recall that 42 is the random
effect variance whereas ¢; is the error variance.

It is well known that if (2.1) holds

E{0ily} = Es2jy{\iyi + (1 — Ny} (3.2)
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provides improved inference for the 6; and this is the estimator that Morris and
Christiansen (1996) used to provide estimates similar to those in column 6 of
Table 1. However, with the addition of the four outlying hospitals, the advantages
from using (3.2) are lost because the between-hospital variance, 62, is very large
relative to the within-hospital variance, ¢;. (The posterior median of 62 is 0.023
and the largest value of ¢; is 0.003.) Thus, for the 27 hospital sample E(6;|y) ~ v;,
which can be seen in columns 4 and 6 of Table 2. However, for the 23 hospital
sample (with no outliers), E(0;|y) is a weighted average of y; and y with E(\;|y)
not near 1.

By contrast, using the DPP model the posterior means of the 8; are approx-
imately the same in Tables 1 and 2, as one may prefer because the data from
hospitals 24-27 are outliers and should not affect the inferences about the original
23 hospitals. This contrast can be seen in Figure 3.

While there is no analytical expression for F(6;]y) in the DPP model, (2.2),
it is clear (Escobar and West, 1998) that if the hospital effects are homogeneous,
as in the first sample (23 hospitals), the posterior means from the normal and
DPP models will be similar (as seen in Table 1). However, if there are subsets of
the data that are quite different, as in the second sample (27 hospitals), inference
about the hospital-specific effect 6; will be based mostly on those hospitals whose
values of y are close to y;. That is, posterior inference for 6; will be based on
the data with values close to y;. Thus, as we see from Figure 2(b), the posterior
means of the ; using the DPP model are nearly the same with or without the
outlying hospitals. This is so because the DPP properly ignores o4, Y25, 26
and o7 when making inference about 61, ...,6023. Thus, DPP provides robust
inference by downweighting the outlying hospitals.

3.3 Additional analyses

For further comparisons of (2.1) and (2.2) we have modified the original 23
hospital sample in different ways. We next summarize these results using typical
examples. First, we added four hospitals to the original sample of 23 hospitals,
but now the population failure rates for these hospitals are 0.4 rather than 0.6.
Again, concerning the inference for the original 23 hospitals, the differences in the
DPP posterior means and tail probabilities from fitting the original and new 27
hospital samples were smaller, as expected, than those from the normal model.
This can be seen in Table 3 by comparing the results for “Case 0” and “Case 1.”
In Table 3, for a given fitted model (normal or DPP), A; = E*(0;|y) - E**(6;]y)
was computed for each hospital where the first quantity is from using the original
sample and the second one is from using the modified sample (here, the 23 and
27 hospital samples, respectively). The 25th, 50th and 75th sample percentiles of
|A;| are used to evaluate the effect of sample composition. The same summaries
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Table 3: Distributions of the differences in posterior estimates from fitting the
original and modified (addition/deletion of units) samples in normal and DPP
models

Posterior mean, F(6;]y) Posterior probability, P(6; > 0.25|y)

25th|AlT  Median |A|  75th|A| 25th|Alf Median |[A|  75th|A)]

Case 0: Addition of four hospitals simulated from 0.6 true failure rate
Normal model 0.007 0.012 0.026 0.008 0.078 0.205
DPP model 0.002 0.003 0.004 0.001 0.009 0.015

Additional cases

Case 1: Addition of four hospitals simulated from 0.4 true failure rate

Normal model 0.005 0.008 0.017 0.012 0.062 0.167
DPP model 0.001 0.004 0.005 0.002 0.017 0.028
Case 2: Addition of two hospitals simulated from 0.05 true failure rate

Normal model 0.003 0.006 0.012 0.001 0.015 0.035
DPP model 0.000 0.001 0.004 0.000 0.002 0.005
Case 3: Deletion of hospital 16 (smallest rate)

Normal model 0.001 0.002 0.003 0.001 0.003 0.008
DPP model 0.003 0.003 0.005 0.000 0.004 0.018
Case 4: Deletion of hospital 5 (largest rate)

Normal model 0.001 0.003 0.005 0.004 0.014 0.037
DPP model 0.001 0.002 0.002 0.002 0.014 0.037
Case 5: Same as Case 0 but sample sizes n; reduced to 5-20

Normal model 0.021 0.031 0.039 0.241 0.290 0.330
DPP model 0.006 0.008 0.010 0.040 0.046 0.056

1 Shown are the 25th, 50th and 75th sample percentiles of |A;| = |E*(6;|y) - E**(0;]y)|
where the first quantity uses the original sample and the second one uses the modified sample.

1 Shown are the 25th, 50th and 75th sample percentiles of |A;(p)|] = |P*(0; > 0.25|y) -
P**(6; > 0.25|y)| where the first quantity uses the original sample and the second one uses
the modified sample.

are also provided in Table 3 for A;(p) =P*(6; > 0.25]y) - P**(0; > 0.25]y). For
Case 0 (0.6 true failure rate for new outliers) the 75th percentile of |A;(p)] is 0.205
for the normal model and 0.015 for the DPP model whereas the corresponding
quantities for Case 1 (0.4 true failure rate for new outliers) are 0.167 and 0.028.
Second, we added to the original dataset two hospitals with population rates of
0.05 and n; = 80 for each one. Comparing the original and new 25 hospital sam-
ples, there are smaller changes (i.e., smaller |A;| and |A;(p)|) when using the DPP
model than the normal model, although the magnitudes of all of these changes
are small (see Case 2 in Table 3). Third, we deleted hospital ID=16, i.e., the one
with the smallest failure rate, 0.116. Here, there are minimal differences in the
results between the original and new samples (23 and 22 hospitals, respectively)
for each of the normal and DPP analyses. Fourth, we deleted hospital ID=5, i.e.,
the one with the largest failure rate, 0.347. Here, the two models yield similar
results.
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We have also created new 23 hospital and 27 hospital datasets by reducing
the sample sizes (to values ranging from 5 to 20), but retaining the failure rates
presented in Tables 1 and 2. By doing so, the sampling variances ¢; are larger
in the newly created datasets. Here, the dominance of §% over the ¢; seen in the
original sample of 23 hospitals (Table 1) is now reduced, so the posterior mean
of 6;, (3.2), is a weighted average of y; and y with E();|y) not near 1. Then, for
the new datasets (with larger ¢;) and the normal model, the posterior means for
the original 23 hospitals are, as expected, much larger in the 27 hospital dataset
than in the 23 hospital dataset. By contrast, the DPP model is robust; i.e., the
values of the posterior means are similar in the two datasets (see Table 3, Case
5).

4. Discussion and Summary

In applications such as “provider profiling” finding “extrema’” is of greatest
interest. A common way to identify those medical providers (e.g., hospitals,
doctors) who merit further investigation as possible outliers is to evaluate for each
provider the posterior probability that the outcome variable exceeds a threshold.
As seen in Section 3, these assessments may be problematic when using the
standard normal model, (2.1), because the model is sensitive to outliers. For
example, the probability that hospital 1 has a failure rate larger than 0.25 is
0.369 when using data from the initial sample (Table 1) but 0.82 when using
data from the second sample (which has the four outlying hospitals) (Table 2).
Similarly, using the first sample, only two hospitals (4 and 5) have posterior
probabilities greater than 0.50 of exceeding the threshold while using the second
sample there are five such hospitals (among the original 23 hospitals). In this
example it is clear that the normal model is heavily data-dependent.

By contrast when using the DPP model the results (probabilities of exceeding
the threshold) for both samples are essentially the same, as one would hope they
would be. That is, in each sample only hospitals 4 and 5 (among the original 23
hospitals) have posterior probabilities greater than 0.50 of exceeding the thresh-
old. Concerning inference for the original 23 hospitals, the DPP inferences are
not only similar for the two different samples, but they are also similar to those
from the normal model when there are no added outliers. That is, the DPP
model in (2.2) adapts appropriately to the introduction of the outlying hospitals:
It is much less likely that inferences will be influenced by the presence of spurious
data.

In investigations such as clinical trials, meta analyses and many others there
is often a choice of the units to be included, e.g., patients in longitudinal studies,
hospitals in profiling studies, studies in meta analyses, possibly leading to a biased
sample. In such circumstances one of the desirable statistical properties is that



Random Effects Using Normal and Dirichlet models 593

inferences be less influenced by the composition of the study sample. Our results
indicate that inferences from the Dirichlet process specification in (2.2) are much
less dependent on the composition of the study samples than the standard analysis
using (2.1). Thus, under this criterion using the Dirichlet process specification is
preferable.

A second, related, criterion for selecting a method to analyze data from inves-
tigations like those just noted is that the statistical model be sufficiently flexible
to accommodate the heterogeneity inherent in such investigations. Using the
Dirichlet process prior generalizes the standard method by accommodating the
possibility that the data consists of several distinct groups of units. For this
reason it is a more suitable technique than using the standard normal model.

An alternative procedure is to use the standard normal model, (2.1), and
then employ diagnostic methods that may reveal the presence of distinct groups of
units. Unfortunately, assessing the fit of a mixed effect model is challenging; there
are limited diagnostic methods that have been shown to be effective (e.g., Verbeke
and Molenberghs, 2000; Yan and Sedransk, 2007). However, if the diagnostics
are successful in detecting outlying units (e.g., outlying hospitals) a common
procedure is to exclude them from the analysis and then use the standard normal
model to analyze the remaining data. This, too, may not be appropriate because
it may ignore the true structure. We have shown that results from the Dirichlet
process specification usually agree with those from using the standard method
when the assumptions underlying the standard method are met. On the other
hand, analyses using the Dirichlet process treat data appropriately when the units
(e.g., hospitals) are in distinct groups. Thus, using a more flexible model, (2.2),
reduces the importance of the diagnostics by modeling the true structure.

In summary, our investigation reveals that conclusions from the normal model
are not robust to different study samples and are vulnerable to the presence
of outlying data. Conversely, using a DPP model is effective in reducing the
dependence of inferences on the composition of the study sample. With advances
in computation and methodology it is straightforward to apply models such as
(2.2), and analogous extensions of (1.2), routinely to medical studies.
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