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Abstract: This paper considers the statistical problems of editing and im-
puting data of multiple time series generated by repetitive surveys. The case
under study is that of the Survey of Cattle Slaughter in Mexico’s Munici-
pal Abattoirs. The proposed procedure consists of two phases; firstly the
data of each abattoir are edited to correct them for gross inconsistencies.
Secondly, the missing data are imputed by means of restricted forecasting.
This method uses all the historical and current information available for the
abattoir, as well as multiple time series models from which efficient esti-
mates of the missing data are obtained. Some empirical examples are shown
to illustrate the usefulness of the method in practice.
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1. Introduction

The National Institute of Statistics and Geography (INEGI) carries out the
Survey of Cattle Slaughter in Mexico’s Municipal Abattoirs (ESGRM for its name
in Spanish). This repetitive survey captures monthly data for each abattoir in
a questionnaire that asks questions about the slaughter of cattle for human con-
sumption. Four species of animals are considered here: cattle, swine, sheep and
goats. Even though INEGI puts a lot of effort to collect and publish trustworthy
data, it is a fact that the quality of some statistical figures published by this offi-
cial statistical agency can still be greatly improved. Such is the case of the data
generated by the ESGRM, since this survey presents the typical problems of: (1)
inconsistency of the collected data (the informant at the abattoir responded to
the questionnaire, but the answers are not considered valid by some criteria used
to verify the information), and (2) missing data (at least one of the variables lacks
its value requested in the questionnaire). These problems create the necessity of
applying statistical procedures for editing and imputing data. Such tasks should
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be done for each questionnaire (at the abattoir level) to avoid the accumulation of
errors when aggregating data of two or more abattoirs. Therefore, it is desirable
to use editing and imputing procedures with solid statistical foundations, which
can also be computationally automated for massive and repetitive application (in
all the municipal abattoirs, month after month).

In this work we propose a statistical methodology that is supported by mul-
tiple time series models. These models take into account historical information
on the variables under study as well as their possible interrelations. The follow-
ing three basic variables of the ESGRM were considered relevant: (1) number of
heads (number of animals that are introduced alive to the abattoir), (2) weight
on the hoof (weight of the live animal when entering the abattoir) and (3) weight
of the beef carcasses (weight of the slaughtered animal after taking out some of
its parts, like its skin, its head and its offal).

There is a large body of literature dealing with the problem of missing data in
different types of surveys. We refer the reader to such authoritative works as Little
and Rubin (1987) and Schafer (1997) for tools designed to perform statistical
analysis of incomplete multivariate observations and to Zhang (2003) for a review
of multiple imputation methods in use nowadays. Here we just consider the
issue of imputation without taking into account the subsequent analyses of the
data, because INEGI is a national statistical agency in charge of collecting and
publishing data for the general public and it does not necessarily analyze the
data.

With regard to the missing data problem in a univariate time series setting,
some influential works are those of Kohn and Ansley (1986) and Gómez et al.
(1999), although some other works have appeared in the literature (e.g. Guerrero,
1994). All these works suggest building an Auto-Regressive Integrated Moving
Average (ARIMA) model for the available data, then use all the data (observed
before and after the missing ones) to get efficient estimates of the unobserved
values. The problem in this context is also known as interpolation and it consists
in essence of predicting the outcome of the unobserved variable by means of the
expected value of the predictive distribution. A particular work that deals with
edition and imputation, considered as tools for quality control of univariate time
series data, is that of Caporello and Maravall (2002).

In the multiple time series case we found only a few proposals, even though
the problem appeared in the literature as early as 1974. The solution proposed
by Sargan and Drettakis (1974) was very thorough, but the authors accepted
explicitly that their method was difficult to apply in practice. The proposal by
Luceño (1997) is more general than the previous one, since it can be used with
vector Auto-Regressive and Moving Average (ARMA) models, but it relies on
Maximum Likelihood Estimation, so that it also becomes difficult for massive
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application. Pfefferman and Nathan (2002) suggested another method, based
on a multivariate state-space representation of the time series that relies also on
Maximum Likelihood Estimation. The procedure suggested here differs from the
already existing methods in that it is designed for a multiple time series that
can be represented by a simple VAR (Vector Auto-Regressive) model that can be
efficiently estimated by Ordinary Least Squares, equation by equation, a fact that
simplifies considerably its practical implementation. It should be noticed that all
the aforementioned methods aim to produce minimum Mean Square Error (MSE)
estimates of the missing values. This fact differs from the usual approach used
to impute values by drawing simulated values from a predictive distribution. An
exception is Pfefferman and Nathan (2002) who did obtain the simulated values to
represent uncertainty more appropriately. Thus, in our case we do not attempt to
refer to the imputed values as simulated individual observations, but as estimated
expected values. In the next section we describe the ESGRM and present some
graphs that allow us to appreciate the typical dynamic behavior of the variables
under study, along with some suggested transformations, which will serve mainly
to edit the data. In the section after we present the VAR model and the restricted
forecasting methodology that will be used to impute the missing data. Then, we
present some aspects of the model building process and the estimation results,
for the abattoir and animal species under consideration. Afterwards we present
some results produced by the methodology, as much in the edition as in the
imputation of data for the ESGRM. In that section we also show the results of
some simulations carried out to verify the effectiveness of the method in practice.
We conclude with some practical considerations.

2. Preliminary Data Analysis

The ESGRM covers the 31 States of Mexico where abattoirs are in operation.
This study made use of data from the abattoirs of a State whose name is omitted
for confidentiality reasons. Only the results of one abattoir will be used to illus-
trate the methodology, although the intention is to apply it to all the existing
municipal abattoirs in the country (this number changes every year, there were
907 abattoirs in December, 2004 and 890 in December, 2007).

The sample period covers data from January of 1998 to December of 2003,
since those were the historical data available in the more recent annual publication
(see INEGI, 2004) at the beginning of the study. It should be stressed that we
had data up to December, 2003 and that we required estimating old data to get
a complete record of multiple time series in order to build a model and start
the repetitive (monthly) application of our methodology. The joint dynamic
behavior of the three variables for each abattoir of the State in consideration
was represented by a VAR model. We searched for a generic model and found



558 Victor M. Guerrero and Blanca I. Gaspar

a specification that provides reasonably valid results, in statistical terms, for all
the abattoirs of the State.

2.1 Definition of concepts

The following concepts are used in the ESGRM. A municipal abattoir is the
basic unit of observation, defined as the building where the slaughter of animals
for human consumption takes place. The animal species considered are: cattle
(includes bulls, oxen, cows, heifers and yearling calves), swine (includes pigs),
sheep (includes lambs), and goats.

Two constructed variables: average weight on the hoof (weight on the hoof
divided by number of heads) and yield of meat (ratio of weight of the beef carcass
to weight on the hoof) were used to validate the collected data. We observed that
these variables tend to stay near a constant value for several consecutive months.
In Figure 1 we show an example of this phenomenon for an abattoir, called A for
confidentiality of the data. The species slaughtered are cattle and swine.

  

280 

300 

320 

340 

360 

380 

400 

420 

440 

1998 1999 2000 2001 2002 2003 

Average     
g
      weight  

  

.36 

.40 

.44 

.48 

.52 

.56 

.60 

.64 

.68 

1998 1999 2000 2001 2002 2003 

Yield of meat              

Figure 1: Average weight on the hoof and yield of meat (Cattle)

The basic behavior observed in these graphs is repeated for all the animal
species and abattoirs in consideration. This fact led us to think that the infor-
mants tend to report numbers close to the average values or within certain bounds
of the constructed variables. The data are usually reported with evident errors
and the INEGI personnel edit some of those errors when capturing the data every
month, since this is a repetitive survey. Even with this first validation of data,
several inconsistencies remain unnoticed by the capture personnel. Besides, some
new errors are introduced when capturing the data. Thus, in order to correct
these errors in a systematic way, we propose to start the editing process by taking
into account the permissible values of the constructed variables. The aggregated
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figures for all the abattoirs in each Mexican State that appear in INEGI (2004)
are official and definitive, nevertheless it was necessary to perform a preliminary
analysis of the data pertaining to each and every abattoir under study to make
sure that all the data were within the permissible limits. This was done for each
and every variable. In fact, if a recorded observation of a variable fell outside
those limits, it was replaced by a permissible value, while the observations of
the remaining variables were not affected. This way we obtained a set of edited
historical time series. Then, we applied some transformations that allowed us
to see the natural variability of the data more clearly and proceeded to build
multiple time series models, as described below. The transformation procedure
must be applied month after month as new data arrive, in order to force them to
be consistent with each other and with their historical records. Afterwards, we
can use the imputation methodology to estimate missing data in the transformed
scale by means of restricted forecasting. The restricted forecasts provide optimal
estimates (in a statistical sense defined below) of the missing data. Finally, we
retransform the estimates back to the original scale of the variables.

2.2 Transformation of variables

The transformations used are intended to complement the data edition in such
a way that the transformed data satisfy the criteria that informants have been
trying to apply routinely, although in an informal way. Therefore, transformation
of the data is a fundamental part of the editing procedure. The variables are
defined for month t as follows; NHt denotes number of heads, WHt weight on
the hoof measured in kilograms, and WBt weight of beef carcasses also measured
in kilograms. Since 0 < NHt for t = 1, ..., N , the proposed transformation
becomes

−∞ < TNHt = log
(

NHt

NHt−1

)
< ∞

and the variable in differences that will appear in the VAR model is

DTNHTt = log(NHt/NHt−1) − log(NHt−1/NHt−2) ≈ rNH
t − rNH

t−1

with rNH
t the relative growth rate of NHt. The reason for using differences will

be explained when considering the model building process.
For the average weight, it is well known that the following restriction must

hold, K1 ≤ WHt/NHt ≤ K2 where K1 and K2 are some known structural
constants (e.g. for cattle, K1 = 250 and K2 = 550). Then we know that
K1 < WHt/NHt + 0.1 and WHt/NHt < K2 + 0.1. The constant 0.1 was added
to get strict inequalities without affecting the dynamics of the series involved and
its inclusion amounts to extending the original interval by 100 grams at each side.
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The proposed transformation is now

−∞ < TWHt = log
(

WHt/NHt + 0.1 − K1
K2 − WHt/NHt + 0.1

)
< ∞

and the variable to use in the model turns out to be

DTWHt = log
(

WHt/NHt + 0.1 − K1
K2 − WHt/NHt + 0.1

/
WHt−1/NHt−1 + 0.1 − K1
K2 − WHt−1/NHt−1 + 0.1

)
≈ r

WH/NH−K1
t − r

K2−WH/NH
t

It is also known that the yield of meat must satisfy the restriction K3 ≤ WBt/WHt ≤
K4 for all t, with K3 and K4 some known positive structural constants (for exam-
ple, for cattle K3 = 0.5 and K4 = 0.55). We decided to use the ratio WB/NH,
rather than WB/WH, because NH usually has complete data, in contrast with
WH that usually lacks some data values. To make this change, we know that

K1(WBt/WHt) ≤ (WHt/NHt)(WBt/NHT ) ≤ K2(WBt/WHt)

from which we get K1(K3) ≤ WBt/NHt ≤ K2(K4). Therefore, as in the
previous case, the transformation proposed is

−∞ < TPCt = log
(

WBt/NHt + 0.01 − K1 · K3
K2 · K4 − WBt/NHt + 0.01

)
< ∞.

The constant 0.01 was chosen as in the previous case and its use implies that
the interval [K1 ·K3,K2 ·K4] is extended 10 grams at each side. Therefore, the
variable to be used in the model is

DTWBt ≈ r
WB/NH−K1·K3
t − r

K2·K4−WB/NH
t

The structural constants K1,K2, K3 and K4 used here for transforming the data
are usually employed for descriptive purposes (see Ruiz et al., 2001). Since there
is a great variety of animal species, classified by age and race, we decided to look
for the most commonly used values in each Mexican State. We found some values
on the following websites: Faculty of Veterinary Medicine at the National Au-
tonomous University of Mexico (Veterinary, 2005, www.veterin.unam.mx), Sec-
retariat of Agriculture (SAGARPA, 2005, www.sagarpa.gob.mx/ganaderito) and
cattle dealer associations (Cattle dealers, 2005, www.mexicoganadero.com/limousin).
The final decision of which values to use was made by asking for advice to the
veterinary personnel that works at the municipal abattoirs in the State under
consideration. Figure 2 shows the behavior of the time series in the original scale
(NH,WH and WB), as well as that of the transformed variables (TNH, TWH
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and TWB) and their first differences (DTNH,DTWH and DTWB), for the
abattoir under consideration and the two species of animals. There we can see
that the original series have trend and seasonality, we also see that the transfor-
mation not only extends the numerical scale from (0,∞) to (−∞,∞) but also
helps to stabilize the trend in the data. Differencing ensures stationarity of the
time series and makes the data fluctuate around zero.
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Figure 2: Original and transformed data (Cattle)

3. Statistical Methodology

The most important methodological aspect of this work is the use of restricted
forecasting, supported by multiple time series models. Such models allow us to
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capture the dynamics of the time series and here we will place special emphasis
on their use for imputing missing data of the ESGRM.

3.1 VAR model

Let Zt = (Z1t, . . . , Zkt)′ be a k-dimensional multiple time series observed for
t = 1, · · · , N . The VAR representation for this time series is

Π(B)Zt = ΛDt + at (3.1)

where Π(B) denotes a matrix polynomial of order p < ∞, in the backshift oper-
ator B, such that BZt = Zt−1 for every Z and t, that is, Π(B) = Ik − Π11B −
· · · − ΠpB

p with Ik the identity matrix of order k and

Πj =


πj,11 πj,12 · · · πj,1k

πj,21 πj,22 · · · πj,2k

· · · · · · · · · · · ·
πj,k1 πj,k1 · · · πj,kk


for j = 1, · · · , p. This model takes into account the deterministic vector of vari-
ables Dt = (D1t, . . . , Dkt)′ that may include constant levels, seasonal dummies
and intervention variables whose effects on Zt are captured by the parameter
matrix Λ{at} is a zero-mean Gaussian white noise process, so that the at’s are in-
dependent and identically distributed as at ∼ Nk(0k, Σa) for t = 1, · · · , N , where
0k is the zero vector and Σa is the contemporaneous error variance-covariance
matrix, given by

Σa =


σ11 σ12 · · · σ1k

σ21 σ22 · · · σ2k

· · · · · · · · · · · ·
σk1 σk2 · · · σkk


with σij = Cov(ait, ajt) for i, j = 1, ..., k.

When the series {Zt} is stationary, model (3.1) is well defined. Otherwise, for
the model to be well defined, it is necessary to assume that the process started at
a finite time point in the past, with fixed initial conditions. When the individual
time series are all integrated of at least order one and they are not cointegrated,
we can apply the difference operator 5 = 1 − B to each series in order to get
an appropriate VAR representation for the new time series {∇Zt}. On the other
hand, when a cointegration relationship exists among the variables (see Engle and
Granger, 1987) we could work with the following VAR model in Error Correction
(VEC) form

Π∗(B) = ∇Zt = ΛDt − Π(1)Zt−1 + at. (3.2)
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This model arises from the equation Π(B) = Π(1)B + Π∗(B)∇. In this case, the
matrix polynomial Π∗(B) is of order p− 1, whereas the matrix Π(1) is defined in
accordance with the cointegration relationships that exist among the variables.

Let us notice that Π∗(B)∇Zt captures the short-run relations in Zt, while
Π(1)Zt−1 represents the long-run relations and all the elements of equation (3.2)
are stationary. The VEC model is related to economic theory since it allows in-
terpreting the results and making inferences about both short-run and long-run
economic relations. However, it should be noticed that the information cap-
tured by the V AR and the V EC models is exactly the same, even though their
representations are formally different. In the present case, we only want to get
one-step-ahead forecasts from the model and we are not interested in the long-run
relations that may exist among the variables. Hence, in what follows we will use
the V AR form (so that no cointegration analysis is required) and the restricted
forecasting methodology will only be presented for that model.

3.2 Restricted forecasts

Here we will assume that the model and its parameters are known, so that we
do not consider at this time such issues as specification, estimation and validation
of the model. In practice however, those issues have to be faced as in the illustra-
tive application shown below. The vector Z = (Z′

1, . . . ,Z
′
N )′ has the observations

of Zt = (TNHt, TWHt, TWBt)′ for t = 1, . . . , N , while ZN+1 is the vector of
future values to be forecast, with origin at time N. Since the stationary series is
∇Zt = (DTNHt, DTWHt, DTWBt)′ the V AR model to be used becomes

Π(B)∇Zt = ΛDt + at.

Then, the minimum Mean Square Error (MSE) linear forecast of ∇ZN+1 is its
conditional expectation given all the historical information, that is,

E(∇ZN+1|Z) = ΛDN+1 + Π1E(∇ZN |Z) + · · · + ΠpE(∇ZN+1−p|Z).

The corresponding forecast error is given by

∇ZN+1 − E(∇ZN+1|Z) = aN+1 (3.3)

and its MSE matrix is

MSE[E(∇ZN+1|Z)] = V ar(aN+1|Z) = Σa.

Now, suppose that we also know the vector of observations Y = (Y1, . . . , YM )′

that imposes M ≥ 0 linearly independent restrictions on the future values of the
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vector Z. Such restrictions come from an external source to the time series model
and can be expressed as

Y = C∇ZN+1 + u (3.4)

where u = (u1, . . . , uM )′ is a random vector distributed as N(0M ,Σu). The M×k
matrix C is known and has rank M ≤ k. We will show below some particular
forms of C for the imputing problem faced by the ESGRM. In those cases, the
data Y1, . . . , YM are the observed values of the variables at time N + 1.

Expression (3.4) can be deemed as a set of stochastic linear restrictions to be
imposed on ∇ZN+1. We assume E(u|Z) = 0, in such a way that the restrictions
are unbiased and their uncertainty is linked to the variance V ar(u|Z) = Σu,
which in the present application is Σu = 0. If E(aN+1u′|Z) = 0 we get the
following optimal restricted forecast of ∇ZN+1 given Z and Y,

∇ẐN+1 = E(∇ZN+1|Z) + A[Y − CE(∇ZN+1|Z)] (3.5)

with
A = ΣaC

′(CΣaC
′)−1 (3.6)

and
MSE(∇ẐN+1) = (Ik − AC)Σa. (3.7)

This result is shown in the Appendix for the general case Σu 6= 0 (a different
proof, based on signal extraction techniques, can be found in Pankratz, 1989).

It should be stressed that the linear combination (3.5) is optimal in the sense
of having minimum MSE within the class of linear predictors for ∇ZN+1. Fur-
ther, the restricted forecast has lower MSE than that of the unrestricted forecast
because

MSE[E(∇ZN+1|Z)] = MSE(∇ẐN+1) + ACΣa

where ACΣa = ΣaC
′(CΣaC

′)−1CΣa is a positive semi definite matrix.

3.3 Forecasts in the original scale

To obtain the forecasts of NHN+1,WHN+1 and WBN+1 from the forecasts of
∇ZN+1 = (DTNHN+1, DTWHN+1, DTWBN+1)′, we first obtain the forecasts
in transformed levels by means of ZN+1 = ZN+DZN+1 for Z = TNH, TWH,TWB.
Then we go back to the units of the original variables as follows; for NH we know
that exp(TNHN+1) = NHN+1/NHN , so that NHN+1 = NHN · exp(TNHN+1).
For WH we have

WHN+1

NHN+1
= (K2 + 0.1) exp(TWHN+1) + K1 − 0.1 − WHN+1

NHN+1
exp(TWHN+1)
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hence,

WHN+1 = NHN+1[(K2 + 0.1) exp(TWHN+1) + K1− 0.1]/[1 + exp(TWHN+1)].

Similarly, for WB we get

WBN+1 =
NHN+1[(K2 · K4 + 0.01) exp(TWBN+1) + K1 · K3 − 0.01]

[1 + exp(TWBN+1)]
.

When the value of WHN+1 is known we should use it to get the forecast of
WBN+1 that satisfies the true restriction K3 ≤ WBN+1/WHN+1 ≤ K4. To do
that, instead of the previous expression we should use

WBN+1 = WHN+1[(K4+0.01) exp(TWBN+1)+K3−0.01]/[1+exp(TWBN+1)].

It is worth noticing that the log transformation is nonlinear, so that backtrans-
forming the forecasts produced by the model in the transformed scale induces bias
on the forecasts in the original scale. That happens because the forecast repre-
sents a median value in the original scale and the analyst usually expects the
forecast to represent a mean value. A correction for bias may be applied, as in-
dicated in Guerrero (1993) or, as we prefer in this case, the uncorrected forecasts
in the original scale should be interpreted as median values.

3.4 Compatibility test

Since the optimal forecast implies combining information from two different
sources, we should be aware of the possibility of combining contradictory infor-
mation. Thus, we propose to judge the validity of this combination empirically.
We say that the extra-model information Y, is compatible with the information
provided by the model, CE(∇ZN+1|Z), if the distance between those vectors is
close to zero. We define the random vector of differences

d = Y − CE(∇ZN+1|Z) = CaN+1

which is distributed as N(0M , CΣaC
′). Therefore, the distance that takes into

account the variability of d yields the statistic K = d′(CΣaC
′)−1d ∼ χ2

M .
It follows that Y − CE(∇ZN+1|Z) belongs in the compatibility region if

Kcadc = [Y − CE(∇ZN+1|Z)]′(CΣaC
′)−1[Y − CE(∇ZN+1|Z)] ≤ χ2

M (α) (3.8)

with χ2
M (α) the upper α percentage point of the Chi-square distribution with M

degrees of freedom. Equivalently, Y is incompatible with CE(∇ZN+1|Z), at the
100α%, significance level, if (3.8) does not hold. This decision rule is based on
the assumption that all the model parameters are known. Then, even when the
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parameters are consistently estimated, the rule is only asymptotically valid. In
case of incompatibility we may conclude that the observed data at time N + 1
are atypical.

3.5 Restricted forecasts for the ESGRM

In the case of the ESGRM, the extra-model information is the observed data
at time t = N + 1 and the unrestricted VAR forecasts are given by

E(∇ZN+1|Z) = (E(DTNHN+1|Z), E(DTWHN+1|Z, E(DTWBN+1|Z)).

The pattern followed by the missing data gives raise to eight different cases: zero
observations missing, one observation missing, (NH,WH or WB), two obser-
vations missing (NH and WH,NH and WB or WH and WB) or the three
observations missing. These cases can be expressed in terms of the arrays C,Y
and

∇ẐN+1 = (D̂TNHN+1, D̂TWHN+1, D̂TWBN+1)′

that appear in expressions (3.5)-(3.7) and (3.8). For instance, when no data are
missing at t = N + 1, we have C = I3 and Y = ∇ZN+1 so that the restricted
forecasts are given by ∇ẐN+1 = Y, with M̂SE(∇ẐN+1) = 0. Besides, the
statistic Kcalc = [Y − E(∇ZN+1|Z)]′Σ̂a[Y − E(∇ZN+1|Z)] allows us to validate
the joint compatibility of the three newly arrived data with their unrestricted
forecasts, by comparing its value against a Chi-square distribution with 3 degrees
of freedom.

Another example of how the arrays are specified to obtain the restricted fore-
casts is when DTWHN+1 and DTWBN+1 are missing. Then C = (1, 0, 0),Y =
DTNHN+1 and

∇ẐN+1 =

 DTNHN+1

E(DEWHN+1|Z) + σ̂12
σ̂11

[DTNHN+1 − E(DTNHN+1|Z)]
E(DEWHN+1|Z) + σ̂13

σ̂11
[DTNHN+1 − E(DTNHN+1|Z)]


with

M̂SE

(
D̂TWHN+1

D̂TWBN+1

)
=

(
σ̂22 − σ̂2

12/σ̂11 σ̂23 − σ̂12σ̂13/σ̂11

σ̂23 − σ̂12σ̂13/σ̂11 σ̂33 − σ̂2
13/σ̂11

)
,

together with the compatibility statistic Kα = [DTNHN+1−E(DTNHN+1|Z)]2/
σ̂11. We should notice in these expressions that the restricted forecasts for data
actually observed yield exactly those observations, so that the restrictions im-
posed are satisfied exactly. Furthermore, the estimated MSE of the restricted
forecasts are smaller than those for the unrestricted forecasts.
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4. Building the VAR Model

The VAR model was built from adjusted data (edited as indicated previously,
with no allowance for outliers) following standard procedures. That is, we first
decided the degree of differencing that renders each individual series stationary.
To that end we applied the variate difference method (see Anderson, 1976) on
the transformed series. That is, out of those series with successive degrees of
differencing, the one with minimum standard deviation should be used. Of course,
we could have used a unit root test, implying a case-by-case analysis for each
species. That would have made the proposed method difficult to apply massively
(for all the abattoirs in Mexico).

4.1 Degree of differencing

The results of applying the variate difference method are shown in Table 1.
There we see that the transformed series requires at most one difference to become
stationary. This pattern was observed for all the species at every abattoir under
study. Thus, by applying one difference to the series we will achieve stationarity,
although we may run into overdifferencing, but we did not consider that to be as
serious a problem as that of underdifferencing, because the model is only going to
be used to produce one-step-ahead forecasts. We refer the reader to Sánchez and
Peña (2001) for an argument that favors overdifferencing to underdifferencing
a time series, when using an autoregressive model to produce forecasts. Let
us recall that we were looking for a generic transformation to stationarity that
could be applied to all the series, in order for the procedure to be computationally
automated for massive and repetitive application (so that it could be used as a
canned package by the capture personnel).

Table 1: Standard deviation for successive degrees of differencing

Variable Species Degree of differencing

0 1 2

TNH Cattle 0.11 0.15 0.26
Swine 0.15 0.23 0.42

TWH Cattle 0.43 0.52 0.84
Swine 3.05 3.22 5.27

TWB Cattle 0.40 0.36 0.58
Swine 3.27 3.39 5.54
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4.2 Likelihood ratio tests

Once stationarity was achieved, we had to decide the VAR order for each
species at every abattoir. Thus, we applied a likelihood ratio testing scheme (see
Lütkepohl, 2005, pp. 128-144) that allowed us to test sequentially the hypotheses
H0 order p vs. HA: order p − 1, starting with the value p = 5. Some examples
of the tests results are shown in Table 2. We found a generic specification with
p = 3, since that order yielded the first significant value of χ2 in most cases, when
we reduced the number of lags.

Table 2: Likelihood ratio test results

p (lags) Cattle Swine

χ2 Signif. χ2 Signif.

5 13.28 0.15 11.18 0.26
4 4.99 0.84 4.94 0.84
3 19.48 0.02 21.39 0.01
2 37.36 0.00 21.94 0.01

In all cases, we used the same model specification

∇Zt = ΛDt + Π1∇Zt−1 + · · · + Πp∇Zt−p + at

where the vector of deterministic variables Dt contains seasonal dummies.

4.3 Model estimation

The resulting VAR model is given by the following three equations

DTZt = π1,11DTNHt−1 + · · · + π3,11DTNHt−3 + π1,21DTWHt−1 + · · ·
+ π3,21DTWHt−3 + π1,31DTWBt−1 + · · · + π3,31DTWBt−3

+
12∑
i=1

λiDit + aDTZ,t

where Z stands for NH,WH and WB, for t = 6, . . . , N . Besides, the seasonal
dummies are centered (so that the sum of the Di,t values within each year is zero,
with i = 1, . . . , 12) that is,

Dj,t = 11/12 if t = the i-th month
= −1/12 otherwise,

t = 1, 2, . . . , 12.
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Ordinary Least Squares was applied to each equation separately because that
method produces efficient joint estimates of all the model parameters, as it is
shown in Lütkepohl (2005, pp. 71-72). Therefore, parameter estimation was
also carried out easily (we employed the statistical package RATS, version 5,
available at http://www.estima.com). Some typical estimation results appear in
Tables 3 and 4. There we see that seasonality has significant effects to explain
each variable for every species. The adjusted coefficient of determination reaches
values around 75% for DTNH, but it is sensibly smaller for DTWH and DTWB
(around 35%). Each variable is explained by itself, among others, as shown by
the F statistics used to test the null hypothesis of no significant effects on the
variable to be explained.

Table 3: Estimation results of the VAR(3) model: Cattle

Variable to Explanatory variables (F -statistics) R̄2

be explained DTNH DTWH DTWB Seasonality

DTNH 24.25*** 1.67 1.74 *** 0.80
DTWH 1.20 0.87 0.27 *** 0.29
DTWB 1.02 0.86 0.45 ** 0.29

(***) 1% Significant, (**) 5% Significant, (*) 10% Significant, (–) Not signifi-
cant at 10%

Table 4: Estimation results of the VAR(3) model: Swine

Variable to Explanatory variables (F -statistics) R̄2

be explained DTNH DTWH DTWB Seasonality

DTNH 18.59*** 0.98 0.90 *** 0.74
DTWH 0.24 3.55** 0.43 – 0.15
DTWB 0.20 0.88 3.82** ** 0.21

(***) 1% Significant, (**) 5% Significant, (*) 10% Significant, (–) Not signifi-
cant at 10%

4.4 Model validation

Empirical adequacy of the model was checked first by means of visual inspec-
tion of residual plots as those shown in Figure 3. There we see that no outliers are
present and no serious violation of the homoscedasticity assumption is evident.
It should be mentioned that the extreme observations for DTWH (in 1998:07
and 2002:01) as well as those for DTWB (in 1998:07, 1999:02 and 2002:01) were
adjusted during the edition procedure of the historical record.
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Figure 3: Standardized residuals of the VAR model (Cattle)

We also calculated the Ljung-Box statistic to check for zero autocorrelation
and the Jarque-Bera statistic for normality. The corresponding values for cat-
tle appear in Table 5 and none of those calculated statistics show evidence of
inadequacy. Therefore, we concluded that the estimated model was reasonably
supported by the data at hand.

Table 5: Ljung-Box and Jarque-Bera statistics for residuals: Cattle

Series Ljung-Box (24 lags) Jarque-Bera

Statistic p-value* Statistic p-value

DTNH 23.1 0.34 0.69 0.71
DTWH 21.4 0.43 3.22 0.20
DTWB 18.1 0.64 1.74 0.42

*By comparing against a Chi-square distribution with 21 degrees of freedom.

5. Application of the Method

This section is devoted to show some empirical results produced by the pro-
posed methodology. These examples are shown only for illustrative purposes of
the kind of results produced by the method in practice. It is important to appre-
ciate how the methodology is to be applied separately to data from each abattoir
on a monthly basis, once the corresponding VAR model was built from the edited
historical time series:

1. Locate any recorded values that are obviously incorrect, for example by
checking that the average weight per animal before slaughtering lies in the
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range (K1,K2), where K1 and K2 are species-specific constants. Replace
these with adjusted values that satisfy the corresponding edit rule.

2. Test that each month’s vector of observations is compatible with the previ-
ous month’s one-step-ahead forecast, by computing the compatibility statis-
tic. If the test statistic exceeds some percentage point of the appropriate
Chi-square distribution, conclude that the data were recorded incorrectly
and replace them with the model-based forecasts. Otherwise, keep the data
as recorded.

5.1 Edition of data

In Table 6 we show an example of an abattoir without missing data or gross
inconsistencies of the observations, as compared with their one-step-ahead fore-
casts, during each of the months under consideration. The observed data are
not significantly different from the unrestricted forecasts since the largest calcu-
lated compatibility statistic became Kcalc = 4.0 which is not significant at the
10% level when compared against a Chi-square distribution with 3 degrees of
freedom. Thus, by applying the edition procedure in this case we changed the
observations of WB forcing them to satisfy the edit rule imposed by K2 and K4,
without changing any observations of NH or WH. All the observations on WB
were changed because they were too low (it is well known that some informants
tend to lower the values for this variable, trying to hide the actual yield of meat).

Table 6: Application of the editing procedure in real time: Cattle

Year Data Compat. Unrestricted forecasts Restricted forecasts

2004 NH WH WB stat (sig.) NH WH WB NH WH WB

Apr 376 142880 61296 2.5 (.29) 395 162708 87720 376 142880 71440
May 398 159200 73232 1.9 (.39) 428 172684 94435 398 159200 79600
Jun 379 151600 69736 0.7 (.69) 384 161968 87396 379 151600 75800

Structural constants: K1 = 250,K2 = 550,K3 = 0.5,K4 = 0.55

5.2 Edition and imputation of missing or inconsistent data

In Table 7 we show two examples where both edition and imputation took
place. In order to apply the imputation procedure we decided to fix 1% as the cut-
off point for the significance level of the compatibility statistic. The first example
corresponds to a gross inconsistency in abattoir A1, found in the observed data
of swine in August (compatibility statistic Kcalc = 9.9). All the WB data were
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changed essentially by the edition rule, while the WH datum was estimated by
restricted forecasting since it was considered too high by the automatic procedure
(as compared with its corresponding unrestricted forecast).

Table 7: Application of the imputation method in real time: Swine

Year Data Compat. Unrestricted forecasts Restricted forecasts

2004 NH WH WB stat (sig.) NH WH WB NH WH WB

Jun 140 13300 6384 0.7 (.72) 150 15076 10861 140 13300 9310
Jul 160 15200 7296 3.1 (.22) 136 13495 9904 160 15200 10640
Aug 158 18960 9101 9.9 (.01) 139 13631 9524 158 18170 12705

5.3 Simulation

A small simulation study was carried out to validate the usefulness of the
method to approximate the true values of the missing or inconsistent data. The
experiment was intended to reproduce the most frequent situations that occur
in practice, these are shown in Table 8, where the notation employed is: O =
observed datum, − = datum 25% lower than its actual value and + = datum
25% higher than its actual value.

Table 8: Experimental design for the simulation study

Experi. Values of Experi. Values of Experi. Values of

run NH WH WB run NH WH WB run NH WH WB

1 O O O 11 O NA – 21 – – –
12 O NA + 22 – – NA

2 NA O O 13 O NA NA 23 – NA –
3 – O O 24 – NA O
4 + O O 14 NA – – 25 – NA NA
5 O NA O 15 NA – O
6 O – O 16 NA + O 26 + + +
7 O + O 17 NA + + 27 + + NA
8 O O NA 18 NA NA – 28 + NA +
9 O O – 19 NA NA O 29 + NA O
10 O O + 20 NA NA + 30 + NA NA

Even without a formal statistical analysis of the experimental results, in Table
9 we can clearly see that the estimated values produced by restricted forecasting,
either to replace inconsistent data or to impute missing data, are very reasonable.
The largest discrepancies are: 36.8% for NH, 38.6% for WH and −52.8% for
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WB, indicating that WB is the most sensitive variable. Furthermore, the values
of the compatibility statistics do not lead us to declare incompatibility between
observed data (NH = 492, WH = 196800, WB = 88560) and unrestricted forecasts
(NH = 463,WH = 166645,WB = 95247). When the data are set in accordance
with the experimental design incompatibility arises at the 5% significance level,
in most cases.

Table 9: Simulation results for Cattle (January, 2004)

Restrictions Compat Restricted forecasts Observ.-Estim. in %

NH WH WB stat. (sig.) NH WH WB NH WH WB

492 196800 88560 4.0 (.13) 492 196800 108240 0.0 0.0 -22.2
NA 196800 88560 4.0 (.13) 492 196800 108240 0.0 0.0 -22.2

369 196800 88560 88.3 (.00) 369 196800 104183 25.0 0.0 -17.6
615 196800 88560 27.9 (.00) 615 196800 108240 -25.0 0.0 -22.2
492 NA 88560 400.0 (.00) 492 177120 88560 0.0 10.0 0.0
492 147600 88560 8.4 (.01) 492 147600 81180 0.0 25.0 8.3
492 246000 88560 37.3 (.00) 492 246000 129761 0.0 -25.0 -46.5
492 196800 NA 4.0 (.13) 492 196800 108240 0.0 0.0 -22.2
492 196800 66420 4.0 (.13) 492 196800 108240 0.0 0.0 -22.2
492 196800 110700 4.0 (.13) 492 196800 108240 0.0 0.0 -22.2
492 NA 66420 400.0 (.00) 492 120764 66420 0.0 38.6 25.0

492 NA 110700 400.0 (.00) 492 221400 110700 0.0 -12.5 -25.0
492 NA NA 1.2 (.27) 492 174736 96105 0.0 11.2 -8.5
NA 1 147600 66420 18.0 (.00) 369 147600 81180 25.0 25.0 8.3
NA 147600 88560 18.0 (.00) 369 147600 81180 25.0 25.0 8.3
NA 246000 88560 32.6 (.00) 615 246000 135300 -25.0 -25.0 -52.8
NA 246000 110700 32.6 (.00) 615 246000 135300 -25.0 -25.0 -52.8
NA NA 66420 510.3 (.00) 311 132840 66420 36.8 32.5 25.0

NA NA 88560 424.1 (.00) 414 177120 88560 15.9 10.0 0.0
NA NA 110700 396.6 (.00) 518 221400 110700 -5.3 -12.5 -25.0
369 147600 66420 18.0 (.00) 369 147600 81180 25.0 25.0 8.3

369 147600 NA 18.0 (.00) 369 147600 81180 25.0 25.0 8.3
369 NA 66420 451.9 (.00) 369 132840 66420 25.0 32.5 25.0
369 1 NA 88560 451.9 (.00) 369 177120 88560 25.0 10.0 0.0
369 NA NA 17.3 (.00) 369 139623 76793 25.0 29.1 13.3
615 246000 110700 32.6 (.00) 615 246000 135300 -25.0 -25.0 -52.8

615 246000 NA 32.6 (.00) 615 246000 135300 -25.0 -25.0 -52.8
615 NA 110700 398.9 (.00) 615 221400 110700 -25.0 -12.5 -25.0
615 NA 88560 398.9 (.00) 615 177120 88560 -25.0 10.0 0.0
615 NA NA 27.1 (.00) 615 208221 114522 -25.0 -5.8 -29.3

Unrestricted forecasts: NH = 463,WH = 166645,WB = 95247
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6. Final Considerations

The proposed procedure consists of two phases. Edition is carried out first,
in order to produce valid data that can be used as input when estimating a VAR
model for the multiple time series under study. Imputation is then applied to es-
timate missing or inconsistent data. Edition makes use of some known structural
constants that define the permissible range for two constructed variables. These
constants are employed to transform the data in such a way as to get valid data
that can be used when building models for the imputation phase. A VAR model
is used to get restricted forecasts which provide statistically efficient estimates
of the missing data. This model has to be reestimated each month as new data
arrive.

An added benefit of using explicit statistical models for editing and imputing
data, rather than numerical algorithms, is that we can measure uncertainty of
the imputed values and also make statistical inference, as that provided by the
compatibility statistic. Nevertheless, we should be aware that this procedure is
applied at the abattoir level, for data of each animal species, so that a measure
of uncertainty for the aggregated data at the State level is something to be done
in the future (this measure could be useful for performing statistical analysis of
the ESGRM data). Finally, in order to generalize the use of the VAR model here
employed to other Mexican States we require searching for generic models that
provide statistically valid results for the abattoirs in those States.
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Appendix. Proof of the restricted forecasting formulas

Equations (3.3) and (3.4) can be written as the following system(
E(∇ZN+1|Z)

Y

)
=

(
Ik

C

)
∇ZN+1 +

(
−aN+1

u

)
with

E

(
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)
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=
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Application of Generalized Least Squares yields the following minimum MSE
linear predictor

ẐN+1 = [(Ik, C
′)

(
Σ−1

a 0
0 Σ−1

u

)(
Ik

C

)
]−1(Ik, C

′)
(

Σ−1
a 0
0 Σ−1

u

)
×

(
E(ZN+1|Z)

Y

)
= (Σ−1

a + C ′Σ−1
u C)−1[Σ−1

a E(ZN+1|Z) + C ′Σ−1
u Y],

with MSE(ẐN+1) = (Σ−1
a +C ′Σ−1

u C)−1. The Matrix Inversion Lemma (see Har-
vey, 1981, p. 118) leads us to

(Σ−1
a + C ′Σ−1

u C)−1 = Σa − ΣaC
′(ΣuCΣaC

′)−1CΣa = (Ik − AuC)Σa

and

(Σ−1
a + C ′Σ−1

u C)−1C ′Σ−1
u = ΣaC

′[Σ−1
u − Σ−1

u C(Σ−1
a C ′Σ−1

u C)−1] = Au.

Hence,

ẐN+1 = (Ik − AuC)E(ZN+1|Z) + AuY

= E(ZN+1|Z) + Au[Y − CE(ZN+1|Z)]

with MSE(ẐN+1) = (Ik − AuC)Σa.
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