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Abstract: The present article discusses and compares multiple testing pro-
cedures (MTPs) for controlling the family wise error rate. Machekano and
Hubbard (2006) have proposed empirical Bayes approach that is a resam-
pling based multiple testing procedure asymptotically controlling the fam-
ilywise error rate. In this paper we provide some additional work on their
procedure, and we develop resampling based step-down procedure asymptot-
ically controlling the familywise error rate for testing the families of one-sided
hypotheses. We apply these procedures for making successive comparisons
between the treatment effects under a simple-order assumption. For exam-
ple, the treatment means may be a sequences of increasing dose levels of a
drug. Using simulations, we demonstrate that the proposed step-down pro-
cedure is less conservative than the Machekano and Hubbard’s procedure.
The application of the procedure is illustrated with an example.
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parisons.

1. Introduction

In some studies in which the effects of k treatments on a response variable
are examined, the researcher may believe before observing the data that the true
means are simply ordered (µ1 ≤ . . . ≤ µk). For example, the treatments may be a
sequence of increasing dose level of a drug. In the framework of one way analysis of
variance (ANOVA) the problem of testing the null hypothesis H0 : µ1 = . . . = µk

against the simply ordered alternative hypothesis H1 : µ1 ≤ . . . ≤ µk with at least
one strict inequality has received considerable attention in the statistical litera-
ture. Barlow et al. (1972) and Robertson, Wright and Dykstra (1988). Recently,
Hayter (1990) developed a one-sided studentized range test which provides simul-
taneous one-sided lower confidence bounds for the ordered pairwise comparisons
µi − µj , 1 ≤ j < i ≤ k. These and other simultaneous inference procedures are
discussed in Miller (1981), Hochberg and Tamhane (1987) and Hsu (1996).
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However, under the ordering assumption µ1 ≤ . . . ≤ µk an experimenter may
want to look directly at only the successive difference between the treatment
effects, namely the subset of pairwise differences

µ2 − µ1, . . . , µk − µk−1.

Liu, Miwa and Hayter (2000) derived the simultaneous confidence intervals for
the set of successive differences. Liu and Somerville (2004) developed a step-
wise multiple testing procedure for successive comparisons of treatment effects
which is uniformly more powerful than the simultaneous confidence interval pro-
cedure in terms of rejection of the null hypotheses. These procedures are not
based on the assumption that µi’s follow a simple ordering. However, if there is
some prior information about the order of µi’s, i.e., such as µ1 ≤ . . . ≤ µk for
treatment effects, then it can be used to improve the precision of inference. On
the other hand, the computation of critical values is also more complicated for
large k with respect to controlling the familywise error rate. Recognizing such
limitations, we propose a Bayesian method of multiple testing for successive com-
parisons of ordered treatment effects. This Bayesian development incorporates
ordering information using some suitable prior distribution for the parameters.
The Bayesian approach to various statistical problems has become popular in
recent years due to the advancement in computational power. In the context of
comparing treatments, Machekano and Hubbard (2006) proposed a single-step
procedure, with a common cut-off value, based on empirical Bayes approach to
control familywise error rate for the multiple testing problem. It is performed by
estimating the test statistics null distribution over the true nulls. The null dis-
tribution comes either from the distribution of the maximum of the k correlated
test statistics or the minimum of the p-values.

In the present study, we consider testing whether the two means in a pairwise
comparison in the one-way ANOVA are equal (µi = µj) or satisfy increasing
(µi < µj) order. In fact, we develop a procedure for testing the families of
hypotheses

Hi0 : µi+1 − µi = 0 vs Hi1 : µi+1 − µi > 0, i = 1, . . . , k − 1

from Bayesian view point. When a test of hypothesis is to be conducted in a
Bayesian framework and the parameter space under null hypothesis consists of a
single point, a point-mass prior, which is typically a discrete-continuous mixture,
may be used. On the successive differences of the means, we place independent
prior distributions that are mixtures of a truncated normal distribution and a
discrete distribution with entire mass at zero. For simultaneous testing of multiple
point null hypotheses against one-sided alternatives, we propose a new step-
down multiple testing procedure that also controls the familywise error rate. In
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fact this procedure is step-down version of Machekano and Hubbard’s single-step
procedure. According to the proposed new step-down procedure, the ordered test
statistics or the associated p-values are compared with a set of critical values in a
stepwise fashion toward identifying the set of true and false null hypotheses. The
critical value used in each step incorporates the decision made in the preceding
steps. Therefore, it provides better control of the familywise error rate, hence
compared to a single-step procedure where decision about true and false null
hypotheses is made by simply comparing each test statistic or the corresponding
p-value with a single critical value, it is more powerful.

In the remainder of this article, we describe the hierarchical model, prior
specifications, and posterior computations. We then discuss the findings of a
simulation study, comparing our procedure with other procedures that controls
the familywise error rate for the multiple tests of successive comparisons of treat-
ment effects. We demonstrate through this study that our proposed procedure
provide much better control of familywise error rate than those that are currently
available in the literature.

2. Multiple Testing Framework

Suppose the treatments are a sequence of increasing dose levels of a drug. An
experimenter may want to look directly at only the successive differences between
the treatment effects. In order to assess how the treatment effects change with
increasing dose levels, we consider to test the following family of hypotheses,

Hi0 : µi+1 − µi = 0 vs Hi1 : µi+1 − µi > 0, i = 1, . . . , k − 1. (2.1)

Let T1, . . . , Tk−1 be the corresponding test statistics and let p1, . . . , pk−1 be
the associated p-values. In single-step hypotheses testing, Hj0 is rejected if Tj >
cj(α), or if pj ≤ α, for some chosen α ∈ (0, 1), j = 1, . . . , k − 1. It is often
assumed that if Hj0 is true, Tj comes from some standard theoretical distribution
(e.g. normal or t-distribution), from which we get the critical values cj(α).

A step-down test, which is not a single-step procedure, based on k − 1 crit-
ical constants d1(α) ≤ . . . ≤ dk−1(α), proceeds as follows. Denote the or-
dered Ti-values as T(1) ≤ . . . ≤ T(k−1) and the corresponding null hypotheses
as H(1)0, . . . ,H(k−1)0. Start with the largest T -value, T(k−1). If T(k−1) ≤ dk−1(α),
then stop and accept all the null hypotheses, otherwise reject H(k−1)0 and go to
the next step. In general, if testing has continued to the ith step (1 ≤ i ≤ k − 1)
and if T(k−i) ≤ dk−i(α), then stop testing and accept all the remaining hypothe-
ses, H(1)0, . . . ,H(k−i)0, otherwise reject H(k−i)0 and go to the (i+1)th step. Define
S to be the set of all null hypotheses, S0 the set of all true null hypotheses and let
S1 represent the set of true non-null hypotheses. In a multiple testing problem,
we would like to accurately estimate the subset S0, thus its complement S1, while
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controlling probabilistically some error rate under an assumed significance level
α. In this article, the critical constants are chosen so that the familywise error
rate (FWER), the probability of making at least one error by rejecting a true null
hypothesis among all tests, is controlled at a pre-specified level α. It is obvious
that choosing the rejection regions, cj(α) and dj(α), j = 1, . . . , k − 1, are chal-
lenging, because the theoretical joint null distribution for the k− 1 test-statistics
is not always obvious. Moreover, the difference between the theoretical null and
empirical null distribution affects simultaneous inference.

3. Bayes Procedure

Single step maxT multiple testing procedure, with common cut-off, uses a
null distribution based on the joint distribution of the test statistics. The null
distribution comes either from the distribution of the maximum of the k−1 corre-
lated test statistics or minimum of the p-values. This null distribution is used to
define the rejection regions as well as the p-values. Common cut-offs that guar-
antee control of FWER are chosen from the maximum test statistic distribution.
Machekano and Hubbard (2006) introduced a method for choosing the common
cut-off c(α) which involves controlling the tail probability of a random variable
Ṽ defined as

Ṽ =
k−1∑
i=1

I(T̃i > c(α), i ∈ S0n).

This random variable represents a guessed number of false positives among re-
jections, defined by drawing T̃ = (T̃1, . . . , T̃k−1) from a null distribution for the
test-statistic vector and independently drawing S0n which represents a guess of
the set of true null hypotheses S0 . The distribution of S0n and null distribu-
tion of T̃ are chosen so that Ṽ asymptotically dominates in distribution the true
number of false positives V where V =

∑k−1
i=1 I(Ti > c(α), i ∈ S0). The Bayes

utilizes a Byesian method to estimate the guessed set of null hypotheses S0n.
Machekano and Hubbard (2006) used empirical Bayes approach to estimate S0n.
In their procedure, the critical value c(α) is given by the maxT̃ distribution only
over the guessed set of null hypotheses. We shall refer to this procedure as maxT
procedure. In the next subsection we will use a hierarchical Bayes approach to
estimate the guessed set of null hypotheses, and describe how the null distribu-
tion of T̃ is drawn. Under this hierarchical Bayes model, we define the maxT
procedure and then present the new step-down procedure.
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3.1 Hierarchical model

Consider the balanced one-way analysis of variance model

Xij = µi + εij , 1 ≤ i ≤ k, 1 ≤ j ≤ n

where the εij are independent N(0, σ2) random variables. Let X̄i, 1 ≤ i ≤ k
be the ith sample mean based upon n observations, X and µ be the vector of
X̄i and µi, 1 ≤ i ≤ k − 1, respectively and Σ1 the covariance matrix of X. We
define A to be a matrix such that AX = Y = (X̄2 − X̄1, . . . , X̄k − X̄k−1) and
Aµ = δ = (µ2 − µ1, . . . , µk − µk−1). The distribution of Y will thus be as

f(y|δ, σ2) ∝ 1
(σ2)k−1/2

exp(−1/2((y − δ)
′
(AΣ1A

′
)−1(y − δ))).

The prior for the difference parameter, δi = µi+1 − µi i = 1, . . . , k − 1, is a
mixture of a truncated normal distribution and a discrete distribution with its
entire mass at δi = 0, in particular,

[δi|σ2, ρ] ∼ π(δi|σ2, ρ) = ρI{δi=0} + (1 − ρ)
2

(2πσ2)1/2
exp(− δ2

i

2σ2
)I{δi>0}

with 1 ≤ i ≤ k − 1, where I{.} represents the ordinary indicator function.

The hyperparameter ρ, which represents Pr(δi = 0), has a beta hyperprior
distribution, ρ ∼ BETA(α, β). Of course, setting α = β = 1 makes this hyper-
prior UNIF (0, 1). For σ2, we consider Jeffreys’ reference prior (Jeffreys, 1946),
which would be σ2 ∼ π(σ2) ∝ 1/σ2.

In the next section for performing multiple comparisons we will use the poste-
rior probability of δi, (Pr(δi = 0|y)), to define a random set S0n which represents
a guessed set of true null hypotheses S0. To compute the above probability, the
Gibbs sampling is a special technique of implementing the Markov Chain Monte
Carlo (MCMC) method, which generates observations from the target posterior
distribution through iterative sampling. To use the Gibbs sampling, we must
obtain the full conditional posterior distributions of all parameters and hyperpa-
rameters.

Due to conjugacy, the conditional posterior distribution of ρ and σ2 can be
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easily obtained as

π(ρ|α, β, δ1, . . . , δk−1) = BETA

(
k − 1 + α +

k−1∑
i=1

∆i,

k−1∑
i=1

∆i + β

)

π(σ2|y, δ1, . . . , δk−1) = IG[(k − 1 +
k−1∑
i=1

∆i)/2,
(
(y − δ)

′
(AΣA

′
)−1

(y − δ)) /2 +
k−1∑
i=1

∆iδ
2
i ]

with ∆i = I{δi>0}, 1 ≤ i ≤ k−1, Σ = σ−2Σ1 and IG(a, b) ≡ Inverse Gamma(a, b).
The conditional posterior distribution of δi, is a mixture of a point mass at

zero and a normal distribution truncated at zero, for 1 ≤ i ≤ k − 1, it can be
shown that

π(δi|y, σ2, ρ, δ−i) = si

[
ρI{δi=0} + (1 − ρ) exp

(
di + 1
2σ2

p2
i

)
σ−2

× exp
(
−di + 1

2σ2
(δi − pi)2

)
I{δi>0}

]
where di =

∑i
j=1 eji, pi = diyi+ci

di+1 , ci =
∑i

j=1 eji
∑k−1

m=j,m6=i(ym − δm)ejm and
eji is the (j, i)th element of an upper-triangular matrix which is the Choleski
decomposition of (AΣA

′
)−1. The normalizing constant si satisfies

s−1
i = ρ + (1 − ρ) exp

(
di + 1
2σ2

p2
i

)(
2π

di + 1

)1/2 [
1 − Φ(0, pi, σ(di + 1)−1/2)

]
where Φ is the normal cumulative distribution function with mean pi and standard
error σ(di + 1)−1/2.

For our current hierarchical model, Pr(δi = 0|y) can be easily computed by
counting the number of times δi = 0 generated during the MCMC steps. We
will use this posterior probability as the Bernoulli probability on Hi0 being true.
Now we define a random set S0n which represents a guess of the set of true null
hypotheses S0, as follows:

S0n = {i : C(i) = 1}, C(i) ∼ Bernoulli(Pr(δi = 0|y)).

As discussed in van der Laan, Brikner and Hubbard (2005), in order to control
FWER, S0n must contain the set of true null hypotheses i.e. S0 ⊂ S0n, due to
the fact that if i ∈ S0n while in reality i ∈ Sc

0, the cut-off chosen will be too
large. To avoid the above problem, they replace the single guess of the set of true
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null hypotheses by a random guess from a distribution which is asymptotically
degenerate at the set of true null hypotheses. In this study, we use the posterior
probability, Pr(δi = 0|y), as the Bernoulli probability on Hi0 being true which
represents a random guess of the set of true null hypotheses. Our simulations show
that using this method to generate S0n instead of empirical Bayes method used
by van der Laan, Brikner and Hubbard (2005), has no effects on the controlling
of the familywise error rate at nominal level α.

T̃ is computed by drawing a bootstrap sample X∗
1 , . . . , X∗

nk from the empirical
distribution Pn of the original sample X1, . . . , Xnk, or from a model based esti-
mate P̃n of P such that P is the data generating distribution, and subsequently
calculating the test statistics based on this bootstrap sample. This will be re-
peated B∗ times and will result in an (k−1)×B∗ matrix of test statistics vectors,
each representing a draw from the test statistics vector under the empirical Pn

or the model based estimate P̃n. Subsequently, we compute the row means of the
matrix, and the matrix is shifted (centered) by the respective means so that the
row means after this shift are equal to the null-value. This matrix represents a
sample of B∗ draws from a null distribution. Each row of this matrix will specify
a draw of T̃ = (T̃j : j = 1, . . . , k−1). We shall refer to this matrix as T̃0. It can be
also scaled columnwise so that the row-variances equal a null value (Dudoit, van
der Laan and Pollard, 2004; Pollard and van der Laan, 2003). Machekano and
Hubbard (2006) have used the single step maxT multiple testing procedure. This
procedure is a single-step approach, with common cut-off, which uses a corrected
test statistics null distribution as follows:

1. Generate k−1 Bernoulli random variables using probability Pr(δi = 0|y), i =
1, . . . , k − 1.

2. Repeat 1, B∗ times to form (k − 1) × B∗ matrix as B̃0.

3. Take the Hadamard product (entry-wise product) of B̃0 and T̃0, then get
the maximum in each column Tmax

1 , . . . , Tmax
B∗ to get the maxT distribution

only among the true null hypotheses.

4. The critical value c(α) is given as the 1−α quantile of the maxT distribution.
Reject Hi0 if Ti ≥ c(α), otherwise do not reject Hi0.

3.2 New step-down procedure

The families of hypotheses in (2.1) are non-hierarchal, that is, the truth or
falsity of one hypothesis has no logical implication on the truth or falsity of any
other hypotheses in the family. Liu (1996) discussed the determination of step-
down and step-up critical constant for a family of non-hierarchical hypotheses.
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As pointed out in Liu (1996), the step-down critical constants d1(α) ≤ . . . ,≤
dk−1(α) can be chosen to satisfy the following constraints in order that the fam-
ilywise error rate is less than α :

minPr{max(Ti1 , . . . , Tim) ≤ dm(α)} ≥ 1 − α, m = 1, . . . , k − 1

where the probability is calculated at µ1 = . . . = µk, and the minimum is over
all subsets {i1, . . . , im} ⊂ {1, . . . , k − 1} with cardinality m.

For the balanced one-sided situation, the minimum probability is attained at
{i1 = 1, . . . , im = m} (Liu and Somerville, 2004).

We assume that the design is balanced, means that the sample sizes are equal
for k treatments. Since in our study the hypotheses are one-sided by using the
above step-down procedure, we propose the following new step-down procedure
which entails the first two steps of Machekano and Hubbard’s method and changes
other steps to compute the critical values di(α), i = 1, . . . , k − 1.

1. Generate k−1 Bernoulli random variables using probability P (δi = 0|y), i =
1, . . . , k − 1.

2. Repeat 1, B∗ times to form (k − 1) × B∗ matrix as B̃0.

3. Take the Hadamard product (entry-wise product) of B̃0 and T̃0, then cal-
culate

Tmax
ij = max

1≤h≤i
{Vhj}, j = 1, . . . , B∗ i = 1, . . . , k − 1

where Vhj is (h, j)th element of the matrix which is Hadamard product of
B̃0 and T̃0.

4. The critical value di(α), i = 1, . . . , k − 1 is given as the 1 − α quantile of
the Tmax

ij , j = 1, . . . , B∗. Now in the ith step (1 ≤ i ≤ k − 1) if T(k−i) ≤
dk−i(α), then stop testing and accept all the hypotheses, H(1)0, . . . ,H(k−i)0,
otherwise reject H(k−i)0 and go to the (i + 1)th step.

It is obvious from the computation of di(α), i = 1, . . . , k − 1 in the new step-
down procedure and of c(α) in the maxT procedure that di(α) ≤ c(α) for 1 ≤ i ≤
k−1. Consequently, the maxT procedure rejects a set of the hypotheses which is
a subset of the hypotheses rejected by the new step-down procedure. Thus, the
new step-down procedure is less conservative than the maxT procedure. However,
we know that the step-down procedure introduced by Liu and Somerville (2004)
controls FWER, so the new step-down procedure introduced above guarantees
asymptotic control of FWER at level less than or equal to α, given the distribution
of null-centered rescaled T̃ ′s dominates the distribution of observed test statistics
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(see Machekano and Hubbard, 2006; van der Laan, Brikner and Hubbard, 2005
for details).

4. Simulation Studies

The simulation study compares the procedure outlined above, new step-down,
with the maxT procedure presented in Machekano and Hubbard (2006) and step-
down procedure presented in Liu and Somerville (2004).

In this simulation, the data are nk i.i.d. normally distributed Yij = X(i+1)j −
Xij ∼ N(µi+1 −µi, 2σ2), i = 1, . . . , k− 1 and j = 1, . . . , n. Recall that the prior
for δi = µi+1−µi, i = 1, . . . , k−1 is normal with mean zero and variance σ2 and
π(σ2) ∝ 1/σ2. For k = 5, 8, 10 and 15, we assumed k − 2 hypotheses in the null
group and for k = 21 we assumed 18 hypotheses in the null group, which means
that the proportion of true null hypotheses approximately is 0.9. We observe
that

Pr(Hi0) = Pr(δi = 0) = E[E(I{δi=0}|ρ, σ2)] = E(ρ) =
α

α + β
.

We select π(ρ) = BETA(9, 1), this prior makes Pr(δi = 0) = 0.9. σ2 is
generated uniformly from (0, 10000) and we then draw δi and Yij , i = 1, . . . , k −
1, j = 1, . . . , n, according to the above model. The above process is repeated N
times. For each generated data set, we compute the numbers of type I error,
V =

∑k−1
i=1 φi(1 − θi), where

θi = I{Hi0 is not true}, φi = I{Hi0 is rejected}, i = 1, . . . , k − 1.

We estimate the FWER for each procedure by computing the sample propor-
tion of times the number of type I errors are greater than or equal to 1 in the
simulations.

Using the steps described in Section 2.2, 100,000 MCMC samples are gener-
ated using the Gibbs sampling after discarding the first 3,000 as burn-in. Since
the convergence is not slow, the number of burn-in samples is taken to be 3,000.

The above simulation was run for n = 13, n = 20, α = 0.05 and N =
8, 000. For bootstrap estimation of the null distribution of test statistics, we
use B∗ = 3, 000 and non-parametric bootstrap method. That is, samples are
drawn at random, with replacement from the observed data. The results of the
simulations for n = 13 are presented in Table 1.

Table 1: FWER for three procedures, n = 13

k 5 8 10 15 21
step-down 0.0471 0.0468 0.0440 - -
maxT 0.0451 0.0407 0.0350 0.0302 0.0351
New step-down 0.0501 0.0441 0.0463 0.0415 0.0451
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It is clear from this Table all three procedures control the FWER at nominal
level of α = 0.05 for various k. Clearly, as we mentioned previously, the new
step-down procedure is less conservative than the maxT procedure. We also
see the FWER of the new step-down procedure is closed to the FWER of the
step-down procedure. In many cases the FWER of the new step-down method
is almost equal to the nominal Type I error rate, which is ideal for a multiple
testing procedure.

Table 2 contains simulations results for above configurations for the case of
n = 20. In the situation denoted by ” − ”, we do not have computed FWER for
the step-down procedure because in this case computation of the critical value
for the step-down procedure is too complicated. As mentioned earlier our goal
mostly is to compare the maxT procedure with the new step-down procedure and
particularly showing the performance of the new step-down procedure relative to
the maxT procedure.

Table 2: FWER for three procedures, n = 20

k 5 8 10 15 21
step-down 0.0470 0.4520 0.0486 - -
maxT 0.0450 0.0384 0.0410 0.0369 0.0391
New step-down 0.0483 0.0463 0.0478 0.0441 0.0472

5. Application

We take a problem from White and Froeb (1980) for our example. The effect
of smoking on pulmonary health is investigated in a retrospective study in which
subjects who had been evaluated during a physical fitness profile were assigned,
based on their smoking habits, to one of five groups: non-smoker (NS), passive
smoker (PS), light smoker (LS), moderate smoker (MS) and heavy smoker (HS).
A sample of 1000 female subjects, 200 from each group, were selected and data on
pulmonary function (forced vital capacity, FVC) were recorded. It is reasonable
to suspect that, for these variables, the mean values decreases from NS to PS,
from PS to LS, and so on. Reversing the order, we assume that, with 1=HS,
2=MS, 3=LS, 4=PS and 5=NS, the means are simply ordered: µ1 ≤ · · · ≤ µ5.
The sample averages are as

x̄1 = 2.55, x̄2 = 2.80, x̄3 = 3.15, x̄4 = 3.23, x̄5 = 3.35

and a pooled estimate S = 0.458 was obtained with v = 995 degrees of freedom.
For this example, the one-sided step-down critical constants at α = 0.05 are
found from Liu and Somerville (2004). The maxT procedure yields the decisions
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as follows:

µ1 < µ2, µ2 < µ3, µ3 = µ4, µ4 < µ5.

which means that the hypotheses H10 : µ2 − µ1 = 0, H20 : µ3 − µ2 = 0 and
H40 : µ5 − µ4 = 0 are rejected. On the other hand, using the new step-down
procedure and the step-down procedure, all four hypotheses are rejected. The new
step-down procedure therefore rejects more hypotheses than the maxT procedure.

6. Concluding Remarks

This paper has introduced a new step-down procedure for multiple testing of
simply ordered means in balanced situation. This technique uses the generally
valid null-value shifted re-sampling based null distribution for the test statistics,
as generally proposed by Pollard and van der Laan (2003) and Dudoit, van der
Lann and Pollard (2004). It is important that the set of guessed true null hy-
potheses must be contain the set of true null hypotheses to control the FWER
at nominal level α by the maxT and new step-down procedure. van der Laan,
Brikner and Hubbard (2005) have not recommended using the single guess of the
true null hypotheses and they replace the single guess of the true null hypotheses
by a random guess from a distribution which is asymptotically degenerate at the
set of true null hypotheses. Our method uses Bayesian model to generate ran-
dom guesses of the set of true null hypotheses, which asymptotically converges to
mixture model that is used by van der Laan, Brikner and Hubbard (2005). Our
simulation studies show that the new step-down procedure is less conservative
compared to the mxaT procedure but still gives proper control (FWER≤ 0.05).
Posterior distributions and consequently the posterior probabilities can be sen-
sitive to the choice of the priors for unknown parameters, especially variance
parameter in our studies. Gelman (2006) investigate various priors for variance
parameters and recommended a uniform distribution on the standard deviation.
In our study, we have also explored σ ∼ UINF (0, a0), with various value for a0.
The results were close to those presented in tables 1 and 2.
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