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Abstract: Lifetime morbid risks are usually determined either by the Kaplan-
Meier product limit estimator or by simpler estimators such as the lifetime
prevalence, the Weinberg method or the Schulz method, which can be con-
sidered an elaboration of the Weinberg method.

We show that the Kaplan-Meier product limit estimator of lifetime mor-
bid risk may yield unreliable estimates. Although the simplicity of the Schulz
method and the Weinberg method is appealing, we suggest that under a
proper model, those methods can be replaced by the original Strömgren
estimator which is almost equally simple, and more accurate. Increased ac-
curacy is achieved when the investigators have prior indication regarding the
distribution of the ages at onset for those affected by the disorder, and even
when that indication is vague and only limited knowledge of the distribution
is available.
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1. Introduction

The assessment of lifetime morbid risk is an integral part of the epidemiologic
assessment of many diseases and disorders. Estimation of lifetime morbid risk
is among the goals of many cross-sectional surveys, either in the population at
large or in subpopulations such as particular socio-economic groups, families of
affected individuals or individuals with other co-morbid diseases (e.g. Venkat
Narayan et al., 2003; Wolfe et al., 2003; Seshardi et al., 2006; Lloyd-Jones et al.,
2002; Feuer et al., 1993).

Our goal in this paper is to compare the various methods for estimating the
lifetime morbid risk from cross-sectional survey data: the lifetime prevalence, the
estimators of Weinberg, Schulz and Strömgren, the Kaplan-Meier estimator and
the maximum likelihood (ML) estimator. The survey might be a random sample
from the population at large or a focused study on a particular sub-population.
In a common example of the latter type of study, the sub-population consists of
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affected individuals and the goal is to assess co-morbidities associated with the
primary disease.

The estimators differ in the way that they exploit survey data to estimate
morbid risk. Some of the estimators adjust for the onset ages of those subjects
who have the disease whereas others adjust for the age at the time the subject is
interviewed. Some of the estimators take advantage of concomitant information
on the distribution of age-at-onset among all individuals who contract the disease.

We examine the quality of the estimators under the assumption that the age-
at-onset distribution is known and also under the assumption that only partial
information on the distribution is available. This study’s results demonstrate
that some of the most commonly used estimators can be seriously biased. The
Kaplan-Meier method, although widely used (e.g. Pauls et al., 1995; Nicolson
et al., 2003; Asarnow et al., 2001; Do Rosario- Campo et al., 2005), can yield
disturbingly unreliable estimates of lifetime morbid risk. Moreover, simple and
more accurate estimators are readily available.

We limit our study to lifetime morbid risk in a single population. An interest-
ing and useful extension is to include group comparisons or general dependence
on covariates. Kuk and Chen (1992) showed how the Kaplan-Meier approach to
lifetime morbid risk could be used to address these questions. Their approach
combines a proportional hazards model to account for the covariates with a non-
parametric model for the baseline hazard.

2. The Estimators of Lifetime Morbid Risk

We begin with the simplest estimators of lifetime morbid risk: the lifetime
prevalence and the Weinberg, Schulz and Strömgren estimators. Then we present
the ML and Kaplan-Meier estimators.

Lifetime Prevalence. Some studies (e.g. Kringlen et al., 2001; Nestadt et al.,
2000; Bienvenu et al., 2000; Black et al., 1992) report only the sample proportion
of affected subjects, known as lifetime prevalence (e.g. McGuffin et al., 1994) and
denoted by L-MR = A/n, Where A is the total number of affected individuals in
a sample of size n. The lifetime prevalence typically underestimates the lifetime
morbid risk, denoted by p, as at the time of the study some disease-free subjects
will still be at risk of contracting the disease.

Weinberg and Schulz. Weinberg (1925, and 1928) and Schulz (1937) proposed
simple estimators of the lifetime morbid risk that can be used when the disease
has an established risk period (say, 17-45 for a disorder like schizophrenia). These
estimators also adjust for the ages of the subjects at the time of the interview.
The Weinberg method is widely used in empirical studies (e.g. Reddy et al., 2001;
Somanath et al., 2002 and 2002a; Silverman et al.,1993). It is similar in form to
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the lifetime prevalence, but modifies the denominator to reflect whether subjects
were affected or not and, among the latter, weights the observations according to
age at the time of the interview. Let U1, U2 and U3 be the number of unaffected
subjects who were younger than the minimal risk period age, within the period
of risk or older than the maximum risk period age, respectively. The Weinberg
estimator for lifetime morbid risk is given by

W-MR =
A

A + 0.5 ∗ U2 + U3
.

The denominator, often referred to by the German term Bezugsziffer, or BZ,
is meant to approximate the number of lifetimes at risk. Subjects who have not
entered the risk period are not counted at all and those currently in the risk
period are counted with weight 0.5.

Schulz (1937) suggested a modification of the Weinberg method in which the
weights for subjects in the risk period account for their specific age at the time
of interview. The Schulz estimator is defined as

SC-MR =
A

T
,

Where T =
∑

i li and li denotes the proportion of the risk period that the i-
th individual has completed at the time of the interview. Unlike the Weinberg
method, the Schulz estimator does not implicitly assume that the ages at the
time of the interview are a random sample from the corresponding distribution
of onset ages. However, it does implicitly assume that age at onset is uniformly
distributed within the risk period, which can be very inaccurate, and as shown
below, may yield substantially biased estimates.

Strömgren. The Strömgren method (Strömgren, 1935) and the modified
Strömgren method (Strömgren, 1938) are used to estimate lifetime morbid risk
in many psychiatric studies (e.g. Baron et al., 1985; Lenane et al., 1990). These
estimators assume that the conditional age-at-onset distribution for affected indi-
viduals is known. The Strömgren denominator sums weights for each individual
that reflect the proportion of risk for onset that the individual has experienced,
rather than the proportion of risk period time. The original Strömgren estimator
is defined as

SO-MR =
A∑n

i=1 D(ai)
,

Where ai is the age at the time of the interview of the i-th individual in the
sample, and D(ai) is the corresponding conditional probability of being affected
by age ai, given that an individual is affected. In general, as in Risch (1983), we
discretize the onset-age distribution to the nearest year, and consider the period
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of risk of J years beginning at age γ1 and ending at age γJ . We denote by dj

the conditional probability that the disorder occurs at age γj , given that the
disorder occurred during the lifetime, and by Dj = d1 + · · ·+ dj the cumulative
conditional probability that the disease occurs by age γj given that the disease
does occur. For any age γK ≥ γJ , DK = 1. The overall probability of disorder by
age γJ is p, i.e. the lifetime morbid risk. At the other end of the scale, DL = 0
for γL < γ1.

The original Strömgren estimator is unbiased and its standard deviation is
(see e.g. Winokur et al., 1964)

σ(SO-MR) =
[
∑n

i=1 pD(ai)(1 − pD(ai))]
1/2∑n

i=1 D(ai)
.

In some cases, especially when sample sizes are small and the lifetime morbid
risk is large, the original Strömgren estimator can give estimates that exceed 1.
To avoid this problem, Strömgren suggested setting the weights of the affected
to 1, as in the Weinberg estimator, and giving the modified Strömgren estimator
(Strömgren, 1938):

SM-MR =
A

A +
∑n

i=1(1 − Yi)D(ai)
,

where Y1, i = 1, 2, . . . , n is a dichotomous variable which assumes the value one
if the i-th individual is affected, and zero otherwise. The revised denominator
assures that the modified Strömgren estimator is always less than or equal to
1, but also induces bias. An alternative estimator, which is slightly biased but
in general less so than SM-MR is obtained by setting the original Strömgren
estimator to equal 1 whenever the computed value of SO-MR exceeds 1.

Comparison of Ratio Estimators. The lifetime prevalence, the Weinberg es-
timator, the Schulz estimator and the original Strömgren estimator all have the
form A/

∑
wi, where wi is a weight associated with the i - th subject. It is in-

structive to compare the weighting schemes. The Strömgren estimator assumes
knowledge of the age-at-onset distribution and weights according to the probabil-
ity of onset by the subject’s age. The Schulz estimator weights by the proportion
of the risk period and corresponds to a special case of the Strömgren estima-
tor, in which the onset distribution is uniform throughout the risk period. The
Weinberg estimator gives full weight to each affected subject and half-weight to
unaffected subjects in the risk period, in effect assuming that the ages of those
in the risk period are a random sample from the age-at-onset distribution.

For the lifetime prevalence and the Schulz estimator, the denominators are
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constants, so we can easily compute their expected values.

E(L-MR) = E

(
A

n

)
=

p
∑n

i=1 D(ai)
n

, and

E(SC-MR) = E

(
A

T

)
=

p
∑n

i=1 D(ai)
T

The lifetime morbid prevalence has a clear negative bias. Following our com-
parison above of the weighting schemes, the bias of Schulz’ estimator depends on
whether the age at onset for affected individuals is early or late in the risk period.

The standard deviations of the lifetime morbid prevalence and the Schulz es-
timator are obtained by multiplying σ( SO-MR) by the corresponding constants
from the formulas for the expected values. The standard deviations can be esti-
mated by substituting the unbiased estimator SO-MR for the unknown p.

Maximum Likelihood The maximum likelihood estimator is based on the
fact that the probability that subject i is affected at the time of the interview
is pD(ai). Assuming that the age-at-onset distribution is known and that the
subjects are statistically independent, the maximum likelihood estimator (MLE)
for the lifetime morbid risk p can be found by solving the equation (Risch, 1983):

A

p
=

∑
i

(1 − Yi)
D(ai)

1 − pD(ai)
.

The MLE for p (which we denote by MLp) depends on the ages at the time of
interview for unaffected subjects, but ignores all age data, both interview and
onset, for affected subjects. If the solution to the equation is greater than 1, or if
all subjects are affected, MLp = 1. Risch (1983) shows that the ML method can
also be extended to jointly estimate the lifetime morbid risk and the age-at-onset
distribution.

The computation of MLp requires numerical methods. We briefly outline a
simple method for solution in Appendix 1. We also present there an approximate
formula for the variance of MLp. Our simulation study also indicates that, at
least on the average, the differences between MLp and the unbiased estimator
SO-MR are very small. We also present in Appendix 1 formulas for computing
an approximate standard error for MLp.

Kaplan-Meier. In recent years the Kaplan-Meier (KM) estimator (Kaplan
and Meier 1958) is probably the method most commonly used to assess lifetime
morbid risks. The KM estimator provides a non-parametric estimate of the entire
survival function. The KM estimator of the probability S(g) of remaining disease-
free at age g is

ŜKM (g) =
∏
gj≤g

sj

rj
,
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where rj and sj are the size of the risk set (i.e. the number of subjects who had
potential to develop the disorder) and the size of the subset of the sample who
remained disease-free, respectively, at age gj . The associated KM estimator of
lifetime morbid risk is

KM-MR = 1 − ŜKM (gM ),

where gM is the maximum onset age in the sample.
Maller and Zhou (1992, 1994) consider use of the Kaplan-Meier method to

estimate the proportion of immunes in a censored sample by ŜKM (gM ). The
proportion of immunes is the complement of the lifetime morbid risk and their
estimator is the complement of the estimator KM-MR presented above. Maller
and Zhou (1992, 1994) present properties of the estimator, including conditions
that assure that it is a consistent estimator. Their results will obviously hold
for KM-MR as well. The primary condition is the need for “sufficient follow-
up”, meaning that the data must include many censored times that exceed the
maximum possible failure time. Maller and Zhou (1994) develop a non-parametric
test to examine this question. They do not suggest using external data on the
onset age distribution, but it would appear that such data could also be valuable
in checking for sufficient follow-up.

3. The Sensitivity of the Kaplan-Meier Estimate for Lifetime Morbid
Risks

The KM estimator was designed for survival analysis and estimates the entire
survival curve. However, it is not necessarily ideal for estimating lifetime morbid
risk. The KM method implicitly assumes that “death” will eventually occur for
all subjects. Indeed, at the extreme, the lifetime mortality rate is obviously 1,
regardless of the data. On the other hand the lifetime morbid risk is less than
1. Many diseases have well-defined risk periods, so theoretical hazards should be
set at zero for ages outside that period. Obviously, the Kaplan-Meier estimator
does not account for such prior knowledge.

The KM method is the only estimator of lifetime morbid risk that uses data
on the onset ages of affected subjects. An important practical concern is thus the
reliability of the recorded time of onset of a disorder. Often occurrence times are
not exactly known, yet they have a strong influence on the KM estimator. We
illustrate this phenomenon with data from a study of schizophrenia among the
oldest siblings of probands with schizophrenia and OCD. Among 72 siblings, 3
were affected with schizophrenia, one reporting onset at age 20 and two at age
25. At the age of 20, 69 siblings had the potential to develop the disorder (3
were interviewed at age 19 and had no schizophrenia). At the age of 25 years,
there were 53 potential siblings. The Kaplan-Meier estimate of probability for
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the lifetime survival (i.e. no onset), is thus 51
53 × 68

69 = .9483 and the estimated
lifetime morbid risk is 0.0517 or 5.17%.

Now suppose that one or two of the subjects whose actual onsets were at the
age of 25 reported onset at age 44. These changes increase the KM estimate
of the lifetime morbid risk from 5.17% to 12.10%, and to 17.87%, respectively.
Most investigators are likely to feel uneasy knowing that the estimator used can
be affected so dramatically by a change in the age of onset of just one or two
individuals.

Unlike the Kaplan-Meier statistic, the ages at onset of the affected subjects
are not used in the computation of all the other estimators presented above.
For the example presented above with the period of risk from 17 to 45 years,
Weinberg’s estimator has A = 3, U1 = 0, U2 = 65, U3 = 7 and W-MR = 7.06% for
all three scenarios. The other estimators will depend on the specific distribution
of age at the time of the interview, but not on the onset ages.

4. Robustness to the Onset-age Distribution

The calculations of SO-MR and MLp assume knowledge of the conditional
distribution of the ages at onset (the dj ’s and Dj ’s). These values are obviously
never known exactly. However for various diseases national registries and results
of previous studies provide good approximations. Moreover, as shown in the sim-
ulation (next section), even partial knowledge of the distribution may be used to
improve estimation of the lifetime morbid risk. We represent partial information
by adopting constant dj ’s for several consecutive ages in specific segments within
the period of risk.

The estimator SO-MR becomes biased when the actual onset-age distribution
differs from that assumed in calculating the estimator; see Appendix 2 for details.
Our results can be used, for example, to bound the bias of the estimator by
positing two “extreme” distributions for the onset-age distribution, one with the
youngest onset ages and one with the oldest onset ages that seem plausible.

5. Comparison of the Estimators by Simulation

The performance of the estimators under various conditions was assessed in a
large simulation study. The statistics assessed were the Kaplan-Meier morbid risk
estimator, the Weinberg estimator, the original and the modified Strömgren es-
timators and the maximum likelihood statistic. The Schulz estimator is included
as a special case of the SO-MR estimator when the age-at-onset distribution is
taken as uniform (i.e. dj ≡ 1/J , see below), which might be adopted as an
approximation when there is limited information about onset ages.

The simulation study was designed as a 3× 3 experimental design with three
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patterns of conditional distributions of onset age and three distributions of ages
at the time of the interview. The period of risk was defined to be from age
17 to 45 (inclusive), which corresponds to the accepted period of risk for adult
schizophrenia.

The simulations include as one pattern of ages the data from a recent family
study (Poyurovsky et al., 2005) of 92 siblings of probands with schizophrenia. In
the data set there were six affected siblings. For comparability, we used n = 92
for all our simulations. The (unknown) lifetime morbid risk used for the first set
of simulations was p = 10.67%, which is the Kaplan-Meier estimate of lifetime
morbid risk in that family study. The subsequent simulations were performed
under the same experimental design with various morbid risk values.

The patterns of ages of individuals at the time of the interviews were as
follows:

(a1) Ages were generated from the Poisson distribution with mean λ = 24,
censored from below at the age of 17.

(a2) The actual ages at the time of the interview from our study of siblings of
schizophrenia probands with n = 92, with a mean of 32.54 and a standard
deviation of 12.04. As can be observed from the ratio between the mean and
the standard deviation, the distribution is far more disperse than expected
from the Poisson distribution.

(a3) Ages generated from the Poisson distribution with λ = 36.

The three interview age distributions were crossed with three different onset
age distributions:

(b1) early onset - the median of the ages at onset at 3/10 of the period of risk
(in our case, median at age 25),

(b2) mid-onset - the median is in the middle of the period of risk (median at
age 31), and

(b3) late-onset - the median occurs at 7/10 of the period of risk (median at age
37).

The assigned dj-values were monotonically and equally spaced increasing up
to the median of the distribution and monotonically equally spaced decreasing
afterwards. Thus, for the J1 and J2 years before and after the median, (J1 +J2 =
J), dj = c0 + jc1 and dj = c0 − c1J1 − (j −J1)c2, respectively. In the simulations,
the values assigned to the c1 slopes were .0083, .0044 and .0014, for the early- mid
and late-onset, respectively. The corresponding c2 slopes were −.0024,−.0044 and
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−.0050. The events of “affected” and “not affected” are generated with respect
to those actual probabilities.

We compute the estimator SO-MR using the actual dj and Dj values and
also using two cases of “partial knowledge”. In the first case, we only assume
knowledge of the median onset age for the specific disease, and set the risks
to be constant at one level up to the median and at another level after the
median, i.e. for γj ≤ median we assume djAppl = 0.5/J1, while for γj > median,
djAppl = 0.5/J2.

The second case assumes no knowledge of the distribution, and sets equal
risks such that dj,App2 = 1/J for each age. The probability of being affected is
proportional to the period of risk at the age of the interview. This assumption
corresponds to Schulz’s statistic. The App1 approximation can be used when
the median onset is roughly known, whereas the App2 approximation might be
adopted when there is no information.

The simulations are intended to assess the deviations of the various statistics
from the (unknown) actual lifetime morbid risk.

Based on the generated data on the individuals in the sample, i.e. (i) their
age at the time of the interview, (ii) whether the individual is affected, and if so,
(iii) the age of onset, we calculated the sample statistics that assess the lifetime
morbid risk.

The results for the first set of simulations with p = 10.67%, are summarized
in Table 1. The rows in the three panels of the table are the 3 × 3 categories of
patterns of age at onset within the risk period and patterns of interview ages.
The first panel of the table presents the means and the standard deviations of
the various statistics. The second panel presents the ratio of the mean to the
population value of 10.67%. Note that when the median onset is in the middle
of the period of risk the two approximations coincide, i.e. dj,App1 = dj,App2 (see
Table 1).

The results obtained with the same estimators for the other simulated values
of p (p = 5%, 50% and 80%) can be found in Table 2. For the same values of p,
Table 3 compares the results obtained by the original Strömgren estimator with
those obtained by the maximum likelihood method for both exact and partial
knowledge of the age-at-onset distribution.

The results clearly indicate that whenever accurate or partial information on
the distribution of the age at onset is available, incorporating it in the analysis can
substantially improve the accuracy of the estimate for lifetime morbid risk. As
expected, under actual Dj ’s the means of the unbiased SO-MR-statistics deviate
only slightly form the lifetime morbid risk in the population (10.67%). In this
case, the value of SO-MR did not exceed 1 in any of the simulations. When the
actual distribution of the age at onset is known, the modified Strömgren estimator
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Table 1: Means, standard deviations and biases of the estimated lifetime mor-
bid risks by the various methods. The “real” lifetime morbid risk is 10.67%.

A. Means of 1,000 simulations of lifetime morbid risks by various methods
and standard deviations (in parentheses)

Strömgren Original Strömgren Modified

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Younger Early-Onset 4.4% 8.4% 16.9% 8.4% 10.8% 11.2% 10.2% 10.4%
(2.1%) (3.9%) (8.1%) (7.3%) (5.2%) (5.3%) (4.6%) (4.7%)

Mid-Onset 2.2% 4.2% 8.4% 6.3% 10.7% 8.4% 9.7% 7.8%
(1.5%) (2.9%) (5.8%) (8.9%) (7.4%) (5.8%) (6.3%) (5.2%)

Late-Onset 1.4% 2.8% 5.4% 3.5% 10.6% 7.6% 9.2% 6.9%
(1.2%) (2.4%) (4.8%) (6.1%) (9.3%) (6.7%) (7.5%) (5.7%)

Original Early-Onset 6.9% 11.4% 13.6% 11.2% 10.7% 11.5% 10.5% 11.1%
(2.6%) (4.1%) (5%) (4.8%) (4%) (4.3%) (3.8%) (4%)

Mid-Onset 5.4% 9.2% 10.7% 10.7% 10.7% 10.7% 10.4% 10.4%
(2.3%) (3.7%) (4.5%) (5.3%) (4.4%) (4.5%) (4.2%) (4.2%)

Late-Onset 4.2% 7.2% 8.3% 10.1% 10.7% 9.9% 10.3% 9.6%
(2.0%) (3.3%) (4.0%) (5.7%) (5.1%) (4.7%) (4.7%) (4.4%)

Older Early-Onset 9.3% 16.0% 13.5% 11.7% 10.7% 11.9% 10.6% 11.6%
(3.0%) (4.9%) (4.4%) (5.0%) (3.5%) (3.9%) (3.4%) (3.7%)

Mid-Onset 8.1% 14.2% 11.8% 11.6% 10.7% 11.8% 10.5% 11.4%
(2.9%) (4.7%) (4.1%) (5.6%) (3.7%) (4.1%) (3.6%) (3.9%)

Late-Onset 5.8% 10.3% 8.4% 10.4% 10.8% 10.4% 10.3% 10.0%
(2.4%) (4.1%) (3.5%) (6.4%) (4.5%) (4.3%) (4.2%) (4%)

B. Ratios of the means from panel A. and the “real” lifetime morbid risk
value of 10.67% (expressed as percentages)

Strömgren Original Strömgren Modified

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Younger Early-Onset 41% 79% 159% 79% 181% 105% 95% 98%
Mid-Onset 20% 40% 78% 59% 100% 78% 91% 73%
Late-Onset 13% 26% 51% 33% 99% 71% 87% 65%

Original Early-Onset 64% 107% 127% 105% 101% 107% 98% 104%
Mid-Onset 51% 86% 101% 101% 100% 101% 98% 97%
Late-Onset 39% 67% 78% 95% 100% 93% 96% 90%

Older Early-Onset 87% 150% 126% 109% 100% 112% 99% 109%
Mid-Onset 76% 133% 111% 108% 100% 111% 98% 107%
Late-Onset 55% 97% 79% 97% 101% 97% 97% 93%

Note: (a): Age distribution; (b) Onset Distribution (ODis); (c) L-MR; (d): WEINBERG;
(e): Schultz= App2 Approximation’ (f): K-M; (g): Actual ODis; (h): App1 for ODis; (i):
Actual ODis; (j): App1 for ODis.

is biased downwards.
The lifetime prevalence has a clear negative bias, except in the sample of

older persons with early onset, where most subjects are interviewed at ages with
little remaining risk. The Weinberg method is usually biased downward in the
younger sample (26%, 40% and 79% of the population value for late- mid- and
early-onset, respectively) and upward in the older sample (133% and 150% of the
population value for mid- and early-onset, respectively).
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Table 2: Ratios of the simulation means and the “real” lifetime morbid risks
for various p-values

A. Morbid Risk p = 5%

Strömgren Original Strömgren Modified

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Younger Early-Onset 41% 80% 158% 78% 101% 104% 97% 100%
Mid-Onset 20% 40% 78% 55% 100% 78% 94% 75%
Late-Onset 13% 26% 50% 35% 98% 70% 89% 65%

Original Early-Onset 65% 111% 129% 105% 101% 108% 100% 107%
Mid-Onset 52% 88% 102% 100% 102% 102% 100% 100%
Late-Onset 40% 68% 78% 95% 101% 93% 98% 92%

Older Early-Onset 88% 158% 128% 110% 102% 113% 101% 112%
Mid-Onset 77% 140% 112% 110% 102% 112% 101% 110%
Late-Onset 55% 99% 79% 97% 1 01% 97% 99% 95%

B. Morbid Risk p = 50%

Strömgren Original Strömgren Modified

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Younger Early-Onset 41% 68% 156% 80% 100% 103% 80% 81%
Mid-Onset 20% 37% 78% 58% 100% 78% 74% 62%
Late-Onset 13% 25% 51% 34% 100% 72% 69% 55%

Original Early-Onset 64% 92% 126% 105% 100% 107% 91% 94%
Mid-Onset 51% 76% 100% 102% 100% 100% 90% 88%
Late-Onset 39% 62% 78% 97% 100% 92% 86% 81%

Older Early-Onset 86% 118% 125% 108% 100% 111% 94% 100%
Mid-Onset 76% 107% 110% 108% 100% 110% 92% 96%
Late-Onset 54% 82% 78% 99% 100% 96% 85% 82%

C. Morbid Risk p = 80%

Strömgren Original Strömgren Modified

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Younger Early-Onset 41% 61% 124% 79% 100% 103% 72% 72%
Mid-Onset 21% 35% 79% 60% 99% 79% 65% 56%
Late-Onset 13% 24% 52% 35% 97% 72% 60% 50%

Original Early-Onset 64% 83% 122% 104% 100% 107% 87% 88%
Mid-Onset 51% 71% 101% 103% 100% 101% 85% 83%
Late-Onset 40% 59% 78% 99% 100% 93% 80% 76%

Older Early-Onset 87% 101% 122% 106% 100% 111% 92% 94%
Mid-Onset 76% 94% 110% 106% 100% 110% 88% 90%
Late-Onset 54% 74% 78% 99% 100% 96% 7 8% 76%

Note: (a): Age distribution; (b) Onset Distribution (ODis); (c) L-MR; (d): WEINBERG;
(e): Schultz= App2 Approximation’ (f): K-M; (g): Actual ODis; (h): App1 for ODis; (i):
Actual ODis; (j): App1 for ODis.

The level of accuracy of the Schulz method (which is identical to the values
achieved by the SO-MR under the uniformity assumption) depends mainly on
the distribution of onset (as the distribution of ages is well accounted for). The
method yields downward biased estimates for late onset (between 50% and 80%
of the population value) and upward for early onset (between 130% and 160% of
the population value).
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Table 3: Ratios of the simulation means and the “real” lifetime morbid risks
for various p-values

A. Morbid Risk p = 5%

Strömgren Original Maximum Likelihood

Age distribution Onset Distribution (ODis) (A) (B) (A) (B)

Younger Early-Onset 101% 104% 98% 102%
Mid-Onset 100% 78% 94% 75%
Late-Onset 98% 70% 90% 66%

Original Early-Onset 101% 108% 100% 107%
Mid-Onset 102% 102% 100% 100%
Late-Onset 101% 93% 98% 92%

Older Early-Onset 102% 113% 102% 113%
Mid-Onset 102% 112% 102% 112%
Late-Onset 101% 97% 101% 98%

B. Morbid Risk p = 50%

Strömgren Original Maximum Likelihood

Age distribution Onset Distribution (ODis) (A) (B) (A) (B)

Younger Early-Onset 100% 103% 100% 104%
Mid-Onset 100% 78% 99% 80%
Late-Onset 100% 72% 98% 72%

Original Early-Onset 100% 107% 100% 106%
Mid-Onset 100% 100% 100% 102%
Late-Onset 100% 92% 99% 94%

Older Early-Onset 100% 111% 100% 111%
Mid-Onset 100% 110% 100% 110%
Late-Onset 100% 96% 100% 97%

C. Morbid Risk p = 80%

Strömgren Original Maximum Likelihood

Age distribution Onset Distribution (ODis) (A) (B) (A) (B)

Younger Early-Onset 100% 103% 94% 97%
Mid-Onset 99% 79% 99% 81%
Late-Onset 97% 72% 97% 73%

Original Early-Onset 100% 107% 100% 106%
Mid-Onset 100% 101% 100% 103%
Late-Onset 100% 93% 100% 98%

Older Early-Onset 100% 111% 100% 109%
Mid-Onset 100% 110% 100% 109%
Late-Onset 100% 96% 100% 98%

Note: (A): Actual ODis; (B): App1 for ODis

The Kaplan-Meier method performed poorly in the cases when the subjects
are relatively young with respect to cumulative risk. In those cases the biases can
be very substantial. With late onset the estimate is about 33% of the population
value, and for the mid-onset case it is about 60% of the population value. The
negative bias in these cases is not as severe as with the lifetime prevalence or
the Weinberg method. When the subjects’ ages are in the other categories, the
Kaplan-Meier method performed well.
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We also observe from Table 1 that even quite vague prior knowledge about
the onset age distribution leads to a good estimator. Indeed, under the App1
approximation, which only assumes knowledge of the median and sets the risks
to be uniform in the two segments, the resulting SO-MR-statistic is superior to
all the statistics that make no assumption about the distribution of the age at
onset (including the Kaplan-Meier estimator). This finding may have an even
more important practical implication than those derived from the case of perfect
knowledge of the age-at-onset distribution.

The results from Table 2 suggest that the performance of the statistics is not
very sensitive to the level of the lifetime morbid risk. Indeed, the results for
p = 5%, 50% and 80% are similar to those from Table 1 (where p = 10.67%). A
minor exception is observed in the performance of the Weinberg statistic for older
subjects with early and mid-onset. The statistic performs considerably better
when p = 50% or 80% than when p=5% (where the results are comparable to
those in Table 1). Another technical difference occurs when the morbid risk is very
high (p = 80%). In this case, the occurrences of estimated morbidity exceeding 1
are not ignorable, and the modified Strömgren estimator is superior in a limited
number of cases. However, the use of the truncated original Str?mgren estimator
is superior in the majority of the cases that we examined.

The results in Table 3 show only minor differences between the original
Strömgren estimator and the maximum likelihood estimator, both for the case of
knowledge of the age of onset distribution as well as for the partial information
case. As mentioned, the drawback of the MLp-statistic is that its computation
requires numerical methods. The maximum likelihood estimator is however to
be preferred when both the lifetime morbid risk and the distribution of the age
of onset are to be estimated simultaneously.

It is worth reminding that in specific samples, the deviations from the actual
values may be even more pronounced than those from Tables 1-3, which present
means and standard deviations of 1,000 samples (each sample with n = 92). We
illustrated such deviations in the section on the sensitivity of the Kaplan-Meier
estimate, in which we perturbed one or two ages at onset. Thus, it seems even
more important to use statistics that are robust to such fluctuations, which can
result from incorrect reporting.

6. Discussion

Morbid risk is characterized by specific features that differ from those that
characterize mortality risk. The period of risk is usually well defined and the
hazard rate often does not increase monotonically with age. Furthermore, the
lifetime morbid risk is far from being 100%.

We have shown that incorporating the onset age distribution can improve the
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estimation of the lifetime morbid risk. As mentioned, for various diseases there
are reasonably reliable data on the distribution of the ages at onset for those who
suffer from the disorder. Furthermore, for some disorders, the level of knowledge
is even more detailed. As an example, Suvisaari et al. (1998) present distributions
of the age at onset of schizophrenia specific for gender and the degree of familial
loading.

As a first conclusion from the simulation study, it is clear that, although
the simplicity of the Weinberg and the Schulz methods is certainly appealing,
those methods can be replaced by the original Strömgren method which is almost
equally simple and yields far more accurate estimates. Furthermore, the well
known bias of the modified Strömgren estimator (e.g. Thomson and Weissman
(1981)) is illustrated in the simulations. It is shown that the modification of the
original Strömgren estimator is in general unadvisable. At least in medium and
large size samples when the lifetime morbid risk is not very large, the probability
that the original method will lead to risk estimates greater than 1 is very low.

The results of the study show that the Kaplan-Meier method is in general in-
ferior to the original Strömgren method in assessing the lifetime morbid risk. The
Kaplan-Meier estimator gave poor results when the subjects are young relative
to likely onset ages. Our simulation results match the theoretical study of Maller
and Zhou (1992, 1994). They found that the KM estimator was prone to poor
performance when the data lack sufficient follow-up, i.e. when the non-affected
individuals are relatively young compared to the oldest affected individuals. The
problem of insufficient follow-up is most severe in our simulations with young
subjects and the late onset distribution. A further drawback of the KM estima-
tor is its sensitivity to mis-reporting of onset ages for affected subjects, whereas
the original Strömgren method does not require these ages. Given the wide use
of the Kaplan-Meier estimator in assessing lifetime morbid risk, the results on its
relative inferiority may have considerable practical significance.

The SO-MR and the MLp-statistics incorporate the onset age distribution
among the affected in the estimation of lifetime morbid risk. Given knowledge of
the actual onset age distribution, the SO-MR and MLp-statistics are unbiased
and maximum likelihood estimators, respectively, of the lifetime morbid risk.

In the single sample case, we found that the SO-MR and MLp statistics yield
very similar results. The MLp statistic requires iterative computation, so the
SO-MR statistic has a clear advantage in this respect. However, as suggested by
Risch, the MLp statistic can be used to estimate simultaneously the morbid risk
and the age of onset distribution. This is certainly a desirable feature and may
be useful when the distribution of age of onset for the studied population is not
available or is unreliable. However, if the sample size is not very large, given the
many parameters to be estimated, we suggest that one should proceed with cau-
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tion in using such estimates. Also, it may be advisable to fit appropriate models
for the distribution of the age of onset, to avoid cases of estimated parameters
which may be in disagreement with clinical observation. As an example, in the
analysis of the data of Winokur et al. (1964) on major affective illness the MLEs
for the probability of onset in six discrete 10-year age intervals were 8%, 15%,
30%, 19%, 7% and 21%, corresponding to a multimodal distribution of age at
onset. . The drop in the 50-59 age group from 19% to 7%, followed by an increase
to 21%, may contradict clinical observation. To avoid such occurrences, the use
of a parametric distribution or a smoothing procedure may be advisable.

Furthermore, this study has shown that even if the onset information is im-
perfect, very simple approximations still yield good estimators. At least under
the first approximation, which assumes only knowledge of the median of the on-
set age distribution, the results are superior both to the Kaplan-Meier estimator
and to the ratio estimators whose denominators account only for the periods of
exposures of the individuals in the sample and the age range of risk, but not on
the distribution of age of onset within the period of risk. In extreme cases of
assumption of a uniform distribution, the Kaplan-Meier statistic may yield more
accurate estimates. This happens, for example, in Table 1 when we use an unin-
formative distribution for age at onset (the second approximation) and the actual
distribution is early- or late-onset. However, when some relevant information on
ages at onset is available, the SO-MR and MLp statistics typically yield more
accurate estimates.

As a practical comment, we suggest that the fact that the SO-MR and MLp
statistics do not depend on the ages at onset can be considered a further advantage
over the Kaplan-Meier estimator. Indeed, the level of accuracy for reported ages
of disease onset is usually much lower than the corresponding information on
mortality ages.

Appendix 1

We now turn to finding the MLE for p. The log likelihood is given by

log L = A log p +
∑
Yi=0

log(1 − pD(ai)) +
∑
Yi=1

log d(ai),

where
∑

Yi=1 log d(ai) is independent of p. If all the subjects are affected, the
likelihood is monotone increasing in p and so MLp = 1 and if none are affected,
MLp = 0. Otherwise, we proceed by equating the first derivative of log L to zero,
obtaining the likelihood equation

T (p) =
A

p
−

∑
Yi=0

(
D(ai)

1 − pD(ai)

)
= 0.
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As p tends to 0, T (p) tends to infinity. So if T (p) has no roots between 0 and
1, it is always positive there, meaning the log likelihood is monotone increasing
and MLp = 1. If there is a root, it must be unique, because both terms in T (p)
are monotone decreasing functions of p for 0 ≤ p ≤ 1.

Simple iterative numerical methods can be used to solve the likelihood equa-
tion. Suppose we have at the m-th iteration a candidate solution p(m)). Then we
can expand T (p) in a first-order Taylor series about p(m)) and solve the resulting
equation for p. The revised candidate solution is

p(m+1) = p(m) − T (p(m))
T ′(p(m))

where T ′(p) is the derivative of T (p) and is given by

T ′(p) = −

 A

p2
+

∑
Yi=0

D2(ai)
(1 − pD(ai))2

 .

We can use the unbiased estimator SO-MR as the initial candidate value p(0)

in the above iterative scheme. We can also use the above results to provide an
approximate standard error for MLp. Standard asymptotic results for maximum
likelihood estimators imply that (MLp− p)/[−T ′(MLp)]−1/2 has approximately
a standard normal distribution, so that [−T ′(MLp)]−1/2 is an approximate stan-
dard error for MLp. Simulations like those carried out to compare the estimators
find that the SE for MLp is quite similar to the SE for the unbiased estimator SO-
MR. An alternative estimator based on the expected information was proposed
by Larsson and Sjögren (1954).

Appendix 2

We assess here the properties of SO-MR when an approximate onset age dis-
tribution is used. As before, we denote by dj and Dj the actual onset, and
cumulative onset probabilities, conditional on contracting the disease. Now, sup-
pose we don’t know the true probabilities and instead use the approximate values
D̃(ai). The estimator of lifetime morbid risk is then SO-MR = A/

∑n
i=1 D̃(ai),

and its expected value is given by E(SO-MR) = p
∑n

i=1 D(ai)/
∑n

i=1 D̃(ai). Use
of the approximate onset distribution induces bias, as given by the ratio of the
sum ofs cumulative onset probabilities. A practical upper bound on the bias
can be found by supposing that the true onset distribution is the “stochastically
smallest” that is feasible, i.e. by setting the true cumulative probabilities to the
smallest values that are deemed feasible. Similarly, setting these probabilities to
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their maximum feasible values gives a practical lower bound on the bias. The
standard deviation of SO-MR is affected by the same multiplier,

σ̃(SO-MR) = σ(SO-MR)∗
{∑

D(ai)∑
D̃(ai)

}
.
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