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Abstract: Affymetrix high-density oligonucleotide microarray makes it pos-
sible to simultaneously measure, and thus compare the expression profiles
of hundreds of thousands of genes in living cells. Genes differentially ex-
pressed in different conditions are very important to both basic and medical
research. However, before detecting these differentially expressed genes from
a vast number of candidates, it is necessary to normalize the microarray data
due to the significant variation caused by non-biological factors. During the
last few years, normalization methods based on probe level or probeset level
intensities were proposed in the literature. These methods were motivated
by different purposes. In this paper, we propose a multivariate normaliza-
tion method, based on partial least squares regression, aiming to equalize
the central tendency, reduce and equalize the variation of the probe level
intensities in any probeset across the replicated arrays. By so doing, we
hope that one can precisely estimate the gene expression indexes.

Key words: Affymetrix GeneChip, normalization, oligonucleotide, partial
least squares regression.

1. Introduction

The microarray technology makes it possible for scientists to simultaneously
examine the expression profiles of a huge number of genes in living cells. It has
found wide application in many areas of biomedical research, such as, gene expres-
sion, linkage analysis, Single Nucleotide Polymorphism (SNP) analysis, pathway
analysis, disease diagnosis, drug discovery and evaluation, and toxicological re-
search.

Briefly speaking, microarrays are small, solid supports onto which the selected
sequences (so-called probes) of thousands of genes are immobilized at fixed loca-
tions. These immobilized probes are then employed to lock down or catch their
target genes in samples based on nucleotides base-pairing rule — the hybridization
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in molecular biology. There are many kinds of microarrays in the market, dif-
ferenced by probes attached: DNA fragments or oligonucleotides; by production
methods: in situ synthesis or deposit by high precision robots; by applications:
gene expression array, SNP array etc.

The single-channel oligonucleotide gene expression microarray produced by
Affymetrix (GeneChip®) adopts 25 mer probes synthesized with photolithogra-
phy techniques. The probes in an Affymetric GeneChip are presented in pair:
the perfect match probe (PM) whose sequence exactly matches its target-gene se-
quence and the mismatch probe (MM) obtained by exchanging the middle (13")
base of the PM with its Watson-Crick complement. There are multiple probe
pairs for a given transcript and the number of these probe pairs, which together
form a probeset, is fixed in the array design stage. For example, a HG-U95 ar-
ray has 16 pairs per probeset while a HG-U133 array has 11 pairs. The gene
expression index, employed in a later stage to identify the significantly differen-
tially expressed genes, is obtained by summarizing the signal intensity values of
probe pairs in a probeset. The summarizing method used by Affymetrix is the
weighted average of the signal intensity differences (PM — M M) of probe pairs
in a probeset. Since then, many statistical methods have been proposed. See, for
example, Li and Wong (2001b), Affymetrix! (2002), Irizarry et al. (2003), Chen
et al. (2006) and others for detailed discussion of different procedures.

In biological study, replication under the same condition (tested or control) is
necessary in order to draw any meaningful conclusion. This will certainly intro-
duce variability (or noise) to the feature intensities in microarray experiments.
There are two types of variability in microarray data. One is the biological vari-
ability, indicated by the gene intensity difference under different conditions. It
is the first goal of a microarray experiment to reveal this biological change. An-
other is the noise or system variability caused by non-biological factors such as
the physical difference among arrays, the random errors in RNA sample prepa-
ration processes, other variations from hybridization and image processing steps,
etc. (see, for example, Hartemink, 2001). With these system noises compli-
cating the biological differences, down-stream analyses on microarray data will
definitely increase the false positive rate or the false negative rate. Thus, a proper
normalization procedure is appealed before any down-stream analysis to detect
significantly differential genes is carried on. A successful procedure should be able
to remove the system noises while retaining the existing biological difference.

Affymetrix’s normalization method rescales the probeset expression measures
by a constant factor such that these measures between two or more arrays are
linearly related through the origin. Following this, other methods are proposed

! Affymetrix Whitepaper. Available: http://www.affymetrix.com/support /technical /
whitepapers/sadd_whitepaper.pdf. Accessed 6 March 2009.
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in the literature. These include quantile normalization in Bolstad et al. (2003),
piecewisely linear run median method of dChip in Li and Wong (2001a), non-
linear normalization methods in Schadt et al. (2001), Workman et al. (2002),
Faller et al. (2003), variance-stabilizing normalization (VSN) in Huber et al.
(2002) and many others. These normalization methods are proposed for different
purposes. For example, the quantile normalization intends to make the empirical
distribution of intensities are the same across arrays, and the VSN method tran-
forms the data such that the variance of measured intensities is independent of
the mean.

In this paper, we propose a multivariate normalization method, simultane-
ously Partial Least Squares (sPLS) regression method. It is based on the Partial
Least Squares (PLS) regression introduced by Wold (1975). This is a probe level
normalization method. Detailed description of the method is given in §3. By this
method, we intend to equalize the central tendency, to reduce the variation of
the probe level intensities in a probeset, and to equalize these variations across
the replicated arrays. Thus, this normalization can make the estimation of gene
expression indexes more precisely.

We will use the data sets produced by Affymetrix GeneChip Human Genome
U95 (HG-U95) arrays and HG-U133 plus 2.0 arrays to evaluate our method.
During the last few years, the human genome U95A and U133 GeneChips were
reference standard for gene expression studies. Gene expression data from both
experimental and clinical studies are voluminous and freely available from several
public repositories. This availability enable scientists to access and compare their
research results to published studies. Meanwhile, The U133 is still widely used
even though new generation of arrays, the Gene ST 1.0 and Exon ST 1.0, are
available in the market. The major advantage of the U95A and U133 is the wealth
of data analysis tools available, and tools for QC are much better. Moreover,
the perfect match/mismatch probe sets design of these expression arrays offer
alternative way to examine gene expression as well as to detect genetic variation
within and between species, a case in point for single feature polymorphism, first
done in yeast to examine wild strain types.

2. Data

To evaluate our normalization method, we use the public Dilution/Mixture
data. The HG-U95 arrays are employed to produce these data. Each probe set
in the arrays of these two data sets contains 16 probe pairs. Thus, in each array,
we have 16 pairs of probe level intensities (PM and MM) for each transcript. The
normalization method can also normalize data produced by arrays in which the
number of probe pairs is different from 16. As an example, we apply the method
to data sets (downloaded from website, http://www.affymetrix.com/index.affy)
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produced from HG-U133 plus 2.0 arrays in which each probeset has 11 pairs of
probe level intensities for each transcript, at the end of the paper.

In Dilution/Mixture study, the cRNA masses for sample A (liver cRNA) and
for sample B (central nervous system cRNA) are 20, 10, 7.5, 5, 2.5,1.25 ug/(200ul),
separately. The mixtures of these two samples are run for three combinations:
7.5:25, 5:5, 25:75. There are 5 replicates for each dilution and mixture.
Thus, the Dilution/Mixture data set contains 75 arrays. The experiments use 5
different Affymetrix scanners for each dilution and mixture.

The sample data set from Affymetrix HG-U133 plus 2.0 arrays contains 53
arrays, of which there are 33 arrays for 11 tissues (each tissue has three repli-
cated arrays) including breast, cerebellum, heart, kidney, liver, muscle, pan-
creas, prostate, spleen, testes, thyroid, and there are 20 arrays for 4 mixtures
(each mixture has five replicated arrays) including testes-cerebellum with ratio
1:1, testes-cerebellum with ratio 1:2, heart-testes-cerebellum with ratio 1:1:1 and
heart-testes-cerebellum with ratio 2:1:3.

3. Normalization Method

Assume that there are p genes and n probe pairs for each gene in one array.
Thus, one array will produce a (n x p) data matrix X of probe pair level intensi-
ties. By the design of oligonucleotide microarray, we assume that the intensities
{Xig}_,, for any gene g, are independent. Thus the n row vectors of X can be
viewed as p-dimensional multivariate observations.

Suppose we have two (n X p) data matrices X, Y of intensities generated from
two arrays. When two experiments are technically replicated, with the same
sample being applied on more than one array, the multivariate gene expression
vectors should be identical except random errors if there are no systematic errors
in the experiments. When the target samples in two arrays are from two con-
ditions (for example, tumor or normal), the vectors should be highly correlated
if no experimental errors because of the assumption that the percentage of dif-
ferentially expressed genes is small. Thus, the intensities in Y can be predicted
from those in X through statistical regression models and vice verse. We may
apply prediction techniques to reduce the systematic errors. However, the facts
that the genes in an array are correlated and that p >> n make it impossible
to apply the traditional multivariate regression for prediction purpose. Partial
least squares (PLS) is especially useful in this situation-building prediction equa-
tions when there are large number of explanatory variables and small number
of sample data — because it intends to search a set of factors or latent variables
that explain as much as possible of the covariance between X variables and Y
variables, and then to construct prediction equations linking the factors to the Y
variables (see Garthwaite, 1994 or Abdi, 2003 for details). In other words, factors
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are mutually independent (orthogonal) linear combinations of X variables, and
are obtained in order to provide maximum correlation with Y variables. Since its
first appearance (Wold, 1975), PLS regression has found its application in anal-
ysis of experiments in many areas. These, for example, include the most recent
application in Electroencephalography (Alm et al., 2009) and the earlier applica-
tion in Analytical chemistry (Delaguardia et al., 1996), in Ecology (Eriksson et
al., 1995), in Agriculture and food science (Kays et al., 1996) and many others.
A recent review about PLS can be found in Rosipal and Kramer (2006) and the
references therein.

Specifically, PLS obtains factors by iteration. A pair of vectors @« = Xu
and f = Yv are found such that ||u|| = ||e|| = 1 and the cross-product b =
o’ is maximum. Then, « is the first factor we are searching. With q =
XTa and X, Y being replaced by residuals: X — aq’, Y — bav’, repeat the
above maximizing process until a pre-chosen number of factors are obtained.
Denote ), V' as matrices consisting of vectors q, v, respectively, and B as a
diagonal matrix consisting diagonal elements . Then, PLS regression predicts
Y by Y = X(QT)*BVT, where (Q7)* is the Moore-Penrose inverse of Q7. See,
for example, Abdi (2003) for details.

An algorithm to search the factors is available in the literature (Hoskuldsson,
1988). It is as follows.

Step 1. Initialize the vector .
Step 2. Let u = X783 1

norm(X” )’
_ 1
Step 3. Let a = Xunorm(Xu)'
Step 4. Let v=YTa—
P v anorm(YToz)

Step 5. Let 3 =Ywv.

Step 6. Repeat Steps 1 to 5 for the next factor with X, Y replacing by residuals:
X —aql, Y — bav?T respectively if there is convergence; otherwise return
to Step 2.

Note that the vector q and the scalar b are calculated as in previous paragraph.
We claim that there is convergence whenever norm(cy,e,, — @)/norm(a) < 1076,

In an oligonucleotide microarray experiment, there usually are N > 2 repli-
cates: Xq,...,Xy. The sPLS normalization method to probe level data includes
two steps. First, we obtain the median of N chips. Then, by using the median
as the dependent variables ¥ and X; as the independent variables, the PLS
prediction Y is the normalized probe pair level data of 5% chip, j = 1,2,...,N.
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Figure 1: MA plots for PM values at probe level: the left panel includes plots
before normalization and the right panel includes corresponding plots after
sPLS normalization.

Note that in this paper cross-validation procedure is applied to determine the
number of chosen factors in every PLS regression. For the data sets produced
by HG-U95 arrays, since there are n = 16 probe pairs in each chip, we split the
data into four groups, each being a (4 x p) matrix. For every k from 2 to 16,
one group is omitted, and the Y, X; from other three groups are used to search
k factors. The resulted PLS prediction equation is used to predict Y values for
omitted group. Then the norm of the difference between the omitted group’s Y
values and predicted values are calculated. Repeat the process until each group
has been omitted once and add all four norms to get the total error: E(k). If
E(k) < E(k+ 1), then we choose k as the number of factors in PLS regression
(see Garthwaite, 1994). We usually have k& = 12 for HG-U95 data.

4. Results and Discussions

As an illustration, we apply in this section the sPLS normalization method
proposed in the previous section as well as some other normalization methods in
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the literature to the data sets described in §2. It should be remarked here that
the log transformation with base 2 is applied to raw probe level intensities before
normalization. All calculations were performed in R (http://www.r-project.org).
Codes are available upon request.

4.1 Probe level assessment of normalization

The M vs A plots are used to evaluate the performace of the proposed nor-
malization method, where M = logy(z) — logy(y) and A = L[logy(z) + logy(y)]
for two intensities, x, y, from two arrays. As an example, we present in Figure
1 four pairwise M vs A plots for liver dilution series data (PM intensities of
94394hgu9ball, 94395hgu9sall, 94396hgu9sall and 94397hgu9ball, at concen-
tration 10 (ug/(200 ul)). We have the following observations from the plots. (1)
The plots in the left panel, which are based upon the data before normalization,
clearly show significant deviations from the horizontal line, M = 0. This sug-
gests the necessity of proper normalization. (2) In the corresponding plots in the
right panel, which are based upon the data after sPLS normalization method, the
point clouds are centered tightly around the horizontal line M = 0. These imply
that sPLS normorlization method successfully removes the system noise arised
due to replication. Other six pairwise M vs A plots for liver dilution series data
at concentration 10 (ug/(200 ul)) are similar and are not presented here.

Next we compare the performance of our normalization method with those of
Affymetrix scale normalization, the quantile normalization and the VSN method.
Subject to limitations of space, we only choose these three methods for compari-
son because to our knowledge they, similar to our method, are methods based on
the probe level intensities and the VSN method intends to stabilize the variances
of measured intensities.

We obtain in Figure 2 densities of probe intensities (logy(PM)) for two
genes (left, right panel separately in the figure) randomly selected from the liver
dilution data. Five curves in each plot represent five arrays 94394hgu95all,
94395hgu9sall, 94396hgu9ball, 94397hgu9ball and 94398hgu9sall at concen-
tration 10 (ug/(200 ul)). Plots in the top row are based on the data before
normalization, while plots in the following rows are for the data after the scale
normalization, the quantile normalization, the VSN normalization and the sPLS
normalization sequentially. From these density plots we observe that (a) there
have obvious discrepancies among the distributions for the replicated arrays be-
fore normalization and this once again implies the necessity of normalization. (b)
All four normalization methods can remove certain levels of the distribution dis-
crepancies among arrays. However, while both the scale method and the quantile
method reduce more density discrepancies in high intensity areas than those in
the low intensity areas, both VSN and sPLS methods greatly remove this discrep-
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Figure 2: Densities of loga(PM) of two randomly selected genes at probe level.

ancy in the whole intensity area, with the sPLS method performing best. (c¢) The
intensity range in Figure 2 indicates that the experimental variability in the data
set of probe intensities for a gene in a single array becomes much smaller after
sPLS normalization (note that the horizontal scale ranges are approximately from



Multivariate Normalization Method 513

Unnormalized Scale Quantile
wn wn wn
c S ] S ] /1
< _rzl/}‘; < _r/1/1~\; < _1\‘/1—:
o o o
[v] (v} ®
c c 7 o

;
[

] = = ]
o o o
o ] o | o
o o o
T T T T T T T T T T T T T T T
1 2 3 4 5 1 2 3 4 s 1 2 3 4 5
chip chip chip
VSN sPLS
n | 0 |
o o

0.4
04

0.3
1
03
1

0.2
0.2

~ <
a 3%
o <
o o
T L T T T T T T
1 2 3 4 5 1 2 3 4 5
chip chip

Figure 3: Coefficient of variation of loga(pm) of six randomly selected genes at
probe level.

5.5 to 9.5 in the last two plots). The VSN method has similar performance but
does not reduce the range as much as the sPLS does. Other two methods do not
reduce this variability. Thus, sPLS normalization helps to precisely summarize
the gene expression indexes.

The purpose of the upstream pre-processing to the microarray data is to
estimate precisely the gene expression index from the probe level intensities of
a gene. If there were no systematic errors, not only should we expect small
experimental variability of the measurements of probe level intensities for a gene
in a single array, but also approximately the same variability and the same central
tendency across replicated arrays. An efficient normalization method should be
able to reduce the variability and equalize both the central tendency and the
variability. In addition to the comparison among the intensity ranges in Figure
2, we investigate the boxplots of the probe level intensities and the plots of
related standard deviations. We obtain the boxplots (not presented) of probe
level intensities for four genes randomly selected from the liver dilution data. For
each selected gene, the plot has five boxplots corresponding to five replicated



514 Zhide Fang et al.

Unnormalized vs Scale Urnormalized vs Cuantile Quantile vs Scale

log _2raticy
=03 -01 01 03
log _2raticy
=10 -0 -02 02
j
kg 2ratich
10 0o os 10

tog_2msani Iog 2imean Iog_2imean)

Unno rralized ws sPLS Scale vs PLS Quantile vs sPLS

g 2iraticy
5

g 2iraticy

g Ziratich

tog 2imeari Iog_2imean] Iog_2imean]

Unnomnalized ws VSN Cuantievs VN V5h s sPLS

log _2raticy
1 123 45
log _2raticy
-1 123 45
kg 2ratich
o 5 10

tog_2msani Iog 2imean Iog_2imean)

Figure 4: The plots of the log ratio of variances versus the log of the geometric
average of means for array 94395hgu95all.

arrays: 94394hgu9ball, 94395hgu9sall, 94396hgu9sall, 94397hgu9sall and
94398hgu95all, respectively. From the plots of original data, scale normalized,
quantile normalized, VSN normalized and sPLS normalized data respectively,
it is obvious that the original data show unequal medians and uniformly large
variabilities for each gene across the replicated arrays, while the corresponding
data after sPLS normalization indicates approximately the same medians and
small variabilities. The reduced variabilities, by sPLS normalization, in each plot
are also approximately the same across the replicated arrays. We also observe
that the intensity values become larger after VSN normalization.

We also calculate and compare the standard deviations of the probe level in-
tensities, before normalization, after scale normalization, quantile normalization,
VSN normalization and sPLS normalization separately, for the randomly selected
genes across replicated arrays. We obtain the plots (not presented) of standard
deviations versus arrays and observe from the plots that the scale normalization
does not reduce the magnitude of the standard deviation nor does it equalize
the standard deviations across the arrays. The quantile normalization equalizes
the standard deviations at certain level but does not reduce their values. Both
VSN and sPLS normalization (sPLS method performs better) reduce and equalize
these standard deviations across the arrays.
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We further compare in Figure 3 the coefficients of variation (CV) of six ran-
domly selected genes (corresponding to six curves in each plot). The five dots in
each curve represent five arrays. We see once again that the sPLS normalization
greatly reduces and equalizes the coefficients of variation across arrays. Note that
the plot after scale normalization is the same as that before normalization — this
is because of the fact that scaling does not change the value of the CV.

0.04 0.06 0.08
| | |

coefficient of variation

0.02
|

0.00
|

gene

Figure 5: Coefficients of variation of the RMA gene expression indexes in five
arrays from 94394hgu95all to 94398hgu9ball. The green, blue, black and red
curves are for scale normalized, quantile normalized, VSN and sPLS normalized
data respectively.

At the end of this section, we present the observations on how the change of
variation due to normalization depends on the gene intensity in the same array.
We calculate the mean and the variance of the probe level intensities for every
gene in one array. This is repeated for unnormalized data, data after scale normal-
ization, data after quantile normalization, data after VSN normalization and data
after sPLS normalization, respectively. The plot (not shown) of log,(variance)
versus log,(mean) indicates that the probeset with larger mean intensity usually
has larger variation (Huber et al. (2002) have the same observation). This will
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certainly lower the precision of the estimate of the large gene expression index.
Thus we hope that the normalization step can reduce this variation. To see the
effect of the normalization, in Figure 4, we plot the log with base 2 of the ra-
tio of two variances versus the log with base 2 of the geometric average of two
means from the array 94395hgu95all for the liver at dilution level 10 ug/(200
ul). It is clear that sPLS method significantly reduces the variances in both
probesets with low intensities and those with high intensities. VSN method has
similar, but less variance reduction. With small magnitude, the scale method
increases all the variances while the quantile normalization reduces the variances
in probesets with large intensities but increases the variances in probeset with
low intensities. We should report that in the plots for the array 94394hgu95all
(not shown), the performances of the sPLS method and the VSN are very similar
to those in Figure 4. However, the scale method reduces all the variances while
the quantile normalization reduces the variances in probesets with low intensities
but increases the variances in probesets with high intensities.

In summary, we conclude that in terms of the central tendency and the vari-
ability of the probe level intensities, the sPLS normalization performs best among
the four methods in that it equalizes the medians, reduces and equalizes stan-
dard deviations and coefficients of variation across the replicated arrays, while
the scale normalization performs worst.

4.2 Gene expression assessment of normalization

In this section, we evaluate the performance of the sPLS normalization method
at the probeset level. We obtain the gene expression indexes by the Robust Mul-
tichip Average (RMA) based upon a robust average of log background corrected
PM intensities. One may refer to Irizarry et al. (2003) for detailed discussion on
the RMA method. It should be remarked that RMA gene expression indexes in
microarrays are obtained through the three sequential steps: RMA background
correction, quantile normalization and Tukey’s median polish. For the purpose of
comparison, we also obtained the gene expression indexes by replacing the quan-
tile normalization with the scale normalization, VSN normalization and sPLS
normalization. Note that the background correction in RMA is applied on the
data set in which every probeset contains 16 probe pairs and there is no back-
ground correction before VSN normalization.

Then, based upon the RMA expression indexes, the coefficient of variation for
each gene in all replicated microarrays is calculated for the scale normalized data,
the quantile normalized data, VSN normalized data and the sPLS normalized
data. Figure 5 presents the coefficients of variation of 50 randomly selected
genes. We have the same observations from this figure as those for the probe
level intensities — the data of gene expression indexes using sPLS normalization
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have uniformly and significantly smallest coefficients of variation, and the data
using scale normalization have the largest ones.

4.3 Microarrays other than HG-U95

The sPLS normalization method can also apply to the microarrays with dif-
ferent number of probe pairs from 16, but needs to modify the cross-validation
procedure in the method. For example, one HG-U133 plus 2.0 chip has 11
probe pairs in each probeset. To apply cross-validation for finding the num-
ber, k, of factors in PLS regression, we split the data into three groups, two
of which form (4 x p) matrixs and the other forms a (3 x p) matrix (p is the
number of genes). The other steps remain the same as those for HG-U95. We
apply sPLS normalization to the HG-U133 plus 2.0 data produced by arrays
ul332plus_ivt_breast_A, ul332plus_ivt_breast_B and ul1332plus_ivt_breast_C. The
MA plots (not presented) evidently show the success of the sPLS normalization
to the HG-U133 plus 2.0 data set.
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