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Abstract: The null distribution of the likelihood ratio test (LRT) of a one-
component normal model versus two-component normal mixture model is
unknown. In this paper, we take a bootstrap approach to the likelihood ratio
test for testing bimodality of plasma glucose concentrations from Rancho
Bernardo Diabetes Study. The small p-values from this approach support the
hypothesis that a bimodal normal mixture model fits the data significantly
better than a unimodal normal model. The size and power of the bootstrap
based LRT are evaluated through simulations. The results suggest that a
sample size of close to 500 would be necessary in order to attain a power of
90% for detecting the unbalanced mixtures with means and variances similar
to those in the Rancho Bernardo data. Besides sample size, the power also
depends on the two means and variances of the two components in the data.

Key words: EM algorithm, likelihood ratio test, mixture models, size and
power.

1. Introduction

Bimodality of blood glucose concentrations has been reported in many popu-
lations with a high prevalence of diabetes, including Pima Indians (Rushforth et
al., 1971), Nauruans from Micronesia (Zimmet and Whitehouse, 1978), Samoans
(Raper et al., 1984), Asian Indians who had migrated to South Africa (Steinberg
et al., 1970), and Mexican Americans who were ∼50% white (Rosenthal et al.,
1985). The finding of a bimodal distribution has been interpreted as evidence
of two genotypes, one without and one with diabetes. Is the phenomenon of a
bimodal glucose distribution universal? The difficulty in detecting the second
mode among Caucasians might be that the prevalence of diabetes in whites is
too low. A recent paper by Fan et al. (2005) studied data from older whites.
They hypothesized that statistically significant bimodality might be detectable
in older whites because the prevalence of diabetes increases to nearly 20% in old
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age (Harris et al., 1998) and because most genetically susceptible people might
be expected to develop diabetes if they live long enough.
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 Age group: 50-59
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 Age group: 60-69
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 Age group: 70-79

2-hr glucose concentration (mmol/l)

D
e

n
s
it
y
 o

f 
g

lu
c
o

s
e

 c
o

n
c
e

n
tr

a
ti
o

n

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Figure 1: Distributions of 2-hour plasma glucose concentrations for ages 20-49,
50-59, 60-69, and 70-79 years. Solid smooth lines denote estimated densities
and dashed smooth lines denote density curves of the two normal components.

The two-hour plasma glucose data used in Fan et al. (2005) came from a
study of diabetes conducted between 1984 and 1987 in Rancho Bernardo, Cali-
fornia (Barrett-Connor, 1980a and 1980b). The data include 1025 men and 1301
women with a mean age of 71 (range 23-92). Figure 1 presents the distribution
of plasma glucose concentrations for ages 20-49, 50-59, 60-69 and 70-79. Figure 2
presents the distribution of plasma glucose concentrations for males (ages 20-79)
and females (ages 20-79). It can be seen from these figures that a bimodal mix-
ture normal distribution may fit the blood glucose concentrations much better
than a single mode normal distribution. The oldest age group (≥ 80 years) did
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not show statistically significant departure from a normal distribution and was
hence not included in these figures.

 
Male: 20-79
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Figure 2: Distributions of 2-hour plasma glucose concentrations for males and
females. Solid smooth lines denote estimated densities and dashed smooth lines
denote density curves of the two normal components.

A mixture normal distribution is often encountered in practice (McLachlan
and Peel, 2000). A two-component normal mixture model may be written as

pN(µ1, σ
2
1) + (1 − p) N(µ2, σ

2
2) , (1.1)

where 0 ≤ p ≤ 1 is the proportion of the first component, and µi and σ2
i for

i = 1, 2 denote the means and variances for the two components, respectively.
When p = 0 or 1, the model in (1.1) reduces down to a one-component normal
distribution. It is well known (e.g. Aitkin et al., 1981; McLachlan and Peel, 2000)
that the likelihood ratio test (LRT) of H0: one-component normal vs. Ha: two-
component normal mixture model in (1.1) does not follow a chi-square test with
degrees of freedom equal to the difference in the number of parameters between
H0 and Ha. The null distribution of the LRT for mixture models is unknown.

When the two normal components in the mixture distribution have equal
variance, i.e., σ1 = σ2, the p-value provided by the traditional LRT has been
shown to be liberal (Thode et al., 1988) and an improved approximation by a
chi-square distribution with 2.5 degrees of freedom has been suggested (Ning and
Finch, 2000). When the two normal components in the mixture distribution
have unequal variances, i.e., σ1 6= σ2, simulation results have indicted that the
limiting distribution is bounded by chi-square distributions with 4 and 6 degrees
of freedom (McLachlan, 1987; Gutierrez et al., 1995).
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Because the two components have unequal variances in the Rancho Bernardo
data, the p-values in Fan et al. (2005) are based on a chi-square distribution
with 6 degrees of freedom, which may be adequate or even a little conservative
based on simulations conducted to investigate the distribution of the LRT for the
Rancho Bernardo data (Yang, 2005). However, because the true null distribution
of the likelihood ratio test for mixture models is unknown, it is possible that
it may be data specific, i.e., the distribution of the LRT may depend on the
parameter values under the null hypothesis as well as the sample size. Aitkin
et al. (1981) attempted to compare values of the LRT, based on data simulated
under the null hypothesis, to distributions of χ2

38, χ2
39, and χ2

76, and concluded
that none provided an adequate representation of their simulated LRT values. In
this paper, we take a bootstrap based approach to studying the likelihood ratio
test for mixture models.

The rest of the paper is organized as follows. In section 2, we use a bootstrap
approach to obtaining p-values for the LRTs for the two-hour plasma glucose
concentrations data from the Rancho Bernardo Diabetes Study. In section 3, we
evaluate the size and power of our approach through simulations. The paper is
concluded in section 4 with a brief discussion.

2. A Bootstrap Approach to the Likelihood Ratio Test for Mixture
Models

The bootstrap significance test procedure consists of the comparison of the
observed data to bootstrap samples generated according to the null hypothesis
being tested. The outcome of the test is determined by the rank of the test
statistic of the observed data relative to the values of the test statistic of the
bootstrap samples from the null model which form the reference set (Hope, 1968;
McLachlan, 1987). Let −2 log λ denote the value of the likelihood ratio test. Sup-
pose we have generated K values of −2 log λ under the null hypothesis, and have
one additional value of −2 log λ from the observed data. If the null hypothesis is
true, then all (K + 1) values come from the null model. If there are i simulated
values of −2 log λ greater than or equal to the observed value of −2 log λ, we
estimate the p-value to be (i + 1)/(K + 1). For a specified significance level α,
the value of K can be appropriately chosen. When K = 999, the p-value equals
to (i + 1)/1000. For α = 0.05, the smallest value of K needed is 19 and the test
is significant with a p-value of 0.05 only when i = 0, that is, when all 19 values
of −2 log λ based on the bootstrap samples from the null model are smaller than
the value of −2 log λ based on the original data.
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2.1 Algorithm for obtaining p-value of the LRT

We will evaluate p-values of the likelihood ratio tests for the Rancho Bernardo
data using both K = 999 and K = 19. The algorithm below summarizes the
procedure for K = 999, for testing bimodality of plasma glucose distributions for
each age and gender group.

1. Generate a bootstrap sample from the one-component normal distribution
(H0) with the same mean and variance as estimated from the Rancho
Bernardo data. The sample size of the generated data is also the same
as that of each corresponding age and gender group. Calculate −2 log λ for
the bootstrap sample.

2. Repeat step 1 by 999 times to obtain 999 simulated values of −2 log λ.

3. Calculate −2 log λ for the observed Rancho Bernardo data.

4. Count i (the total number of simulated values of −2 log λ greater than or
equal to the observed value of −2 log λ). Calculate p = (i + 1)/1000.

2.2 The LRT applied to plasma glucose data

The above algorithm was used to calculate the p-values for each age and
gender group of the Rancho Bernardo data. As in Fan et al. (2005), the logarithm
transformation was applied to the two-hour glucose concentration data to reduce
skewness. The majority of the participants in the Rancho Bernardo Study were
older than 60. We have only 84 people younger than 50, so all participants
younger than 60 are combined in one age group. For the people older than 60, the
grouping is based on 10- year intervals. The p-values from the test of normality
indicated that the data were not normally distributed for all age groups except
for participates older than 80. Therefore participants older than 80 were excluded
from further study.

The likelihood ratio test −2 log λ = −2{log(L0)− log(La)} was computed for
each age and gender group, where L0 denotes the likelihood under H0 and La

the likelihood under Ha. The value of log(L0) was obtained by substituting the
maximum likelihood estimates (MLEs) of µ and σ into the log likelihood function
for the one-component normal model. The two-component normal mixture model
was fit using the expectation-maximization (E-M) algorithm. In order to reach
the global rather than a local maximum, three starting points of the proportion
p: 0.8, 0.85 and 0.90, were used to split the data into two subsets. Those starting
points of p correspond to possible percentages of people with diabetes in the
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population. The MLEs of the two means and two variances estimated from two
subsets were used as our starting points of means and variances for the E-M
algorithm. The largest log likelihood score from the three sets of initial values
for the E-M algorithm was chosen as an estimate of log(La).

Table 1 shows the model fitting and hypothesis testing results for the loga-
rithm transformed plasma glucose concentration by each age group, using K =
999. It indicates that the estimated mean log transformed glucose concentration
increases from 4.70 to 4.92 as age increases under the one-component (unimodal)
model. Under the two-component (bimodal) model, the estimated mean of the
first mode increases from 4.66 to 4.87 while the mean of the second mode in-
creases from 5.13 to 5.45 as age increases. The estimated percentage in the first
mode is about 90% for each group. The estimated standard deviations of the
first mode for the three age groups are similar with the value of 0.3 while the
standard deviations in the second mode are about 0.4. The values of −2 log λ
are large for all age groups. The p-values are very small with all values less than
or equal to 0.003. Therefore the likelihood ratio test rejects the null hypothesis
that the two-hour plasma glucose concentrations are from a one-component (uni-
modal) normal distribution. It indicates that a two-component (bimodal) normal
mixture model fits the data better.

Table 1: LRTs of log transformed blood glucose concentrations by age

Unimodal Bimodal

Age n µ σ µ1 σ1 µ2 σ2 p(%) LRT p-value

20-59 456 4.70 0.31 4.66 0.27 5.13 0.42 91.05 25.58 .001
60-69 576 4.81 0.36 4.77 0.31 5.41 0.43 93.74 27.06 .001
70-79 917 4.92 0.37 4.87 0.33 5.45 0.36 90.71 16.16 .003

The model fitting was repeated separately for men and women younger than
80. Table 2 shows the likelihood ratio test results by gender. The estimated means
of blood glucose for men and women are virtually the same from the unimodal
fitting and for the first mode of the two-component model. The estimated means
of the second mode of the two-component model are slightly different, with 5.52
for males and 5.41 for females. The percentages in the first mode are 90.4%
among males and 93.9% among females. The values of the LRTs in both groups
are very large and the p-values for both groups are .001. These results indicate
that a bimodal mixture normal model fits the data from each sex group better
than a unimodal normal model.

The analysis was repeated for K = 19. In each age and gender group, the
observed value of −2 log λ is greater than all the simulated −2 log λ values, so the
p-value in each group is equal to 0.05 (not shown in Tables 1 and 2). Hence, the
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same conclusion can be drawn. That is, the null hypothesis of a one-component
normal model is rejected and a bimodal normal mixture model fits the plasma
glucose data from Rancho Bernardo Study significantly better for each age and
gender group.

Table 2: LRTs of log transformed blood glucose concentrations by gender

Unimodal Biomodal

Age n µ σ µ1 σ1 µ2 σ2 p(%) LRT p-value

Male 836 4.84 0.39 4.76 0.33 5.52 0.30 90.43 27.54 .001
Female 1113 4.84 0.34 4.80 0.30 5.41 0.39 93.90 39.78 .001

3. Evaluation of Size and Power

In order to evaluate the performance of the proposed procedure in Section 2
for testing between H0: one-component normal model vs. Ha: two-component
normal mixture model in (1.1), we next evaluate the size and power of the pro-
cedure. We will do the size and power calculations only for K = 19 since these
calculations for K = 999 will require substantial computation time.

3.1 Algorithms for evaluating the size and power

We will evaluate the size and power of the bootstrap based likelihood ratio
test procedure for sample sizes n = 100, 250, 500, 750, and 1000. The algorithm
for evaluating the size of the test is as follow.

1. Generate a sample of size n from the null hypothesis with mean equal to
5.0 and standard deviation equal to 0.4, similar to the mean and standard
deviation values in Rancho Bernardo data. This sample is our “observed”
data.

2. Calculate the likelihood ratio test −2 log λ for the “observed” data.

3. Calculate the p-value using the bootstrap test procedure with K = 19. That
is, generate 19 bootstrap samples of size n from the normal distribution with
mean and standard deviation equal to those estimated from the “observed”
data. For each sample, calculate −2 log λ. The p-value is equal to 0.05 if
the “observed” −2 log λ value from step 2 is greater than all 19 simulated
values of −2 log λ.

4. Repeat steps 1-3 by 1000 times. Count the total number when the p-value
is equal to 0.05. The size is the proportion of the times when the p-value
is 0.05 out of 1000 repetitions.
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The algorithm for evaluating the power is the same as that for evaluating
the size except that, for power calculations, the “observed” data need to be
generated from the alternative hypothesis instead of the null hypothesis. For the
power evaluation, we replace step 1 in the previous algorithm by the following.

Step 1 of the algorithm for evaluating power:

1. Generate a sample of size n from the alternative hypothesis with the pro-
portion in the first component, two means and two standard deviations
similar to those in Rancho Bernardo data. In particular, generate 90% of
the sample from the normal distribution with mean 4.8 and standard devi-
ation 0.3 denoted by N(4.8, 0.32), and 10% of the data from N(5.4, 0.42).
This sample is our “observed” data.

According to McLachlan (1987), the power of the LRT is related to the Ma-
halanobis distance ∆ = |µ1 − µ2|/σ, where µ1 and µ2 are the two means of the
two normal components in Ha and σ is the common standard deviation for the
bimodal normal model. When the two means are chosen as 4.8 and 5.4 and two
variances as 0.3 and 0.4, the Mahalanobis distance between the two components
is close to 2. We evaluate the power also for ∆ = 1 and ∆ = 3. When ∆ = 1, we
generate 90% of the “observed” data from the normal distribution N(4.8, 0.32),
and 10% of the data from the normal distribution N(5.1, 0.42). For ∆ = 3, we
generate 90% of the “observed” data from N(4.6, 0.32) and 10% of the data from
N(5.5, 0.42).

3.2 Simulation results on size and power

Table 3 shows the simulation results on size and power for sample sizes of
n = 100, 250, 500, 750, and 1000. Note that each entry of the table is based on
1000 simulation runs. We see that the simulated size ranges from 0.047 to 0.059,
all within 0.01 of the nominal level of 0.05, suggesting that the bootstrap based
approach to testing mixture models preserves the type I error rate.

The power of the bootstrap based likelihood ratio test increases when either
the Mahalanobis distance or sample size increase. For Mahalanobis distance
∆ = 1, the power is as low as 0.09 for a sample size of 100. The power increases
to 0.648 when the sample size increases to 1000. Therefore, it is hard to detect
two components when the two means are only one standard deviation apart,
unless the sample size is 1000 or more.
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Table 3: Simulation results on size and power

Sample Size 100 250 500 750 1000

Size 0.055 0.047 0.059 0.055 0.058
Power, ∆ = 1 0.090 0.169 0.324 0.511 0.648
Power, ∆ = 2 0.355 0.742 0.970 0.995 0.998
Power, ∆ = 3 0.757 0.993 1.000 1.000 1.000

When the Mahalanobis distance increases to ∆ = 2, the power increases
substantially at all sample sizes. The power is about 0.74 for a sample size of
n=250. The power is greater than 0.97 when sample size is equal to or greater
than 500. Therefore, the detection of two components is virtually guaranteed
when the two means are about two standard deviations apart and the sample
size is equal to or greater than 500.

When the Mahalanobis distance increases to ∆ = 3, the power reaches 75.7%
even at a small sample size of 100. The power is as high as 99.3% at a moderate
sample size of 250. The power increases to 100% for sample sizes of 500 or greater.
Thus we need only a sample size of 250 or greater to detect two components with a
power of 99% and better when the two means are about three standard deviations
apart.

4. Discussion

The null distribution of the likelihood ratio test of unimodal normal model
versus bimodal normal mixture model does not follow the chi-square distribution
with degrees of freedom equal to the difference in the number of parameters
between the two models. In this paper we take a bootstrap approach to gauging
the likelihood of obtaining the observed data under the null hypothesis of a
one-component normal model. The p-values from this approach indicate that a
bimodal normal model fits the Rancho Bernardo plasma glucose data significantly
better than a unimodal normal model. These results confirm that bimodality of
blood glucose distributions exists in the Caucasian population (Fan et al., 2005).

The size and power of the bootstrap based likelihood ratio test are evaluated
in simulations for sample sizes of n = 100, 250, 500, 750 and 1000. The results
indicate that the bootstrap based testing procedure has the correct size that is
close to the nominal level of 0.05 and good power when the Mahalanobis distance
is at least two and sample size is at least 250. The combinations of a Maha-
lanobis distance of 2 and sample size of 500, or a Mahalanobis distance of 3 and
sample size of 250 provide a statistical power of at least 97% for detecting two
components, when the level of significance is set at 0.05.

For the Rancho Bernardo data, the Mahalanobis distance is about two. In
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this case, the power is 97% or better if the sample size is at least 500. Thus for
data similar to the Rancho Bernardo data, the bootstrap based likelihood ratio
test has a high probability of detecting the two-component normal model. When
the sample size decreases to 250, the power of the LRT decreases to 74% in our
simulation study. This implies that bimodality may not be detected if one con-
siders smaller subpopulations for the Rancho Bernardo data. An uneven mixing
ratio (the proportion of the first mode p close to 1), a moderate Mahalanobis
distance, and small sample size may have all contributed to the failure to detect
bimodality of plasma glucose distributions in whites before the Rancho Bernardo
Study.
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