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Abstract: Providing reliable estimates of the ratios of cancer incidence and
mortality rates across geographic regions has been important for the Na-
tional cancer Institute (NCI) Surveillance, Epidemiology, and End Results
(SEER) Program as it profiles cancer risk factors as well decides cancer con-
trol planning. A fundamental difficulty, however, arises when such ratios
have to be computed to compare the rate of a subregion (e.g., California)
with that of a parent region (e.g., the US). Such a comparison is often made
for policy-making purposes. Based on F-approximations as well as normal
approximations, this paper provides new confidence intervals (CIs) for such
rate ratios. Intensive simulations, which capture the real issues with the
observed mortality data, reveal that these two CIs perform well. In general,
for rare cancer sites, the F -intervals are often more conservative, and for
moderate and common cancers, all intervals perform similarly.

Key words: Cancer rate-ratio, F -approximation, normal-approximation,
2000 US standards.

1. Introduction and Preliminaries

Let Ω denote a region such as the entire US or a state in the US, and let
X denote a subregion (a proper subset) of Ω. Denote the rest of the region by
Xc = Ω/X. Let RX , RXc and RΩ denote the age-adjusted rates for X, Xc and
Ω, respectively, all of which are defined below.

RX =
J∑

j=1

wj

dXj

nXj

, RXc =
J∑

j=1

wj

dXcj

nXcj

, RΩ =
J∑

j=1

wj

dΩj

nΩj

,

where wj are known standards normalized to sum to 1 over the J age-groups;
dXj , dXcj , dΩj and nXj , nXcj , nΩj are the number of cancer cases or deaths, and
the number of person-years in X, Xc, Ω, respectively.

We define the underlying true rates as µX = E(RX), µXc = E(RXc), µΩ =
E(RΩ), whose unbiased point estimates are µ̂X = RX , µ̂Xc = RXc and µ̂Ω = RΩ,
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respectively. Under the assumption that the counts are independent Poisson
random variables, their variances can be approximated by

VX
∼=

J∑
j=1

w2
j

dXj

n2
Xj

, VXc
∼=

J∑
j=1

w2
j

dXcj

n2
Xcj

, VΩ
∼=

J∑
j=1

w2
j

dΩj

n2
Ωj

.

Our interest is to construct an approximate 100(1 − α)% confidence interval for
the rate-ratio of X to Ω, namely that of the parameter θ = µX

µΩ
, e.g the cancer

rate-ratio comparing the rate of California with that of the US. Such comparisons
are often necessary for policy-making purposes. However, statistical diffculties
arise when the estimates of the rates (e.g. those of California and the US) are
correlated.

In a simpler context, Fay (1999) and Tiwari et al. (2006) derived confidence
intervals for φ = µX

µXc
using the F distribution as an approximation of the ratio of

the two independent Gamma random variables. Specifically, denote by φ̂ = RX
RXc

,
the estimator of φ. The F-based confidence interval is given in Tiwari et al.
(2006) as(

RX

RXc

F−1
((2R2

X)/VX , (2R2
Xc/VXc ))

(α

2

)
,

RX

RXc

F−1
((2R2

X)/VX ,(2R2
Xc )/VXc )

(
1 − α

2

))
,

(1.1)
where F−1

(a,b)(p) is the pth percentile of F(a,b). The derivation of (1.1) is to view

the ratio φ̂ as an approximately F distributed random variable, given the inde-
pendence of the numerator and the denominator in φ̂.

Tiwari et al. (2006) noted the need for comparing the rate of a subregion (e.g.,
California) with that of a larger region (e.g., the US), and gave a possible solution
for computing the CIs for θ (the ratio of a subregion with its parent region)
that accounts for the correlation between the age-adjusted rates. However, their
method was not fully developed. In this paper, we will propose new F - and
normal-based confidence intervals that can conveniently compute the CIS based
on the ratio of two correlated estimates of rates. We demonstrate via simulations
that the new intervals perform well and retain the nominal coverage probabilities.

The rest of the paper is organized as follows. In Section 2, we derive the new
confidence intervals, and in Section 3 we evaluate their performance in terms
of their empirical coverage probabilities. Section 4 gives a short discussion and
Section 5 ends this paper with a conclusion.

2. Two New Confidence Intervals for θ

To derive the confidence interval for θ based on its point estimate θ̂, we first
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assume that
nX1

nΩ1

.=
nX2

nΩ2

.= . . .
.=

nXJ

nΩJ

.= pX

That is, the ratio of person years in X (e.g. California) to that of Ω (e.g. the US)
is approximately the same across all age-groups. This so-called proportional age-
distribution assumption is common in comparing the age-adjusted rates across
different geographical areas and was found to be a good approximation for the
US population; see, e.g., Pickle and White (1995).

Reasonable values for pX is given by p̂X = nX
nΩ

, where nX =
∑

j nXj and
nΩ =

∑
j nΩj . Now, we can write

RΩ =
J∑

j=1

wj

dΩj

nΩj

=
J∑

j=1

wj

dXj + dXcj

nΩj

=
J∑

j=1

wj

nXj

nΩj

(
dXj

nXj

)
+

J∑
j=1

wj

nXcj

nΩj

(
dXcj

nXcj

)
≈ pXRX + pXcRXc ,

where pXc = 1 − pX . Write the estimators for θ and φ by

θ̂ =
RX

RΩ

=
RX/RXc

p̂X(RX/RXc) + p̂Xc

and

φ̂ =
RX

RXc

=

(
RX
RΩ

)
(1 − p̂X)

1 − p̂X

(
RX
RΩ

)
respectively, where p̂Xc = 1 − p̂X . Also note that

θ =
φ

pXφ + pXc

.

Hence confidence intervals for φ would lead to those for θ (and vice versa), which
will be derived below.
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2.1 An F -approximation

Let
(
φL(α/2), φU(α/2)

)
be the 100(1 − α)% F confidence interval for φ given

in (1.1). Hence,

P (φL(α/2) < φ < φU(α/2)) = 1 − α. (2.1)

Let g(t) = 1 − pXc/(pXt + pXc) for short. Note that in this notation, g(φ)pX =
1 − pXc/(pXφ + pXc) = θ. As g(φ) is increasing in φ, (2.1) is equivalent to

P

(
1

pX
g(φL(α/2)) < θ <

1
pX

g(φU(α/2))
)

= 1 − α.

This finds the 100(1 − α)% CI for φ.
Since p̂X and p̂Xc consistently estimate pX and pXc respectively, we thus

obtain the approximate 100(1 − α)% confidence interval for θ as(
φL(α/2)

p̂XφL(α/2) + p̂Xc

,
φUα/2)

p̂XφU(α/2) + p̂Xc

)
.

2.2 A normal approximation

From the perspective of a normal approximation, we can also derive a confi-
dence interval for θ. First note that

θ̂ =
RX

p̂XRX + p̂XcRXc

Using a Taylor series,

RX

p̂XRX + p̂XcRXc

= f (RX , RXc)
≈ f (µX , µXc) + (RX − µX) fX (µX , µXc) + (RXc − µXc) fXc (µX , µXc)

f (µX , µXc) + (RX − µX)

(
p̂XcµXc(

p̂XµX + p̂XcµXc

)2

)

+ (RXc − µXc)

(
p̂XcµX(

p̂XµX + p̂XcµXc

)2

)
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and

µθ = E

(
RX

p̂XRX + p̂XcRXc

)
≈

µX

p̂XµX + p̂XcµXc

Vθ = V ar

(
RX

p̂XRX + p̂XcRXc

)
∼=

{
p̂XcµXc(

p̂XµX + p̂XcµXc

)2

}2

VX +

{
p̂XcµX(

p̂XµX + p̂XcµXc

)2

}2

VXc

=

{
p̂XcµXcµX(

p̂XµX + p̂XcµXc

)2

}2 (
VX

µ2
X

+
VXc

µ2
Xc

)
.

Now, since (RX , RXc) is asymptotically normal, and RX
p̂XRX+p̂XcRXc

= f(RX , RXc)

is a continuous function of (RX , RXc), we have that RX
p̂XRX+p̂XcRXc

is asymptoti-
cally normal with mean µθ and variance Vθ. Hence an approximate 100(1− α)%
confidence interval for θ ∼= µX

µΩ
is given by(

RX

p̂XRX + p̂XcRXc

− Zα/2

√
V̂θ,

RX

p̂XRX + p̂XcRXc

− Zα/2

√
V̂θ

)
,

where Zα is the upper 100α percentile point of the standard normal distribution,
and

V̂θ =

{
p̂XcRXcRX(

p̂XRX + p̂XcRXc

)2

}2 (
VX

R2
X

+
VXc

RXc

)
.=

{
p̂XcRXcRX

R2
Ω

}2 (
VX

R2
X

+
VXc

R2
Xc

)
.

Thus, the normal confidence interval for θ is(
RX

RΩ
± Zα/2

RX

R2
Ω

√
p̂XcR2

Xc(
VX

R2
X

+
VXc

R2
Xc

)

)
. (2.2)

3. Simulation Studies

We carried out simulations along the lines of Tiwari et al. (2006). We used
the 2004 US cancer mortality data for tongue, esophagus, and lung cancer sites.
These sites were selected to reflect the spectrum of cancer incidence; that is, from
rare cancer (tongue), to moderate cancer (esophagus), to common cancer (lung).
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The data were used to generate Poisson counts dXj , where X represents each of
the 51 regions (50 states and Washington D.C.) and j indexes the 19 age-groups.
The true means of the Poisson distributions are taken to be the observed values of
dXj . We generated 10,000 Poisson counts, and the computed age-adjusted rates,
using the 2000 US standards, so that

∑19
j=1 wj = 1. Approximate 95% confidence

intervals were obtained for the ratios of the age-adjusted rates for each of the 51
regions as compared to the overall US rate using the modified versions of the two
CIs, as discussed in Tiwari et al. (2006).

• F -interval:
(

φ
L(α/2)

p̂Xφ
L(α/2)

+p̂Xc
,

φ
U(α/2)

p̂Xφ
U(α/2)

+p̂Xc

)
with

φL(α/2) =
RX

R̃Xc

F−1
(2R2

X/VX ,2R̃2
Xc/ṼXc )

(α/2) ;

φU(α/2) =
R̃X

RXc

F−1
(2R̃2

X/ṼX ,2R2
Xc/VXc )

(α/2) ;

• Normal Interval:

(
R̃X

R̃Ω

± Zα/2

R̃X R̃Xc

R̃2
Ω

√
p̂Xc

(
ṼX

R̃2
X

+ ṼXc

R̃2
Xc

))
;

where

R̃X =
J∑

j=1

wj

dXj + 1
J

nXj

, R̃Xc =
n∑

j=1

wj

dXcj + 1
J

nXcj

ṼX =
J∑

j=1

w2
j

dXj + 1
J

n2
Xj

, ṼXc =
n∑

j=1

w2
j

dXcj + 1
J

n2
Xcj

; ρ̃X,Ω =
J∑

j=1

w2
j

dXj + 1
J

nXjnΩj

.

For the normal-approximation based intervals, if the lower limit is negative, we
replace it by 0. Also note that the correction fraction added to the counts dXj

and dXcj does not make any significant difference numerically. It merely avoids
the zero rates.

Each of the Tables 1-3 gives the ratio of age-adjusted rates, R̃X
RΩ

, the estimate,
p̂X , of the ratio of population for region X to that of the US, the empirical
coverage probabilities, and the width of the 95% intervals for the two intervals,
namely, the F - and normal-approximation based CIs. Because of the space, we
only report the selected states in these tables and the full tables are available
from the authors. The results show that the two CIs perform reasonably close.
For the tongue cancer, all intervals have higher coverage probabilities and larger
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Table 1: Performance of the Derived Confidence Intervals based on the 2004
Tongue Cancer Mortality Data. The empirical coverage probabilities and the
widths of the intervals were based on 10,000 simulations.

Empirical Coverage Prob. Average Width

State Rate Ratio Overlap F -based Normal-based F -based Normal-based
with US ratio (pX)

California 1.094 0.122 0.956 0.963 0.270 0.286
Colorado 0.984 0.016 0.957 0.952 0.821 0.802
Connecticut 0.892 0.012 0.964 0.955 0.797 0.771
Delaware 0.900 0.003 0.979 0.961 1.790 1.706
Washington DC 2.073 0.002 0.968 0.957 3.399 3.257
Florida 1.281 0.059 0.956 0.960 0.388 0.391
Georgia 0.921 0.030 0.959 0.955 0.555 0.548
Hawaii 0.463 0.004 0.973 0.971 1.054 1.001
Idaho 1.441 0.005 0.964 0.955 1.751 1.686
Illinois 1.019 0.043 0.955 0.955 0.450 0.450
Indiana 0.886 0.021 0.958 0.953 0.601 0.588
Iowa 0.883 0.010 0.965 0.958 0.838 0.807
Kansas 0.970 0.009 0.961 0.951 0.963 0.928
Kentucky 0.872 0.014 0.962 0.957 0.738 0.715
Louisiana 1.016 0.015 0.962 0.956 0.785 0.765
Maine 1.306 0.004 0.973 0.967 1.566 1.496
Maryland 0.817 0.019 0.958 0.951 0.624 0.609
Massachusetts 0.932 0.022 0.961 0.957 0.601 0.589
Michigan 0.953 0.034 0.958 0.956 0.481 0.476
Minnesota 0.906 0.017 0.963 0.956 0.691 0.674
Mississippi 0.377 0.010 0.971 0.956 0.618 0.593
Missouri 0.945 0.020 0.959 0.955 0.641 0.626
Montana 0.737 0.003 0.980 0.977 1.514 1.441
Nebraska 0.786 0.006 0.963 0.955 1.124 1.079
Nevada 1.214 0.008 0.963 0.955 1.230 1.188
New Hampshire 1.087 0.004 0.969 0.962 1.560 1.496
New Jersey 1.191 0.030 0.955 0.953 0.573 0.567
New Mexico 0.936 0.006 0.965 0.956 1.202 1.157
New York 1.129 0.066 0.953 0.956 0.363 0.369
North Carolina 0.928 0.029 0.959 0.956 0.533 0.526
Pennsylvania 0.841 0.042 0.954 0.954 0.384 0.383
Texas 1.044 0.077 0.954 0.955 0.356 0.365

widths than those for esophagus and lung cancers. Indeed, for the latter two
cancers, the empirical coverage probabilities get much closer to 95%. For large
states such as California, Florida, New York, Pennsylvania, and Texas, all inter-
vals perform similarly in terms of interval widths and the coverage probabilities.

4. Discussion of the Results

The SEER Program of NCI has implemented the F -intervals of Fay (1999)
and the modified F -interval of Tiwari et al. (2006) in the SEER*STAT software
to compare the age-adjusted rates for two nonoverlapping regions. However,
as pointed out in Tiwari et al. (2006), there is an emerging need of obtaining
confidence interval formulae for comparing the age-adjusted rates of a subregion
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Table 2: Performance of the Derived Confidence Intervals based on the 2004
Esophagus Cancer Mortality Data. The empirical coverage probabilities and
the widths of the intervals were based on 10,000 simulations.

Empirical Coverage Prob. Average Width

State Rate Ratio Overlap F -based Normal-based F -based Normal-based
with US ratio (pX)

California 0.842 0.122 0.952 0.961 0.092 0.097
Colorado 0.980 0.016 0.953 0.951 0.299 0.296
Connecticut 0.968 0.012 0.957 0.953 0.306 0.302
Delaware 1.591 0.003 0.956 0.951 0.826 0.805
Washington DC 1.286 0.002 0.961 0.954 0.939 0.908
Florida 0.951 0.059 0.957 0.964 0.122 0.125
Georgia 1.044 0.030 0.951 0.951 0.221 0.222
Hawaii 0.563 0.004 0.963 0.958 0.395 0.382
Idaho 0.864 0.005 0.956 0.949 0.493 0.480
Illinois 1.037 0.043 0.956 0.958 0.170 0.172
Indiana 1.080 0.021 0.951 0.950 0.247 0.246
Iowa 0.976 0.010 0.953 0.949 0.324 0.319
Kansas 0.913 0.009 0.954 0.951 0.344 0.338
Kentucky 1.009 0.014 0.953 0.951 0.291 0.288
Louisiana 1.034 0.015 0.950 0.948 0.292 0.290
Maine 1.336 0.004 0.960 0.956 0.565 0.551
Maryland 0.951 0.019 0.955 0.954 0.251 0.249
Massachusetts 1.167 0.022 0.952 0.951 0.246 0.245
Michigan 1.099 0.034 0.956 0.957 0.193 0.194
Minnesota 1.016 0.017 0.953 0.951 0.268 0.266
Mississippi 0.946 0.010 0.953 0.950 0.345 0.339
Missouri 1.044 0.020 0.952 0.951 0.246 0.245
Montana 1.062 0.003 0.956 0.947 0.632 0.613
Nebraska 0.989 0.006 0.958 0.953 0.447 0.438
Nevada 0.941 0.008 0.957 0.953 0.404 0.397
New Hampshire 1.193 0.004 0.957 0.952 0.580 0.566
New Jersey 0.941 0.030 0.955 0.955 0.190 0.191
New Mexico 0.973 0.006 0.957 0.954 0.437 0.428
New York 1.019 0.066 0.950 0.956 0.130 0.133
North Carolina 1.024 0.029 0.952 0.953 0.206 0.206
Pennsylvania 1.160 0.042 0.953 0.957 0.166 0.167
Texas 0.875 0.077 0.954 0.957 0.125 0.129

that is a part of a larger region. This paper fills that gap by providing the needed
confidence interval formulae, namely, the F -based and the normal-based intervals.
It is noticeable that these two intervals depend on the ratio of the population sizes
for the subregion and the region, and on their age-adjusted rates. The results in
Tables 1-3 show the effect of the size of the overlap in the two populations on
the confidence intervals. To avoid the situation where the observed age-adjusted
rates are zero, we adopted a corrected version of age-adjusted rates by adding a
small constant as in Tiwari et al. (2006).

We note the framework of the normal-approximation method allows the com-
putation for the following two common scenarios in cancer surveillance. The first
concerns with a partial overlapping situation. Consider X and Ω two regions
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Table 3: Performance of the Derived Confidence Intervals based on the 2004
Lung Cancer Mortality Data. The empirical coverage probabilities and the
widths of the intervals were based on 10,000 simulations.

Empirical Coverage Prob. Average Width

State Rate Ratio Overlap F -based Normal-based F -based Normal-based
with US ratio (pX)

California 0.797 0.122 0.932 0.959 0.026 0.027
Colorado 0.740 0.016 0.952 0.953 0.075 0.076
Connecticut 0.936 0.012 0.955 0.956 0.085 0.085
Delaware 1.234 0.003 0.948 0.946 0.203 0.201
Washington DC 0.959 0.002 0.953 0.949 0.228 0.225
Florida 1.012 0.059 0.951 0.961 0.036 0.037
Georgia 1.101 0.030 0.948 0.950 0.065 0.066
Hawaii 0.703 0.004 0.956 0.955 0.123 0.122
Idaho 0.772 0.005 0.953 0.951 0.133 0.132
Illinois 1.029 0.043 0.946 0.952 0.048 0.049
Indiana 1.145 0.021 0.950 0.951 0.072 0.073
Iowa 1.009 0.010 0.952 0.952 0.094 0.093
Kansas 1.017 0.009 0.952 0.952 0.102 0.102
Kentucky 1.448 0.014 0.953 0.954 0.099 0.099
Louisiana 1.255 0.015 0.954 0.954 0.091 0.091
Maine 1.145 0.004 0.952 0.951 0.147 0.146
Maryland 0.998 0.019 0.948 0.949 0.074 0.074
Massachusetts 0.980 0.022 0.953 0.955 0.064 0.065
Michigan 1.068 0.034 0.955 0.958 0.054 0.055
Minnesota 0.881 0.017 0.948 0.949 0.071 0.072
Mississippi 1.282 0.010 0.952 0.952 0.114 0.113
Missouri 1.224 0.020 0.950 0.952 0.075 0.076
Montana 0.921 0.003 0.953 0.950 0.164 0.162
Nebraska 0.888 0.006 0.952 0.951 0.119 0.118
Nevada 1.075 0.008 0.950 0.950 0.122 0.122
New Hampshire 1.041 0.004 0.957 0.955 0.153 0.152
New Jersey 0.913 0.030 0.952 0.954 0.053 0.054
New Mexico 0.673 0.006 0.953 0.951 0.103 0.102
New York 0.862 0.066 0.952 0.961 0.034 0.035
North Carolina 1.111 0.029 0.953 0.955 0.061 0.061
Pennsylvania 0.998 0.042 0.949 0.954 0.044 0.044
Texas 0.977 0.077 0.948 0.952 0.037 0.039

with a partial overlap, for example X = {Geogia, NorthCarolina, SouthCarolina}
and Ω = {NorthCarolina, Virginia} , with XΩ = {NorthCarolina}. Also, a
Taylor series expansion, similar to that in Section 2.2, for the rate-ratio

RX

RΩ

.=
pXΩRXΩ + pXΩcRXΩc

qXΩRXΩ + qXcΩRXcΩc

can be used to obtain an approximate normal CI. Here, pXΩ = nXΩ/nX , pXΩc =
nXΩc/nX , qXΩ = nXΩ/nΩ, qXcΩ = nXcΩ/nΩ. The second scenario concerns with
comparing two age-adjusted incidence rate ratios, namely (i) R

(L)
XW /R

(T )
XW with

R
(L)
XB/R

(T )
XB, and (ii) R

(L)
XW /R

(T )
XW with R

(L)
ΩW /R

(T )
ΩW , where R

(L)
XW =

∑
j wjd

(L)
XWj/nXWj

is the age-adjusted incidence rate for white women with localized breast cancer
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in subregion X ⊂ Ω, and R
(T )
XW =

∑
j wjd

(T )
XWj/nXWj is the age-adjusted rates for

white women with breast cancer with localized, regional, and distant stages com-
bined in X, while R

(L)
XB =

∑
j wjd

(L)
XBj/nXBj and R

(T )
XB =

∑
j wjd

(T )
XBj/nXBj are

the corresponding age-adjusted incidence rates for black women in subregion X

respectively. The terms R
(L)
ΩW =

∑
j wjd

(L)
ΩWj/nΩWj and R

(T )
ΩW =

∑
j wjd

(T )
ΩWj/nΩWj

are defined for the age-adjusted incidence rates for white women in Region Ω sim-
ilarly. Our focus centers on constructing the confidence intervals based on the
following differences of ratios, namely,

DRX,W−B =
R

(L)
XW

R
(T )
XW

−
R

(L)
XB

R
(T )
XB

, and DRX−Ω,W =
R

(L)
XW

R
(T )
XW

−
R

(L)
ΩW

R
(T )
ΩW

.

Indeed, the approximate (1−α)×100% confidence intervals based on DRX,W−B

and DRX−Ω,W are DRX,W−B∓Zα/2×(V̂ (DRX,W−B))1/2 and DRX−Ω,W ∓Zα/2×
(V̂ (DRX−Ω,W ))1/2, respectively, where V̂ (DRX,W−B) and V̂ (DRX−Ω,W ) are the
variance estimates of DRX−Ω,W and DRX−Ω,W given in the Appendix. As an ap-
plication, we computed the 95% confidence interval for DRX,W−B, the difference
of the age-adjusted rate ratio for white women with localized breast cancer to all
stages combined with that for the women from the SEER-9 database (year 2003).
The observed difference was 10.87% with the 95% CI being (8.32%, 13.41%),
demonstrating racial disparities as the rate-ratio for the whites were significantly
different from the black women. On the other hand, an application of DRX−Ω,W

was made to compare the rate-ratio for white women in Iowa with that for all
white women in the SEER-9 database. The calculated difference was 1.01% with
the 95% CI being (-1.20%, 3.22%), revealing no significant differences.

5. Conclusion

We derived confidence intervals based on F and normal approximations for
the ratio of age-adjusted rates for a subregion to a parent region containing
the subregion. Through simulations, we showed that all the proposed intervals
performed well, in terms of retaining the nominal coverage. Our work fills the
gap of non-availability of methods that compare the ratio of age-adjusted rates
for two overlapping regions. We will suggest that these formulae be implemented
in the NCI SEER*STAT software for public use.
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Appendix: Technical Detail

Using the delta method and applying the results derived in Section 2.1, we obtain
the estimates of the variance expressions for DRX,W−B and DRX−Ω,W as follows:
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XW Ĉov(R(L)

XW , R
(T )
XW )

}
+

1

(R(T )
ΩW )4

{
(R(T )

ΩW )2V̂ (R(L)
ΩW ) + (R(L)

ΩW )2V̂ (R(T )
ΩW ) − 2R

(T )
ΩW R

(L)
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