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Abstract: Multiple imputation under the multivariate normality assump-
tion has often been regarded as a viable model-based approach in dealing
with incomplete continuous data. Considering the fact that real data rarely
conform with normality, there has been a growing attention to generalized
classes of distributions that cover a broader range of skewness and elongation
behavior compared to the normal distribution. In this regard, two recent
works have shown that creating imputations under Fleishman’s power poly-
nomials and the generalized lambda distribution may be a promising tool.
In this article, essential distributional characteristics of these families are il-
lustrated along with a description of how they can be used to create multiply
imputed data sets. Furthermore, an application is presented using a data
example from psychiatric research. Multiple imputation under these fami-
lies that span most of the feasible area in the symmetry-peakedness plane
appears to have substantial potential of capturing real missing-data trends
that can be encountered in clinical practice.

Key words: Kurtosis, multiple imputation, multivariate normality, symme-
try, skewness.

1. Introduction and Motivation

Missing data are ubiquitous in statistical practice. Determining an appro-
priate analytical strategy in the absence of complete data presents challenges
for scientific exploration. Missing values can give rise to biased parameter es-
timates, reduced statistical power, and degraded coverage of interval estimates,
and thereby may lead to false inferences (Little and Rubin, 2002).

Improvements in computational statistics have produced flexible missing-data
procedures with a sound statistical basis. One of these procedures involves mul-
tiple imputation (MI) (Rubin, 2004), a stochastic simulation technique that re-
places each missing datum with a set of plausible values through a predictive dis-
tribution. The versions of complete data are then analyzed by standard complete-
data methods and the results are combined into a single inferential summary using
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arithmetic rules to yield estimates, standard errors and p-values that formally in-
corporate missing data uncertainty into the modeling process. The key ideas
and advantages of MI were reviewed by Rubin (1996), Schafer (1997, 1999), and
Kenward and Carpenter (2007). For examples of related methods and illustra-
tive applications, see Demirtas and Schafer (2003), Demirtas (2004, 2005), and
Demirtas and Hedeker (2007, 2008).

The fundamental step in MI is filling in the missing data by drawing from
the conditional distribution of the missing data given the observed data which
usually entails positing a parametric model for the data and using it to derive
this conditional distribution. For continuous data, joint multivariate normality
among the variables has often been perceived as a natural assumption since the
conditional distribution of the missing data given the observed data is then also
multivariate normal.

Considering the restrictive nature of the normality assumption, employing a
distributional setup that spans a wider range of symmetry-peakedness behavior
in the imputation process may provide a reasonable way to handle non-Gaussian
continuous data. For this reason, extending the practice of MI from normality to
more general classes of densities has begun to receive attention (Liu, 1995; He and
Raghunathan, 2006). Demirtas and Hedeker (2008), and Demirtas (2009) demon-
strate by simulations that Fleishman’s power polynomials (Fleishman, 1978) and
the generalized lambda distribution (GLD) can be thought as sensible alterna-
tives due to their ability of accommodating a variety of distributional shapes
depending on the parameter values that can easily be computed for any given
data set. Here, we carry out imputation inferences under these flexible methods
using a psychiatric clinical trials data in an attempt to explore their performance
in a real data context.

The organization of the rest of the paper is as follows. In Section 2, I describe
salient aspects of Fleishman’s power polynomials. In Section 3, I give an overview
of the GLD. Section 4 presents an algorithm for multiply imputing univariate
data under these two parametric classes of families. Section 5 includes the real
data example, application of the two approaches along with a comparisons to the
normal imputation. Concluding remarks, discussion and future directions in the
sense of generalizing these methods to the multivariate case are articulated in
Section 6.

2. Fleishman Polynomials

Fleishman (1978) argued that real-life distributions of variables are typically
characterized by their first four moments. He presented a moment-matching
procedure that simulates non-normal distributions often used in Monte Carlo
studies. It is based on the polynomial transformation, Y = a + bZ + cZ2 + dZ3,
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where Z follows a standard normal distribution, and Y is standardized (zero
mean and unit variance). The distribution of Y depends on the constants a, b, c
and d, whose values were tabulated for selected values of skewness (r1 = E[Y 3])
and kurtosis (r2 = E[Y 4] − 3). This procedure of expressing any given variable
by the sum of linear combinations of powers of a standard normal variate is
capable of covering a wide area in the skewness-elongation plane whose bounds
are given by the general expression r2 ≥ r2

1 − 2. 1 High-order moment (the third
and fourth moments) boundaries of the power method were given in the original
paper (Fleishman, 1978) through an inequality; however, they were not entirely
correct. Subsequently, Headrick and Sawilowsky (2000) computed empirical lower
bounds of kurtosis for a given value of skewness.

Assuming that E[Y ] = 0, and E[Y 2] = 1, by utilizing the first 12 moments of
the standard normal distribution, the following set of equations can be derived
after simple but tedious algebra. Solving these equations can be accomplished by
the Newton-Raphson method, or any other plausible root-finding or non-linear
optimization routine.

a = −c

b2 + 6bd + 2c2 + 15d2 − 1 = 0
2c(b2 + 24bd + 105d2 + 2) − r1 = 0
24[bd + c2(1 + b2 + 28bd) + d2(12 + 48bd + 141c2 + 225d2] − r2 = 0

Fleishman’s method has been extended in several ways in the literature. One
extension utilizes the fifth-order polynomials in the spirit of controlling for higher-
order moments (Headrick, 2002). The other one is in regard to a multivariate
version of the power method. This extension is extremely interesting due to its
potential for creating multiply imputed data sets in more realistic multivariate
settings (Vale and Maurelli, 1983; Headrick and Sawilowsky, 1999). The general-
izability to the multivariate case makes the polynomial method more compelling
in the sense that it presents an advantage over other general distributions (Burr
family [Burr, 1942], Johnson family [Johnson, 1949], Pearson family [Parrish,
1990], Schmeiser-Deutch system [Schmeiser and Deutch, 1977]) whose multivari-
ate versions are either non-existent or very formidable to specify due to math-
ematical and/or computational difficulties. The scope of this paper is limited
to the univariate case. For this reason, we only briefly mention the operational
logic of the multivariate power approach in Section 6 and discuss its connection
to the Bayesian multiple imputation technique under the assumption of multi-
variate normality. A convenience of adapting Fleishman’s method to MI in the

1It is trivial to prove this by Cauchy-Schwarz inequality. Furthermore, one can show that
equality condition is impossible to reach, but this is immaterial for the purposes of this work.
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multivariate case is that it allows one to take advantage of well-developed MI
methods. In other words, employing suitable transformations makes it possible
for practitioners to use existing MI software (e.g. Schimert et al., 2001). It should
be noted that the power approach has been criticized by some authors (Tadika-
malla, 1980) on the grounds that the exact distribution was unknown and thus
lacked probability density and cumulative distribution functions (pdf and cdf, re-
spectively). However, Headrick and Kowalchuk (2007) recently derived the power
method’s pdf and cdf in general form.

3. Generalized Lambda Distribution

The generalized lambda density is a class of distributions used for parameter
estimation, fitting distributions to data, or in simulation studies that primarily
involve univariate data generation (Ramberg and Schmeiser, 1972, 1974; Ram-
berg et al., 1979). The univariate GLD is attractive because its pdf and inverse
distribution function are known and its associated algorithm for data generation
can be implemented with relative ease. Simulated values, x, can be drawn by the
inverse cdf method x = λ1+[pλ3−(1−p)λ4 ]/λ2, where λ1 and λ2 are location and
scale parameters, respectively, λ3 and λ4 are shape parameters, and p ∼ U [0, 1].
The right hand side of the equation is the inverse cdf of the GLD. Although
the cdf does not exist in closed form, this is not a problem in practice since the
same is true for the normal distribution. Estimation of λ’s can be carried out by
percentile matching, moment matching, maximum likelihood, and pseudo least
squares methods (Tarsitano, 2005). Our preliminary work suggested that match-
ing moments yield very accurate estimates of λ’s. For this reason, we predicate
the estimation process upon moment matching. Ramberg and Schmeiser (1974)
showed that the kth moment of the GLD, when it exists, is given by

E(Xk) = λ−k
2

k∑
i=0

(
k

i

)
(−1)iB(λ3(k − i) + 1, λ4i + 1)

for λ1 = 0, where B denotes the beta function. Ramberg et al. (1979) gave details
of estimation and model-fitting procedures for this four-parameter probability
distribution. It involves solving a set of equations that are formed through the
first four moments that are capable of accommodating a wide variety of curve
shapes.

Ramberg and Schmeiser (1974) derived the following expression for the mean
(µ), the variance (σ2), and the third (µ3 = E(X − µ)3) and fourth (µ4 = E(X −
µ)4) moments about the mean for this distribution:
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µ = λ1 +
A

λ2

σ2 =
(B − A2)

λ2
2

µ3 =
(C − 3AB + 2A3)

λ3
2

µ4 =
(D − 4AC + 6A2B − 3A4)

λ4
2

,

where

A =
1

1 + λ3
− 1

1 + λ4

B =
1

1 + 2λ3
+

1
1 + 2λ4

− 2β(1 + λ3, 1 + λ4)

C =
1

1 + 3λ3
− 1

1 + 3λ4
− 3β(1 + 2λ3, 1 + λ4) + 3β(1 + λ3, 1 + 2λ4)

D =
1

1 + 4λ3
+

1
1 + 4λ4

− 4β(1 + 3λ3, 1 + λ4)

− 4β(1 + λ3, 1 + 3λ4) + 6β(1 + 2λ3, 1 + 2λ4).

The skewness and kurtosis, as given by α3 = µ3

σ3 and α4 = µ4

σ4 −3 are functions
of λ3 and λ4, but do not depend on λ1 and λ2. One can easily compute the empir-
ical moments µ∗, σ∗2, µ∗

3, and µ∗
4 from a given data set; then find the values of λ3

and λ4 which best solve the two simultaneous nonlinear equations α3(λ3, λ4) = α∗
3

and α4(λ3, λ4) = α∗
4. As in Fleishman’s method, one can solve these equations by

the Newton-Raphson method, or any other plausible root-finding or non-linear
optimization routine. Calculating λ1 and λ2 is straightforward, with a caveat
that the sign of λ2 should be the same as the sign of λ3 and λ4. The specifica-
tion of any feasible moment structure that translates to corresponding values of
λ’s, enables us to generate random numbers via the inverse cdf method, which is
equally applicable in the context of creating multiply imputed data sets.

4. Imputation Algorithm

After reviewing the highlights of the power method and the GLD, I now de-
scribe how one utilizes these families in creating multiply imputed data sets. We
assume three imputation models for comparison purposes. The first one is the
normal model, where we create imputations following the standard approach of
using a Bayesian predictive model of the missing data given the observed data
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(Schafer, 1997). For the power polynomials, instead of adopting a Bayesian ap-
proach, we account for the parameter uncertainty by obtaining nonparametric
bootstrap samples that anchor the subsequent estimation procedure for the pa-
rameters of the power expression, as was done by He and Raghunathan (2006).
Denoting the data Y = (Yobs, Ymis) = (y1, y2, ..., yn1 , yn1+1, ..., yn)T , of which the
first n1 elements are observed (Yobs = (y1, y2, ..., yn1)

T ), and the remaining n−n1

elements are missing (Ymis = yn1+1, ..., yn)T ), the imputation algorithm is as
follows:

1. Center and scale the data so that mean is zero and variance is one. This
standardization is needed for the subsequent estimation of the four power
polynomial coefficients. Let the transformed data be Y ∗

obs.

2. Draw a nonparametric bootstrap sample of size n1 from Y ∗
obs.

3. Estimate the model parameters (a, b, c, d) using the Newton-Raphson algo-
rithm.2

4. Simulate independent variates from these distributions for every missing
data point in Y ∗

mis.

5. Back transform the filled-in data and the transformed observed data to the
original scale.

6. Repeat steps 2-5 independently m = 10 times.

For the GLD, the above steps are the same except for Step 3, where the
parameters under consideration are (λ1, λ2, λ3, λ4) rather than (a, b, c, d).

5. Application

Our real data example comes from a study in psychiatric research (Reisby et
al., 1977). It was fairly extensively discussed in Hedeker and Gibbons (2006).
This study focused on the longitudinal relationships between imipramine (IMI)
and desipramine (DMI) plasma levels and clinical response in 66 depressed inpa-
tients. Imipramine is the prototypic drug in the series of compounds known as
tricyclic antidepressants, and is commonly prescribed for the treatment of major
depression.

The study design was as follows. Following a placebo period of one week,
patients received 225 mg/day doses of imipramine for four weeks. In this study,

2There is nothing magical about the Newton-Raphson method, one can use any other plau-
sible root-finding algorithm.
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Figure 1: Histogram of HDRS, IMI, LIMI, DMI, and LDMI rows 1, 2, 3, 4, and
5, respectively. The numbers represent the time points (columns 1 through 4
stand for weeks 1 to 4, in that order).

subjects were rated with the Hamilton Depression Rating Scale (HDRS) [Hamil-
ton, 1960] twice during the baseline placebo week (at the start and end of this
week) as well as the end of each of the four treatment weeks of the study. These
HDRS scores represent the outcome variable that is measured across time. Higher
scores on the HDRS represent higher levels of depression and lower scores indi-
cate less depression. Plasma level measurements of both IMI and its metabolite
DMI were made at the end of each week. The sex and age of each patient was
recorded and a diagnosis of endogenous and nonendogenous depression was made
for each patient.

Although the total number of subjects in this study was 66, the number of
subjects with all measures at each of the week fluctuated, ranging from 58 to 65.
Of the 66 subjects, only 46 had complete data at all time points. For the pur-
pose of this work, we focus on change in HDRS since the baseline, IMI and DMI
measurements for the four drug weeks. In what follows, HDRS stands for the
difference of HDRS with respect to the baseline measurement across four weeks.
Previous analyses (Hedeker and Gibbons, 2006) treated HDRS as the outcome,
and IMI and DMI as time-varying covariates. In addition, for illustration of the
imputation techniques presented in this paper, we add a hypothetical group of
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34 subjects whose have no measurements for any of these three variables under
consideration, making the total sample size 100. After this adjustment, nonre-
sponse rate is about 40% which is fairly typical in such studies. This situation is
not uncommon in clinical practice; it is natural to lose subjects between recruit-
ment time and the start of the treatment. The implied missingness mechanism
is missing completely at random (MCAR), in the sense of Rubin (1976). This
assumption is unrealistically simplistic in practice, but the scope of this paper is
limited to univariate imputation, and more realistic mechanisms are not feasible
to formulate in a univariate setting.

Table 1: Comparison of the quantiles of observed data and imputed por-
tion across 10 imputations under the normal, Fleishman, and GLD models
for HDRS across four time points. Ranks of absolute deviations from the truth
are given in brackets, with 1 and 3 corresponding to the least and most biased
estimates, respectively.

Variable Quantile Original data Normal Fleishman GLD

5th -13.85 -13.39[2] -14.01[1] -13.21[3]
25th -8.25 -8.84[3] -8.58[2] -8.43[1]

HDRS1 50th -4.00 -5.07[2] -4.77[1] -5.08[3]
75th -2.00 -1.25[2] -1.16[3] -1.71[1]
95th 2.00 3.66[3] 3.09[1] 3.12[2]

5th -20.60 -16.73[3] -17.47[2] -17.82[1]
25th -10.00 -11.83[3] -10.86[2] -10.76[1]

HDRS2 50th -6.00 -7.46[3] -6.56[2] -6.26[1]
75th -3.00 -3.06[1] -2.92[2] -2.88[3]
95th 3.60 3.31[1] 3.28[2] 3.98[3]

5th -21.90 -21.40[1] -20.95[2] -20.35[3]
25th -13.00 -14.37[1] -15.32[3] -15.23[2]

HDRS3 50th -10.00 -9.16[3] -10.46[2] -10.44[1]
75th -5.00 -4.40[2] -4.63[1] -5.64[3]
95th 2.00 2.67[3] 1.87[1] 1.76[2]

5th -23.00 -23.35[1] -22.33[2] -22.06[3]
25th -16.00 -16.66[3] -16.16[1] -16.29[2]

HDRS4 50th -11.00 -11.75[3] -11.40[2] -11.37[1]
75th -6.00 -6.98[3] -6.21[2] -5.95[1]
95th 0.45 0.15[2] 0.83[3] 0.73[1]

Since IMI and DMI are positively skewed, I also examined logarithmically
transformed versions, LIMI and LDMI, where LIMI = log(IMI + 1), and
LDMI = log(DMI + 1) (1 was added to accommodate 0 values). Histograms of
HDRS, IMI, LIMI, LIMI, and LDMI for four time points are shown in Figure 1
(the numbers at the end of each variable denote the time points).

The normal, Fleishman, and GLD imputation models were applied to these
five variables at four time points separately. 10 imputations were created for
each of these 20 combinations. Admittedly, performing MI separately for 5×4 =
20 times is rather peculiar. Again, the reason for this is that the proposed
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methods have been developed for univariate data. For a discussion of multivariate
augmentations, see Section 6. The parameters of interest were chosen to be the
five quantiles (5th, 25th, 50th, 75th, and 95th) that are known to be sensitive to
model misspecification.

Tables 1 tabulates the five quantiles for the original HDRS data, and averaged
quantiles of the imputed portions across 10 multiply imputed data sets for the
normal, Fleishman and GLD imputation models. Under MCAR, observed data
and imputed values should have similar distributional properties. Ranks based on
absolute deviations from the observed data quantiles are shown in brackets, with
1 and 3 corresponding to the least and most biased estimates, respectively. The
results for IMI, LIMI, DMI and LDMI are not reported due to space limitations.
Full results are accessible at http : //tigger.uic.edu/ ∼ demirtas/tablesJDS.pdf .

Examining Table 1 and tables posted on the above-mentioned website clearly
reveals the superior performance of the Fleishman and GLD imputation over the
normal imputation. The performance differences are most substantial for IMI and
DMI for which departures from normality are the most severe. Even for HDRS
and log-transformed versions (LIMI and LDMI), where the normality assumption
is a close approximation to reality, the comparative performance of the power
and GLD approaches is better, although the differences are not very dramatic.
In order to make the results more compact and visible, average ranks for HDRS,
IMI, LIMI, DMI, and LDMI aggregated across four time points, and overall rank
were computed as shown in Table 2. Both Fleishman and GLD imputation
models lead to less biased estimates compared to the normal imputation model,
in varying degrees depending on the underlying distributional features. Of note,
no significant differences were detected between the two general families.

Table 2: Average ranks for HDRS, IMI, LIMI, DMI, and LDMI aggregated
across four time points, and overall rank.

Variable Normal Fleishman GLD

HDRS 2.25 1.85 1.90
IMI 2.65 1.65 1.70
LIMI 2.20 1.90 1.90
DMI 2.65 1.60 1.75
LDMI 2.05 1.95 2.00
OVERALL 2.36 1.79 1.85

6. Discussion

In this paper we have implemented methods that were developed in the ran-
dom number generation literature to the context of MI. A major imputation
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principle is not to distort the marginal distributions and associations between
observed and imputed variables; and random number generation is conducted
via specified distributional properties. Observed data trends can be assumed to
be applicable to the whole data set, and missing portions can be filled in with
numbers that belong to the same distributional mechanism which, in a sense,
is the operational logic for random number generation. This assertion clearly
assumes ignorable nonresponse (once we have taken into account what we have
observed, there remains no dependence on what we have not observed), where
missingness fully depends on the observed quantities in the system in the sense
of Rubin (1976). Although this may be considered a limitation, it might serve as
a milestone for nonignorable extensions.

The promising results in the univariate case substantiate the natural con-
tinuation of these imputation methods under the multivariate case. As articu-
lated in Vale and Maurelli (1983), one can compute estimated power coefficients
marginally for each variable and correlations among them. Then, by a principle
components factorization or another factorization method, an identity that in-
volves powers of the correlation between pairs of standard normal variables and
between pairs of the original variables could be obtained. Solving this third-order
equation for each pair of standard normal variables, along with marginal coeffi-
cients, yields the set of parameters of a multivariate normal distribution. After
the generation of the multivariate normal data matrix, it is back-transformed to
the original scale. While this approach was suggested in the context of random
number generation, it can easily be implemented for incomplete data problems in
the following way. After computing the marginal coefficients and correlations for
the observed part of the data, a conversion to the multivariate normal case can be
done in a straightforward way. Subsequently, one may resort to well-developed
Bayesian imputation techniques (Schafer, 1997) under the normal model. Once
multiply imputed data sets are created, a back transformation would result in
completed data sets that preserve the original features of the data. In a simi-
lar spirit, in terms of multivariate data generation, it has been demonstrated by
Headrick and Mugdadi (2006) that the GLD have computational difficulties asso-
ciated with 1) having to take several steps to overcome the problem of generating
biased correlation coefficients, 2) having access to commercial software pack-
ages and ensuring the accuracy of numerical solutions to complicated integrals.
Headrick and Mugdadi (2006) developed a methodology to simulate multivari-
ate non-normal distributions from the GLD. Making connections from random
generation domain to MI domain using a multivariate version of the GLD is an
exciting idea which will be taken up in future work.

There are a few limitations that need to be addressed. First, while we rec-
ognize that real incomplete data often include many variables, our focus was on
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univariate data. We view this as a potential building block for more realistic sit-
uations. The behavior of the third and fourth moments typically requires more
modeling flexibility in terms of the area covered in the symmetry-elongation plane
as well as the association among variables. On a related note, although the power
and GLD approaches are capable of picking some data trends that are unlikely
to be captured by a normal model, these parametric families do not cover the
entire symmetry-elongation plane. Nevertheless, considering the relative gains
presented in this paper, it provides an indication that the multivariate version
can lead to further improvements. Furthermore, the implied missingness mech-
anism is generally too simplistic for real-life applications. However, our purpose
was not to conduct a sensitivity analysis with respect to the mechanism that
leads to the observed data. Rather, the current paper was motivated by how
tenably MI inferences can be conducted with power polynomials and the GLD.
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