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Regression: Comparing Predictors and Groups of Predictors
Based on a Robust Measure of Association
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Abstract: Let ρj be Pearson’s correlation between Y and Xj (j = 1, 2).
A problem that has received considerable attention is testing H0: ρ1 = ρ2.
A well-known concern, however, is that Pearson’s correlation is not robust
(e.g., Wilcox, 2005), and the usual estimate of ρj , rj has a finite sample
breakdown point of only 1/n. The goal in this paper is to consider extensions
to situations where Pearson’s correlation is replaced by a particular robust
measure of association. Included are results where there are p > 2 predictors
and the goal to compare any two subsets of m < p predictors.

Key words: Dependent correlations, generalized variances, halfspace depth,
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1. Introduction

Let Yi, Xi1, . . . , Xip (i = 1, . . . n) be a random sample from some unknown
p + 1-variate distribution, let ρyj be Pearson’s correlation between Y and Xj ,
and let ρjk be the correlation between Xj and Xk (j, k = 1, . . . , p; j 6= k). A
problem that has received considerable attention is testing

H0 : ρyj = ρyk (1.1)

(e.g., Hittner, May and Silver, 2003; Hotelling, 1940; Olkin, 1967; Dunn and
Clark, 1969; Meng, Rosenthal and Rubin, 1992); Steiger, 1980; Williams, 1959;
Wilcox and Tian, 2008; Hendrickson, Stanley and Hills, 1970). Most methods
are now known to be unsatisfactory in terms of Type I errors (e.g., Hittner et al.
, 2003; Wilcox and Tian, 2008). Indeed, Wilcox and Tian (2008) found only one
method that performs well in simulations.

The goal in this paper is to extend methods for testing (1.1) in two ways.
The first is to compare any two predictors based on a particular robust measure
of association with Y . The second is to consider a generalization of the first
method to situations where the strength of the association between m variables
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and Y is of interest, 1 < m < p. To be slightly more precise, consider two
non-identical subsets of the integers 1, . . . , p, both having cardinality m. Denote
these subsets by M1 and M2, let XMj represent the predictor variables indexed
by Mj (j = 1, 2), and let τyMj be some measure of the strength of the association
between Y and XMj . The goal is to test

H0 : τyj = τyk. (1.2)

Several methods were considered for the case m = 1, only one of which performed
reasonably well in simulations, in terms of Type I errors and power. The method
extends in an obvious way to m > 1, but it does not control the probability of a
Type I error reasonably well in simulations. The one method that did perform
well in simulations, when m > 1, is based in part on Tukey’s notion of halfspace
depth. It can be used when m = 1, but in terms of power it is not recommended
for this special case for reasons that will be made evident.

The suggested method when m = 1 is based on a particular robust covari-
ance. As is well known, there are many robust analogs of the usual covariance
matrix that result in robust analogs of ρ, which include the minimum volume
ellipsoid (MVE) estimator (Rousseeuw and Leroy, 1987), the (fast) minimum co-
variance determinant (MCD) estimator (e.g., Rousseeuw and van Driesse, 1999),
an estimate based on the median ball algorithm proposed by Olive (2004), the
OGK estimator suggested by Maronna and Zamar (2002), the TBS (translated
biweight) estimator derived by Rocke (1996), and various skipped estimators
(e.g., Wilcox, 2005). Here the focus is on Olive’s estimator, primarily because
it is relatively simple and easy to compute. It is not being suggested that other
robust measures of scatter should be eliminated from consideration. However,
some results are briefly noted using the MVE and the (fast) MCD estimators to
illustrate that the choice of estimator has practical consequences regarding the
approximation of an appropriate critical value.

2. Some Background

This section reviews some methods and results needed in this paper.

2.1 The median ball algorithm

For completeness, the computational details associated with Olive’s estimator,
which is based on what he calls the reweighted median ball algorithm (RMBA),
are outlined here. His approach begins with two estimates of location and scatter,
(T0,j ,C0,j) (j = 1, 2). Compute all n Mahalanobis distances Di(T0,j ,C0,j), i =
1, . . . , n, based on the jth measure of location and scatter. The next iteration
consists of estimating the usual mean and covariance matrix based on the cn ≈
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n/2 cases corresponding to the smallest distances, yielding (T1,j ,C1,j). Repeating
this process, based on Di(T1,j ,C1,j), yields an updated measure of location and
scatter, (T2,j ,C2,j). As done by Olive, (T5,j ,C5,j) is used here. The first of the
two starting values used by Olive takes (T0,1,C0,1) to be the usual mean and
covariance matrix. The other starting value, (T0,2,C0,2), is the usual mean and
covariance based on the cn cases that are closest to the coordinate wise median in
Euclidean distance. Let (TA,CA) = (T5,j ,C5,j), where j = 1 if the determinant
|C5,1| ≤ |C5,2|, otherwise j = 2. The RMBA estimate of location is TA and the
measure of scatter is

CRMBA =
MED(D2

i (TA,CA))
χ2

p,0.5

CA,

where MED indicates the sample median and χ2
p,0.5 is the .5 quantile of a chi-

squared distribution with p degrees of freedom. Olive and Hawkins (2006) show
that the RMBA estimate is

√
n consistent.

It is convenient to standardize Xij yielding

Zij =
Xij − µj

σj
,

i = 1, . . . , n; j = 1, . . . , p, where µj and σj are the mean and standard deviation
of Xij . In the event the population mean and variance are not known, their
usual estimates are used instead. Momentarily, focus on p = 2. The (sample)
generalized variance associated with Yi and Zij reflects how tightly clustered
together the n pairs of points happen to be. From basic principles, the population
analog is the determinant of the usual covariance matrix, namely

σ2
y − ρ2

yjσ
2
y ,

where σ2
y is the variance of Y . And of course, if Y is standardized as well, the

generalized variance reduces to 1 − ρ2
yj . So if we take τyj to be the generalized

variance between Y and Zj , testing (1.2) reduces to testing (1.1). However, a
well-known practical concern is that the usual generalized variance is not robust,
roughly meaning that a single outlier can give a distorted sense of the strength
of the association among the bulk of the observations.

Standardizing Y , in addition to standardizing X, is perhaps the seemingly
more natural way of measuring the strength of an association. But this is not
done here because when both are standardized, it becomes more difficult to con-
trol the probability of a Type I error when comparing the strength of the associa-
tion corresponding to any two predictors. In particular, a method was found that
performs well in simulations when Y is not standardized, but when Y is stan-
dardized, the method performs poorly in simulations and alternative methods
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that were considered also fail to perform well. Note, however, that even though
Y is not standardized, the relative strength of the association corresponding to
two subsets of variables can measured with τy1/τy2.

Again consider two subsets of predictors indexed by Mj (j = 1, 2), both
sets having cardinality m. One way of measuring the strength of the association
between Y and the ZMj variables is to use some robust analog of the generalized
variance and here, when m = 1, the strategy is to simply replace the usual
covariance matrix with the RMBA estimate of scatter. Now the estimate of τyj ,
τ̂yj , is taken to be determinant of this matrix and testing (1.2) provides a way
of comparing the strength of association between these two sets of variables. Of
course, another possible way of measuring the strength of association between
Y and two or more predictors is to fit some robust regression line and use some
obvious analog of the usual squared multiple correlation coefficient. Perhaps there
is some practical advantage associated with this alternative approach, but this
issue is not pursued here.

3. Methods Considered for Testing (1.2) When m = 1

Momentarily, attention is focused on the case p = 2, m = 1. The first method
for testing (1.2) that was considered here was a basic percentile bootstrap method
(e.g., Efron and Tibshirani, 1993; Liu and Singh, 1997). It performs relatively well
for a variety of situations where the goal is to compare robust measures of location
or scatter (e.g., Wilcox, 2005). However, for the problem at hand, this approach
was found to be unsatisfactory. A basic concern is that the actual level of the
test is too sensitive to the distribution used to generate data in simulations. So
in particular, if some adjustment is made so that, under normality, this approach
has a Type I error probability equal to some specified value, the actual level of the
test when generating data from a non-normal distribution can exceed the nominal
level by a considerable amount. Consequently, this approach was abandoned.

The second strategy considered was to use an obvious test statistic based
in part on a bootstrap estimate of the standard error of τ̂yj . To elaborate, let
Y ∗

i , X∗
i1, . . . , X

∗
ip be a bootstrap sample obtained by randomly sampling with re-

placement n vectors of observations from Yi, Xi1, . . . , Xip, (i = 1, . . . n). Let τ̂∗
yj

be the estimate of τyj based on this bootstrap sample. Repeat this process B
times yielding the B bootstrap estimates τ̂∗

yjb, b = 1, . . . , B. Then an estimate of
the squared standard error of τ̂y1 − τ̂y2 is

1
B − 1

B∑
b=1

(τ̂∗
y1b − τ̂∗

y2b − τ̄∗
y1 + τ̄∗

y2)
2,

where τ̄∗
yj =

∑
τ̂∗
yjb/B. This performed considerably better in simulations, but
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the estimated probability of a Type I error was still judged to be a bit too unstable
as a function of the distributions generating the data.

Note that in the bootstrap world, τ̄∗
yj =

∑
τ̂∗
yjb/B is attempting to estimate

τ̂yj , which is known. This suggests estimating the squared standard error of
τ̂y1 − τ̂y2 with

ω̂2 =
1

B − 1

B∑
b=1

(τ̂∗
y1b − τ̂∗

y2b − τ̂y1 + τ̂y2)2,

this provided more stability in simulations (estimated Type I errors are less af-
fected by the distribution used to generate the data) and so the test statistic used
here is

T =
τ̂y1 − τ̂y2

ω̂
. (3.1)

There remains the problem of approximating the null distribution of T . Still
focusing on the case p = 2, m = 1, consider the situation where sampling is from
a trivariate normal distribution with correlations ρy1 = ρy2 = ρ12 = 0. The initial
strategy was to use simulations to determine an appropriate critical value for this
special case and then use this critical value under non-normality. But this was
not quite satisfactory. When sampling from a skewed distribution with all of the
correlations set equal to .5, the actual Type I error probability, when testing at
the .05 level, exceeded .075 in some cases.

To elaborate, let Z be a standard normal distribution, in which case

X =

{
exp(gZ)−1

g exp(hZ2/2), if g > 0
Zexp(hZ2/2), if g = 0

has a g-and-h distribution where g and h are parameters that determine the
first four moments. When g = h = 0, X has a standard normal distribution.
With g = 0 this distribution is symmetric and it becomes increasingly skewed
as g gets large. As h gets large, the g-and-h distribution becomes more heavy-
tailed. Table 1 shows the skewness (κ1) and kurtosis (κ2) for each distribution
considered in the simulations used here. They correspond to a standard normal
(g = h = 0), a symmetric heavy-tailed distribution (h = 0.2, g = 0.0), an
asymmetric distribution with relatively light tails (h = 0.0, g = 0.2), and an
asymmetric distribution with heavy tails (g = h = 0.2). (Additional properties
of the g-and-h distribution are summarized by Hoaglin, 1985.) It was found that
altering h, with g fixed, has little or no effect on the probability of a Type I
error. But altering g (increasing skewness) did have some effect. Also, increasing
the correlation increased somewhat the probability of a Type I error, but as ρ
approaches 1, the reverse was found to be true. Based on these results, it was
decided to determine critical values when sampling from a g-and-h distribution
with h = 0.0, g = 0.2 and a common correlation ρ = .5.
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Table 1: Some properties of the g-and-h distribution

g h κ1 κ2

0.0 0.0 0.00 3.0
0.0 0.2 0.00 21.46
0.2 0.0 0.61 3.68
0.2 0.2 2.81 155.98

In particular, .05 critical values were estimated using the method just de-
scribed for n = 30, 50, 100, 200 and 400 and it was found that the .05 critical
value is given approximately by

2.06 − 5.596√
n

.

Note that if asymptotic normality is assumed, the intercept 2.06 would be 1.96.
When using this critical value, situations are avoided where in the simulations to
be described, the estimated Type I error probability exceeds .075 when the nomi-
nal level is .05. Simultaneously, for the normal and other distributions considered,
the estimated probability generally does not drop below .025. One exception is
when n = 30, h = 0.0, g = 0.2 and the common correlation is ρ = .8, in which
case the estimate was .024. This will be called method R1.

4. Methods Considered for Testing (1.2), m > 1

Now consider the case p > 2 with m = 2. The strategy for determining a
critical value, just outlined, extends in an obvious way to the situation at hand.
But now simulations indicate that the actual Type I error probability is much
more sensitive to the distribution used to generate data. If adjustments are made
to avoid Type I errors that are well above the nominal level, there are situations
(including normality) where the method is too conservative, meaning that when
testing at the .05 level, the actual level is estimated to be less than .01. Moreover,
power can be poor relative to the method suggested here.

Currently, only one method has been found that controls Type I error prob-
abilities reasonably well, which is based in part on Tukey’s notion of halfspace
depth. Roughly, the idea is that if Y and XM1 have a stronger association than
Y and XM2 , this will be characterized by the points (Y,ZM1) being more tightly
clustered together than the points (Y,ZM2). And the extent to which this is true
can be investigated with a slight extension of results in Liu and Singh (1993),
which is described in Wilcox (2005, p. 256).

Tukey’s halfspace depth represents an extension of the notion of ranks to
multivariate data. It reflects how deeply a point is nested within a multivariate
data cloud without reliance on any type of covariance matrix. To describe its
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formal definition, consider any point x where x is a column vector having length
p, let H be any closed halfspace containing the point x, and let P (H) be the
probability associated with H. Then Tukey’s halfspace depth is

TD = infH{P (H) : H is a closed halfspace containing x}. (4.1)

There are relatively simple and reasonably accurate methods for approximating
the halfspace depth of point and here the method given by Wilcox (2005, p. 207)
will be used.

Momentarily consider the case of two independent, multivariate distributions,
F and G. Let U1, . . . ,Un1 and V1, . . . ,Vn2 be random samples from F and G,
respectively, and let

R(v; F ) = PF (TD(U; F ) ≤ TD(v; F )).

That is, R(v; F ) is the probability that the depth of a randomly sampled U,
relative to F , is less than or equal to the depth of some particular point, v, again
relative to F . Said another way, R(v; F ) is the fraction of the F population that
is less central than the value v. For Vi, R(Vi) is estimated with the proportion of
points among U1, . . . ,Un1 that have a smaller halfspace depth than Vi, relative
to F . The quality index proposed by Liu and Singh (1993) is

Q(F, G) = EG(R(V; F )),

the average of all R(v;F ) values with respect to the distribution G. Put another
way, for a randomly sampled U and V,

Q(F, G) = P (D(U; F ) ≤ D(V; F ))

is the probability that the depth of V is greater than or equal to depth of U . Liu
and Singh show that the range of Q is [0, 1] and when F = G, Q(F, G) = 1/2.
An estimate of Q(F, G) is

Q̂(F, G) =
1
n2

n2∑
i=1

R(Vi; Fn1),

where Fn1 is the usual empirical distribution associated with the first group, and
an estimate of Q(G, F ) is

Q̂(G, F ) =
1
n2

n2∑
i=1

R(Ui; Gn2).

To determine whether the distributions differ in scatter, one can test

H0 : Q(F, G) = Q(G, F ), (4.2)



436 Rand R. Wilcox

and the basic percentile bootstrap method appears to perform well in terms of
Type I errors (Wilcox, 2005, p. 256). That is, randomly sample with replacement
nj vectors of observations from the jth group, estimate Q(F, G) and Q(G, F ),
yielding say Q∗(F, G) and Q∗(G, F ), and let D∗ = Q∗(F, G)−Q∗(G, F ). Repeat
this process B times and put the results in ascending order yielding D∗

(1.1) ≤
· · · ≤ D∗

(B). Then a 1 − α confidence interval for Q(F, G) − Q(G, F ) is simply
(D∗

(`+1), D∗
(u)), where ` = αB/2, rounded to the nearest integer, and u = B − `.

Returning to the problem at hand, simple modifications of the method just
outlined were considered, with all but one performing poorly in simulations. For
example, taking bootstrap samples of all n vectors and computing D∗ was con-
sidered. Another variation was to use independent bootstrap samples when com-
puting Q∗(F, G) and Q∗(G, F ). Another strategy is to split the data into two
independent components and use the method outlined in the previous paragraph.
Certainly, this approach is not ideal, but in terms of controlling the Type I error
probability, it is only approach found that performs reasonably well in simula-
tions.

More formally, let n1 = n/2, rounded down to the nearest integer. Then,
under random sampling, (Zi,M1 , Yi) (i = 1, . . . , n1) is independent of (Zi,M2 , Yi)
(i = n1 + 1, . . . , n), and the issue is whether the (population) amount of scatter
corresponding to these two groups differs. And here the hypothesis that they do
not differ is tested with the method just outlined. This will be called method R2.

A variation of this method also controls Type I errors in the simulations
considered here. First test the hypothesis using method R2 as just described,
and then test it again, only now using (Zi,M2 , Yi) (i = 1, . . . , n1) and (Zi,M1 , Yi)
(i = n1 + 1, . . . , n). Denote the corresponding p-values with p1 and p2. Then
apply a sequentially rejective method designed to control the probability of at
least one Type I error (e.g., Rom, 1990). That is, reject at the α level if both p1

and p2 are less than or equal to α, or if either one is less than or equal to α/2.
However, this approach was found to have less power than method R2, so further
details are omitted.

5. Two Illustrations

Data for X were generated from a trivariate normal distribution with ρ12 = .5,
and Y was taken to be Y = X1 + .5X2 + .1X3 + ε with ε standard normal.
Here the sample size is n = 200. Figure 1 shows a scatterplot of Y versus Z1

and Z3. The points marked by * correspond to the first predictor and points
marked by o are for the third predictor. Notice how the first set of points tend
to be nested within the points marked by an o, indicating that the first predictor
has a stronger association with Y . And the extent to which this is true can
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be quantified with halfspace as previously described. The polygons denote the
central half of the data as measured by halfspace depth. The .95 confidence
interval for Q(F, G) − Q(G, F ) is (0.15, 0.46). If instead the goal is to compare
the strength of association based of the first two predictors versus predictors 2
and 3, the .95 confidence interval is (0.176, 0.486), indicating that the first two
predictors, taken together, have a stronger association with Y .
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Figure 1: Scatterplot corresponding to two predictors

The following illustrates that the choice of method can make a practical differ-
ence when analyzing actual data. In an unpublished study by L. Doi, of interest
were predictors of reading ability among children. One portion of the study dealt
with how well measures of accuracy and speed, when identifying lower case letters,
predicts scores on a reading comprehension test. Figure 2 shows a scatterplot of
the points after the predictors have been standardized. As is evident, the points
indicated by an *, which correspond to a measure of accuracy, are more tightly
clustered together except for a few points in the lower right portion of the plot. If
Pearson correlations are compared using the method in Zou (2007), no difference
is found at the .05 level. The sample size is 81 and the estimates of Pearson’s
correlation for accuracy and speed are −.11 and −.33, respectively. Note that
Figure 2 suggests that, there is a seemingly strong positive association. Pear-
son’s correlation is negative due to the outliers in the lower right corner. The
correlation based on the RMBA covariance matrix is .59.



438 Rand R. Wilcox

−1 0 1 2 3 4

0
5

10
15

20
25

30

Predictors

Y

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

*

*

o

o

o

o

o

o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Figure 2: Scatterplot corresponding the reading data.

Table 2: Estimated type I errors, α = .05, n = 40

g h ρ12 p = 2, m = 1 p = 3, m = 2
0.0 0.0 0.0 .030 .026
0.0 0.2 0.0 .030 .026
0.2 0.0 0.0 .032 .051
0.2 0.2 0.0 .032 .051
0.0 0.0 0.5 .034 .032
0.0 0.2 0.5 .034 .032
0.2 0.0 0.5 .042 .047
0.2 0.2 0.5 .042 .047

6. Simulation Results

Simulations were used to check the ability of methods R1 and R2 to control
the probability of a Type I error when the marginal distributions have one of
the four g-and-h distributions previously described. The predictors were taken to
have a common correlation of ρ = 0 or .5. Correlations among the predictors were
formed as follows. Let R be the desired correlation matrix and form the Cholesky
decomposition U′U = R, where U′ is the transpose of U. If X represents an
n×p matrix of data where the marginal distributions are independent, then XU
produces an n × p matrix of data that has population correlation matrix R.

Table 2 reports the estimated Type I error probabilities for methods R1 and
R2 when n = 40. The results for method R2 are for the case p = 3, M1 = {1, 2}
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and M2 = {2, 3}. That is, the goal is to test the hypothesis that the strength of
association based on predictors 1 and 2 is the same as for predictors 2 and 3. As
is evident, Type I error probabilities are controlled reasonably well among all of
the situations considered.

7. Concluding Remarks

There are numerous variations of method R2 and perhaps some of them have
practical value. For example, there are a variety of ways of measuring the depth
of a point in a multivariate data cloud other than the approach used here (e.g.,
Wilcox, chapter 6). The main point is that many methods have been ruled out
and two methods were found that perform reasonably well in terms of Type I
errors. Method R1 is best, in terms of power, when m = 1, but for m > 1, only
method R2 was found to be reasonably satisfactory in simulations.

Regarding method R1, of interest is whether some alternative robust covari-
ance can be used with the same .05 critical value used here. The simulations were
run again using the MVE and MCD estimators and it was found that now Type I
error probabilities are not controlled well. Perhaps other robust covariances give
satisfactory results, but this remains to be determined.

It is noted that a few simulations were run using method R2 with p = 4 and
m = 2 and 3. The results were very similar to those in Table 2. Of course,
perhaps method R2 breaks down with p sufficiently large, but this possibility is
left for future studies,

Finally, both R and S-PLUS software are available from the author for ap-
plying both methods R1 and R2; ask for the functions regpord and regpordv2.
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