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Abstract: This paper investigates the return, volatility, and trading on the
Shanghai Stock Exchange with high-frequency intraday five-minute Shang-
hai Stock Exchange Composite Index (SHCI) data. The random walk hy-
pothesis is rejected, indicating there are predictable components in the in-
dex. We adopt a time-inhomogeneous diffusion model using log penalized
splines (log P -splines) to estimate the volatility. A GARCH volatility model
is also fitted for comparison. A de-volatilized series are obtained by using
the de-volatilization technique of Zhou (1991) that resample the data into
different de-volatilized series with more desired properties for trading. A
trading program based on local trends extracted with a State Space model
is then implemented on the de-volatilized five-minute SHCI return series for
profit. Volatility estimates from both models are found to be competitive
for the purpose of trading.

Key words: GARCH, high-frequency data, intraday volatility, penalized
splines, random walk, state space model, trading.

1. Introduction

There is a vast literature analyzing emerging stock markets. However, there
is very limited research on the Shanghai Stock Exchange, especially using intra-
day (five-minute) data. It is well known that emerging equity markets like the
Shanghai Stock Exchange have very different characteristics than developed eq-
uity markets. Compared with developed markets, emerging markets usually have
higher average returns, low correlations with developed market returns, more
predictable returns, and higher volatility.

Bekaert and Harvey (1997), Aggarwal, Inclan and Leal (1999), and Santis and
Imrohoroglu (1997) have analyzed emerging market volatility. However, they use
daily (or lower frequency) data to study the relationship between the volatilities
of emerging equity markets and other developed equity markets. The Chinese
equity market is not included in their analysis. Mookerjee and Yu (1999) test
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Shanghai and Shenzhen stock markets efficiency using daily stock price data.
Lee, Chen and Rui (2001) examine time-series features of returns and volatility
of daily stock indices from different Chinese stock markets. They apply GARCH-
type models and find evidence that volatility is time-inhomogeneous, persistent,
and predictable. Wei (2002) models China’s weekly stock market volatility with
the GARCH model and two of its nonlinear modifications. Zhou and Zhou (2005)
examine stock returns, volatility, and cointegration among three Chinese stock
markets before and after Hong Kong’s return to China with the daily return
data. Tian and Guo (2007) study the interaction between trading procedures and
security price formation by examining the interday and intraday return volatility
of the Shanghai Stock Exchange Composite Index.

In this paper, the intraday return volatility of the five-minute Shanghai Stock
Exchange Composite Index (SHCI) is estimated using GARCH and log penalized
splines (log P -splines). We (Yu, Yu, Wang and Li 2008, hereafter, YYWL) devel-
oped log P -splines estimation for a time-inhomogeneous volatility diffusion model
framework as in FJZZ (Fan, Jiang, Zhang and Zhou 2003), which include many
common diffusion models as a special case. With different volatility estimates,
the de-volatilization technique (see Zhou 1991; Zhou 1996) is used to resample the
data into different de-volatilized series for trading. The intraday high-frequency
data like the five-minute SHCI are heteroscedastic time series with high volatility.
The de-volatilization technique by Zhou (1991) removes heteroscedasticiy from
the original series by resampling it into a new homoscedastic and normalized time
series that are more suitable for modeling trends and trading. We find that the
volatility estimates from log P -splines can pick up fewer data points in a flat
market but more data points in a volatile market. Instead of using statistical
criteria to test which volatility model best captures the heteroscedasticity and
time-inhomogeneous structure of five-minute SHCI in a certain period, a simple
trading program based on local trends extracted with a State Space model is
implemented on the de-volatilized series to compare the accuracy of the volatility
estimates. The volatility estimates from GARCH and log P -splines are shown to
be competitive for the purpose of trading.

The remainder of the paper is organized as follows. In Section 2, we find that
there appear to be predictable components in the intraday return based on the
rejection of the random walk hypothesis. In Section 3, intraday return volatility
is estimated using GARCH and log P -splines. Log P -splines are discussed in
detail. Section 4 describes the de-volatilization technique by Zhou (1991). A
trading program based on de-volatilized series is provided in Section 5. Section
6 concludes the paper.
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2. Intraday Return Analysis

The Shanghai stock market is an emerging equity market launched in 1990
and the largest stock exchange in China. As of December 2008, 864 companies
are listed on the exchange with a market capitalization of over 10,000 billion
RMB (US $ 1,453 billion). The exchange is open for trading from Monday to
Friday with two trading sessions each day, one in the morning from 9:30 AM to
11:30 AM and the other in the afternoon from 1:00 PM to 3:00 PM. Trades are
executed through computerized trading systems without market makers.

2.1 Data and descriptive statistics

SHCI is a weighted-average market-capitalization index. Its base date is De-
cember 19, 1990 and its base value is 100. The intraday data we used for analysis
are provided by Guangdong Min An Securities Company Ltd. in Guangzhou,
China. The available five-minute data start on April 18, 2001 and end on Octo-
ber 15, 2001, representing a total of 5,616 observations. There are 48 data points
on each day: 24 data points are recorded in the two-hour morning trading session
with the first data point taken at 9:35 AM; the other 24 data points are recorded
in the afternoon trading session with the last data point taken at 3:00 PM. In
order to make it easier to derive the time-series properties of additive processes
than of multiplicative processes, we follow Campbell, Lo, and MacKinlay (1997)
to calculate the continuously compounded percentage returns:

dSt = 100 × (St − St−1) = 100 × [log(xt) − log(xt−1)], (2.1)

where xt is the five-minute SHCI at time t, St = log(xt), and dSt is the con-
tinuously compounded every-five-minute logarithmic percentage return at time
t.

The five-minute SHCI over the sample period are plotted in Figure 1. Some
summary statistics on the return data are obtained. The five-minute SHCI has
a small negative average return of about one in two hundredth of a percent per
five minutes in the particular period. The skewness coefficient 0.60643 indicates
that the return distribution is substantially positively skewed. Furthermore, the
kurtosis, a measure of the thickness of the tails of the distribution, is very high
with a value of about 41, much more than a Gaussian distribution kurtosis of 3.
The Kolmogorov-Smirnov test for normality of the return distribution provides
a statistic of 0.13298, thus rejecting the null hypothesis of normal distribution of
the five-minute SHCI at 1% significant level. The Jarque-Bera test also rejects
the null hypothesis of normality with a p-value of 0.
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Figure 1: The Five-minute Shanghai Stock Exchange Composite Index, April
18, 2001 to October 15, 2001. The Shanghai Composite Index is the original
market index level. Time is the sequence number of data points by time with
five minutes between every two data points.

2.2 Random walk

We apply the variance-ratio test of Lo and MacKinlay (1988) to investigate
whether SHCI follows a random walk at a market microstructure level. The re-
sults in Table 1 show that the random-walk null hypothesis on the five-minute
SHCI is rejected at all usual significance levels with homoscedastic-consistent test
statistics. With heteroscedastic-consistent test statistics Zk(q), which is consid-
ered to be more appropriate for the five-minute SHCI data, the random-walk null
hypothesis is rejected at 5% significance level at most lags except at lag 2.

Table 1: Variance ratios for five-minute Shanghai stock exchange composite
continuously compounded returns.

Number of lags

2 4 8 16 32

Variance ratio 1.21 1.14 1.20 1.28 1.42
z(q) 15.73∗∗∗ 2.99∗∗∗ 5.67∗∗∗ 4.77∗∗∗ 5.31∗∗∗

Zh(q) 1.52 4.11∗∗∗ 2.21∗∗ 2.39∗∗∗ 2.69∗∗∗

∗∗∗ 1% significant level; ∗∗ 5% significant level; ∗ 10% significant level.
z(q) is the asymptotic normal test statistic under homoscedasticity; Zh(q) is
the asymptotic normal test statistic under heteroscedasticity.
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The Shanghai stock market returns are predictable to some degree on daily
or weekly frequency (see Darrat and Zhong 2000). The variance-ratio tests above
also confirm that the Shanghai stock market returns are also predictable to some
degree on intraday frequency. This finding supports our motivation to develop
some models to identify this predictability and try to outperform the market
index in the Shanghai stock market.

3. Time-inhomogeneous Volatility Estimation

3.1 GARCH

To estimate time-varying return volatility, the parametric GARCH (Gener-
alized Autoregressive Conditional Heteroscedasticity) model of Bollerslev (1986)
is first employed. As what was shown by Engle and Pattern (2001) with Dow
Jones Industrial Index, GARCH is successful on modeling the conditional volatil-
ities and capturing some important stylized facts such as persistence and mean-
reversion on time series of asset returns. Given the continuously compounded
percentage return dSt = 100 × [log(xt) − log(xt−1)] where xt is the five-minute
SHCI at time t and St = log(xt), the GARCH(p, q) model has the following form:

dSt = β0 + β1 + εt

εt =
√

htet

ht = φ +
q∑

j=1

αiε
2
t−i +

p∑
j=1

γjht−j , (3.1)

where et is independent and identically-distributed with mean 0 and variance
1 (following either the standard normal or standardized Student t-distribution),
αi, γj , φ, β0 and β1 are the parameters. The model can be estimated by maximum
likelihood and Schwarz’s Bayesian Information Criterion (BIC) is chosen to de-
termine p and q. It is found that GARCH(1,2) is relatively efficient on fitting the
five-minute SHCI returns and thus the setting of p = 1 and q = 2 is chosen. The
conditional volatility estimates from this GARCH(1,2) model are used in Section
4 to obtain de-volatilized series.

3.2 Log P -splines

Financial market conditions change as time passes by and it is reasonable to
expect the return and volatility of SHCI depend on both time and the underlying
asset price level. We apply the semiparametric log P -splines time-inhomogeneous
diffusion model we developed recently (see YYWL 2008) to estimate volatility.
Log P -splines maximize penalized likelihood with an iterative algorithm and give
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very competitive volatility estimates compared with GARCH.
The log P -splines time-inhomogeneous diffusion model maximizes penalized

likelihood with the smoothing parameter selected by generalized cross validation
(GCV) and the EBBS of Ruppert (1997). The time-inhomogeneous diffusion
model takes the following form:

dSt = [α(t) + β(t)]dt + σ(t)S′
rdWt (3.2)

where St = log(xt), γ is a scalar parameter independent of time t, α(t) and β(t)
are time-dependent coefficients of the drift α(t) + β(t), σ(t) is a time-dependent
coefficient of volatility, and Wt is the standard Brownian motion. This model
encompasses most well-known diffusion models, such as the CKLS (Chan, Kay-
olyi, Longstaff and Sanders 1992) model where α(t), β(t) and σ(t) are constants
or time-independent. When γ = 1, the CKLS model corresponds to the fa-
mous Black-Scholes Geometric Brownian Motion option pricing model (Black
and Scholes 1973). When γ = 0.5, the CKLS model corresponds to the CIR
(Cox, Ingersoll and Ross 1985) model. When γ = 0, the CKLS model corre-
sponds to the Vasicek (1977) model. FJZZ (Fan, Jiang, Zhang and Zhou 2003)
consider a more general model with depends on time t but they note possible
over-parameterization and unreliable estimates due to high collinearity. Our log
P -splines time-inhomogeneous diffusion model adopted here treats γ as a pa-
rameter (time-independent). It has the advantage of allowing testing parametric
restrictions corresponding to the model that fit the data adequately using formal
tests such as the Wald test. YYWL also present the local log-linear method maxi-
mizing kernel-weighted likelihood with bandwidth selected by the Rule-of-thumb.
Estimation results from log P -splines and the local log-linear method were found
to be similar. Below we describe the estimation algorithm of log P -splines to
estimate volatility.

For SHCI five-minute data, a discretized version of the semiparametric time-
inhomogeneous model (3.2) is based on the Euler scheme for approximation:

∆St = [α(t) + β(t)St]∆t + σ(t)S′
t

√
∆tεt, (3.3)

where ∆St = 100 × (St − St−1), ∆t = 1/(252 × 48) (252 trading days per year
and 48 five-minute data points per day), and εt are independent and identically
distributed as standard normal N(0, 1). The time-dependent components and are
estimated with P -splines, and σ(t) is estimated with log P -splines so that positive
volatility is naturally embedded : α(t) = Bα(t)δα, β(t) = Bβtδβ , log σ2(t) =
2Bα(t)δσ, where B(t) is a vector of spline basis functions (either truncated power
basis or B-spline basis) and are vectors of spline coefficients. The log likelihood
function, excluding constants, is negative∑ (

∆t−1{ ∆St − (Bα(t)δα + Bβ(t)δβSt)∆t}2 exp{−(2Bσ(t)δσ + γ log S2
t ))}

)
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For notational consistency, we reserve the subscript 1 for drift (α(t)+β(t)St)
and 2 for volatility σ(t): parameter vectors δ1 = (δT

α , δT
β )T for drift and δ2 =

(δT
σ , γ)T for volatility. Write the extended design matrix for drift as B1(t) =

[Bα(t), BβSt] and the extended design matrix for volatility as B2(t) = [Bσ(t), log S
(t)]. Further denote the parameter vector by θ = (δT

1 , δT
2 )T = (δT

α , δT
β , δT

σ , γ)T .
The smoothing parameter vectors are λ = (λα, λβ , λ2)2 and λ1 = (λα, λβ)T ,

where λα, λβ and λ2 are smoothing parameters for α(t), β(t) and log σ2(t), re-
spectively. The penalized likelihood estimator of θ maximizes the penalized log
likelihood function QN,λ(θ) = LN (θ) − (N/2)λθT Dθ, where N = 5, 615 and

LN (θ) :=
∑

`N (θ, t)

= −
∑ (

∆t−1{∆St − B1(t)δ1∆t}2 exp{−2B2(t)δ2} + 2B2(t)δ2

)
.

Here D is an appropriate positive semi-definite matrix that penalizes jumps at
the knots in the pth derivative of the spline, if truncated power basis is adopted.
The two-step estimation algorithm as in YYWL is implemented to obtain volatil-
ity estimates for SHCI:

Step 1: Drift Estimation.

The time-inhomogeneous drift µ(t, St) = α(t) + β(t)St is estimated by mini-
mizing ∑

{(∆St/∆t) − B1(t)δ1}2 + (N/2)λ1δ
T
1 D1δ1

.
This can be achieved by a simple ridge regression δ̂1 = (BT

1 B1+Nλ1D1)−1BT
1

(∆St/∆t), where D1 is a diagonal matrix, and is a spline basis funtion. The
smoothing parameter vector can be chosen by criteria such as GCV or EBBS.

Step 2: Log P -splines Volatility Estimation.

Denote the residual from the previous drift estimation by et = ∆t−1/2(∆St −
µ̂(t, St)∆t). Then we have et ≈ σ)tγεt, and estimate the parameter for volatility
by minimizing the negative penalized likelihood∑ (

E2
t exp{−2B2(t)δ2} + 2B2(t)δ2

)
+ (N/2)λ2δ

T
2 D2δ2

.
The nonlinear optimization routine lsqnonlin( ) from Matlab’s optimization

toolbox is used. A preliminary parameter estimate δ̂2,pre for volatility can be
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obtained by a simple ridge regression δ̂2,pre = (BT
2 B2 + Nλ2D2)−1BT

2 E, where
vector is an element in log |et|. The volatility estimate is given by σ̂(t, St) =√

σ2(t)S2γ̂
t .

We perform this two-step estimation algorithm on the five-minute SHCI data.
Both σ̂(t) and the volatility estimates σ̂(t, St) are obtained. The volatility esti-
mates from both GARCH and log P -splines are used below for de-volatilization.

4. De-volatilization

The financial markets are known to be very volatile. The volatilities in the
emerging equity markets are even higher. Fundamental economic facts and mar-
ket trends are often buried in strong noise and are very difficult to be detected.
Heteroscedasticity makes things even worse. To utilize the traditional models
to efficiently model volatile high-frequency heteroscedastic time series, such as
foreign-exchange rates, Zhou (1991) proposed a technique, de-volatilization, to
remove heteroscedasticity from the time series of interest based on his na?ve
and Bayesian volatility estimators. His de-volatilization technique was proved to
be capable of resampling the heteroscedastic time series (high-frequency foreign-
exchange rates) into a new homoscedastic and normalized time series that can be
used more efficiently and accurately for forecasting trends and trading.

Based on the volatility estimates from GARCH and log P -splines, the de-
volatilization technique described below is implemented to obtain two de-volatilized
series Sd from the five-minute logarithmic SHCI Sni where i represents one data
point at time i on a day n:

1. Let initial value S0 = Sni .

2. Suppose we have obtained ν-th data Sd in d-series.

3. Estimate the cumulative volatility process V (∆Sk) from GARCH or log
P -splines:

V (∆Sk) =
k∑

i=1

σ̂2
i (4.1)

where σ̂2
i is the estimated variance of the five-minute SHCI returns and ∆Sk is

the logarithmic five-minute SHCI return at time k.

1. Include next Snk
into the d-series as soon as cumulative volatility V (∆Sk)

cross next τ level, i.e., let Sd+1 = Sni such that k = min{i : V (∆Si) >
(d + 1)τ}.
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2. Repeat step 2 until the end of series Sni and a d-series Sd is found.

We choose τ = 1 and provide two d-series. They have similar sizes to that
of daily series so that those d-series may be compared later. Two d-series are
plotted in Figure 2, based on GARCH and log P -splines volatility estimates.
The d-series have more data points in the volatile period but have fewer data
points in the smooth period. The de-volatilized series based on log P -splines
volatility estimates have nice property of obviously picking up fewer data points
when the market is flat while obviously including more data points when the
market is volatile, indicating that we can avoid unnecessary trading if we use the
time-dependent log P -spline d-series to trade when the market does not change
dramatically.

Figure 2: D-series of Five-minute SHCI Based on Volatility Estimates from:
GARCH with 173 Data Points (upper), log P -splines with 118 Data Points
(lower).

Zhou (1991) illustrates that the d-series of high-frequency foreign-exchange
rates have attractive properties such as normality, homoscedasticity, and inde-
pendence. The new d-series will enhance the capability of traditional time series
models to produce more accurate forecasts. If the local trends can be accurately
found as the deterministic part of the market index, naturally they can be used
to forecast market index and then trade.

5. Local Trend Extraction and Trading

The State Space model or the Dynamic Linear model, which was originally
proposed as a method primarily for use in aerospace-related research, was intro-
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duced by Kalman (1960) and Kalman and Bucy (1961). The State Space model
has been applied to many economic data by various researchers, such as Shumway
and Stoffer (1982, 2000) and Harvey and Pierse (1984). The State Space form
has been shown to be a powerful tool that opens the way to handling a wide
range of time series models. Once a model is put in a State Space form, the
Kalman filter may be applied and this in turn leads to algorithms for smoothing
and prediction.

Figure 3: Extracted local trend md+1|d: Daily Series, GARCH D-series, and
log P -splines D-series (from top to bottom).

Based on the framework of State Space model of Harvey (1991) and the ap-
plication of Zhou (1991) to high-frequency foreign-exchange rates, a State Space
model is set up to extract the unobservable local trend, say from the five-minute
SHCI d-series as follows:

Sd = ad + φd (5.1)
ad = ad−1 + md−1 + ξd, (5.2)

md = md−1 + Ψd, (5.3)
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where Sd is the observed logarithmic five-minute SHCI d-series and [ad,md]T is
the state vector. The disturbance ωd is essentially set as a constant, zero, in this
State Space form model. Furthermore, ξd and ψd are white-noise disturbances
with zero means and variances σ2

ξ and σ2
Ψ respectively. Both disturbances are

independent to each other.
The State Space form above is applied to the actual daily SHCI series (April

18, 2001 - October 15, 2001, 111 trading days), GARCH d-series and log P -spline
d-series of Sd. The daily series are low-frequency data with less noise than the
high-frequency five-minute SHCI series. The predicted local trends md+1|d in
those three series extracted from the State Space models are plotted in Figure 3.

In Figure 3, even with the same settings in the State Space model, we can
observe that the forecasts of GARCH and log P -splines d-series fit better than
those of the daily series. Considering the assumptions of the State Space model,
we can conclude that d-series based on GARCH and log P -plines volatility es-
timates from the intraday SHCI series have more goodness of normality and
independence.

Since md+1|d is considered to be the predicted slope of the logarithmic five-
minute SHCI series, the simple trading program proposed by Zhou (1991), in
which foreign-exchange rates were shown to be successfully traded with excess
returns, can be applied to trade in Shanghai stock market. The trading program
is set up as follows:

1. At time d
a. Long or keep long in a SHCI portfolio, if md+1|d > 0.
b. Short or keep short in a SHCI portfolio, if md+1|d < 0

2. Always on one position with fixed amount of fund. Transaction cost c is
set to be 0.75%.

3. If in a transaction round buy at time d + i and sell at time d + i + j, the
profit is:

profit = exp(Sd+i+j − Sd+i) − 1 − c if buy long
= exp(Sd+i − Sd+i+j) − 1 − c if sell short (5.4)

Note: Even though selling short was not allowed in 2001, recently (2008) China lifted shorting

restriction.

The profit/loss based on GARCH or log P -splines d-series is much better.
The profit/loss based on GARCH model is 21.27% higher than the profit/loss
based on the daily series. While the profit/loss based on log P -splines is 17.41%
higher than the profit/loss based on the daily series. Even when the transaction
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costs are included, the trading results with the trading program applied on all
three series are still very favorable. The results are listed in Table 2 and Table
3. With the log P -splines d-series, the profit/loss before transaction fees is 4%
less than that with the GARCH d-series. At the same time, we only need to
trade 23 times with the log P -splines d-series but need to trade 28 times with the
GARCH d-series. The profit/loss after transaction fees with the log P -splines d-
series (72.61%) is essentially as good as that with the GARCH d-series (72.72%).
As we mentioned before, this is due to the nice property of time-dependent log
P -splines volatility estimates that allows us to pick up only a few observations
through time when applying the de-volatilization scheme in a flat market. This
is meaningful when trading in the emerging equity markets because by trading
fewer times the high transaction costs in those markets can be avoided and the
profit in a long-term prospect can be improved.

Table 2: Profit/loss not including transaction costs

Time Series Daily Series GARCH D-series PS D-series

Profit/Loss without Transaction Cost (%) 72.45 93.72 89.86

Difference (%) with the Profit/Loss of 43.55 64.82 60.96
exp(firstSd

− lastSd
) − 1 = 28.90%

Difference (%) with the Profit/Loss of 32.16 53.42 49.57
exp(maxSd

−minSd
) − 1 = 40.29%

Note: PS stands for log P -splines.

Table 3: Profit/Loss Including Transaction Costs

Time Series Daily Series GARCH D-series PS D-series

Profit/Loss without Transaction Cost (%) 72.45 93.72 89.96
Transaction Times 17 28 23
Transaction Cost (%) 12.75 21.00 17.25
Profit/Loss with Transaction Cost (%) 59.70 72.72 72.61

6. Conclusion

With the support of fast-growing computing power, collecting and analyzing
intraday or high-frequency data is a feasible task with low costs. The enormous
intraday or high-frequency data steadily available on the emerging stock market
provide a great opportunity of extracting more information from those data at
market microstructure level that is considered to be closer to the continuous-time
model setting.
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In this paper, the random-walk hypothesis for SHCI based on five-minute
data is rejected, supporting the intention of utilizing some structural model to
seize the predictability in Shanghai stock market and gain excess returns. Also,
re-sampling the high-frequency SHCI data into low-frequency data with the de-
volatilization technique is applied. To further capture the dynamics of the five-
minute SHCI, a time-dependent coefficient diffusion model with log P -splines
and GARCH are applied to obtain volatility estimates. When applying the de-
volatilization scheme, volatility estimates from log P -splines are shown to have
nice property of picking up fewer data points in a flat market while more data
points in a volatile market when applying the de-volatilization scheme.

The trading results show that accurate volatility estimation is the key to
improving trading profit. It is found that to use traditional time series model,
such as the State Space model, to extract signals for trading on the Shanghai
Stock Exchange, the characteristics such as normality and homoscedasticity of
the input time series are important for producing accurate forecasts as trading
signals. With the log P -splines d-series, we can gain almost as much return as
that with the GARCH d-series while trading fewer times.
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