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Abstract: It is important to examine the symmetry of an underlying dis-
tribution before applying some statistical procedures to a data set. For
example, in the Zuni School District case, a formula originally developed by
the Department of Education trimmed 5% of the data symmetrically from
each end. The validity of this procedure was questioned at the hearing by
Chief Justice Roberts. Most tests of symmetry (even nonparametric ones)
are not distribution free in finite sample sizes. Hence, using asymptotic dis-
tribution may not yield an accurate type I error rate or/and loss of power
in small samples. Bootstrap resampling from a symmetric empirical distri-
bution function fitted to the data is proposed to improve the accuracy of
the calculated p-value of several tests of symmetry. The results show that
the bootstrap method is superior to previously used approaches relying on
the asymptotic distribution of the tests that assumed the data come from
a normal distribution. Incorporating the bootstrap estimate in a recently
proposed test due to Miao, Gel and Gastwirth (2006) preserved its level
and shows it has reasonable power properties on the family of distribution
evaluated.

Key words: Parametric bootstrap, resampling, testing symmetry about an
unknown center, Zuni school district case.

1. Introduction

As noted by Lehmann and Romano (2005, page 248) the problem of testing
whether data comes from a symmetric distribution when the center is unknown
is more difficult than the corresponding problem when the center is known. In
January 2007, the U.S. Supreme Court heard the Zuni School District 89 v. U.S.
Department of Education case that concerned the formula used to determine
whether the school districts in a state have approximately equal funds available
for the education of their students. A summary of the issues and previous ad-
ministrative and federal court proceedings related to the case is given elsewhere
(Gastwirth, 2006, 2008). Here we focus on an important topic, implicitly raised
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by Chief Justice Roberts. In the process of calculating the measure of relative
disparity used to determine whether the expenditures in the school districts of a
state are sufficiently equal for a state, rather than the local districts, to receive
most of the Federal Impact Aid money, the Department of Education deletes the
largest and smallest 5% of the data. The Justice asked why none of the three
parties involved in the case discussed the issue of outliers in their briefs. His
question is quite important as trimming the upper and lower 5 or 10% of the
data is a well accepted method when the objective is to estimate the center of
the data (Staudte and Sheather, 1990, pg. 68-70). It is questionable when esti-
mating the spread as measures based on trimming may systematically understate
the variability in the population (Stuart and Ord, 1994, pg. 59-60). Furthermore,
symmetric trimming is not appropriate even when estimating the location or cen-
trality parameter when the data come from a skewed distribution (Collins, 1976;
Clarke, Gamble and Bednarski, 2000).

When the center of the data is unknown, the p-values of most tests of sym-
metry are obtained using the large sample null distribution of the test statistic
to their small sample distribution. For most tests of symmetry, the null distribu-
tions, even the asymptotic ones (Miao, Gel and Gastwirth, 2006), depend on the
form of the underlying distribution. Although in large samples, the parameters
of the limiting distribution can be estimated, educational funding data typically
refers to school districts in a state. Hence, the available sample sizes often are too
small to rely on asymptotic theory. In the Zuni School District case, there were
only 57 districts and in the amicus brief submitted by Alaska, there were only
44 districts. This paper uses the bootstrap method (Efron, 1979, 1982; Efron
and Tibshirani, 1993) to estimate the null distributions of the test statistics for
several easy to explain tests of symmetry (e.g. Boos, 1982; Cabilio and Masaro,
1996; Mira, 1999; Miao, Gel and Gastwirth, 2006). Simulation studies are used
to determine when the corresponding tests have reliable properties (level and
power) in samples of modest size. Educational funding data for local school sys-
tems for the states of New Mexico and Alaska from the Zuni School District case
as well as data on per-pupil teaching expenditure of individual schools from a
classic school segregation case, Hobson v. Hansen are then analyzed with several
tests of symmetry. The asymmetry of the funding data supports the need for
justification of the trimming method adopted by the Department of Education
or the development of a more appropriate method.

In section 2, the symmetry test statistics examined are described and their
asymptotic distributions presented. Then the bootstrap method of estimating
their distributions in small sample sizes is given. Results on the sample sizes
required to preserve the nominal level are given in Section 3.1 and power results
are given in Section 3.2. The test proposed by Miao, Gel and Gastwirth (2006),
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hereafter called MGG, is shown to preserve the level and have good power de-
tecting asymmetry. The tests are then applied to educational funding data in
Section 5. The last section summarizes our results and their implications.

2. Methods

In this paper, we consider and compare six simple to explain tests of sym-
metry about an unknown median. Such tests are very important in applications,
especially in the legal setting, as judges and juries rely on their intuitive under-
standing of the evidence as well as the testimony of expert witnesses.

2.1 Testing symmetry about an unknown median

Consider n i.i.d. observations, {X1, . . . , Xn}, from an unknown distribution
F with an unknown median ν, mean µ and standard deviation σ. Denote the
sample mean, median and standard deviation by X̄, M and s, respectively. If F
is symmetric, the distribution F (z) of X−ν should be the same as that of ν−X,
i.e., 1 − F (−z). Therefore, testing symmetry is equivalent to testing

H0 : F (x − ν) = 1 − F (ν − x)

versus
Ha : F (x − ν) 6= 1 − F (ν − x).

Many tests of symmetry are based on the fact that, under the null hypothesis,
µ = ν.

Existing tests of symmetry include tests based on sample measures of skew-
ness differences between the sample mean (X̄) and median (M) (Hotelling and
Solomon, 1932; Gastwirth, 1971) and differences between the empirical distribu-
tion functions of the (Xi−ν)’s and (ν−Xi)’s (Smirnov, 1947; Butler, 1969). When
ν is unknown, an estimate ν̂ of ν can replace it in calculation of the expression
coefficients. For example, ν̂ can be the sample median M . Other proposed tests
include tests based on triplets of observations (Randles et al., 1980), modified
sign tests on deviations from a specified center (e.g. sample mean) (Gastwirth,
1971) and modified signed-rank test (Bhattacharya, Gastwirth and Wright, 1982).
Readers are referred to Lehmann and Romano (2005) and Hollander (2006) for
reviews of this topic.

In this paper, we evaluate two types of simple tests of symmetry, one uses the
difference between sample mean (X̄) and median (M) and the other compares
the distributions of the (Xi − M)’s and (M − Xi)’s.
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2.2 Tests of symmetry based on the difference between X̄ and M

Cabilio and Masaro (1996) (CM1996) studied a simple test of symmetry that
compares the sample mean and sample median, standardized by the sample stan-
dard deviation, i.e.,

C =
X̄ − M

s
.

This is a sample version of the measure of skewness,

S =
µ − ν

σ
,

which was proposed earlier by Hotelling and Solomon (1932). Cabilio and Masaro
(1996) showed that the distribution of C under the null hypothesis of symmetry is
asymptotically normal, and derived the asymptotic variance for a set of symmetric
distributions (e.g., the asymptotic variance of

√
nC for a normal distribution is

0.5708). The authors suggested the use of the asymptotic variance derived under
normality to obtain critical values for the test of symmetry based on C.

Mira (1999) (M1999) studied a similar test using the difference between the
sample mean and median,

γ̂1 = X̄ − M,

which essentially is the sample version of the skewness measure proposed by
Bonferroni (1930), 2(µ − ν). Following Cabilio and Masaro (1996), Mira (1999)
used the critical values from the asymptotic normal distribution of γ̂1 with F
being the standard normal distribution to conduct the test.

Miao, Gel and Gastwirth (2006) proposed a modification of C (Cabilio and
Masaro, 1996) that uses a robust estimate of standard deviation. Specifically,
Miao, Gel and Gastwirth (2006) used the mean deviation from the median, a
robust measure of dispersion (Stuart and Ord, 1994, pg 52-53),

J =
√

π

2
· 1
n

n∑
i=1

|Xi − M |.

Their test statistic is

T =
X̄ − M

J
.

They showed
√

nT is asymptotically normal with mean 0 and variance σ2
f , which

depends on the underlying density. When f is normal, σ2
f = 0.5708. For purpose

of comparing the MGG test to those of Cabilio and Masaro (1996) and Mira
(1999), this value of σ2

f was used. Miao, Gel and Gastwirth (2006) also showed
that the asymptotic variance σ2

f varies from 0.5708 to 0.9689 as the underlying
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distribution changes from a normal to a t distribution with three degrees of free-
dom. This range indicates that a more accurate estimation of the null sampling
distribution of the test statistic should improve its statistical properties on data
from a symmetric distribution that is not very close to normal.

2.3 Tests of symmetry based on difference between the distributions
of the (Xi − M)’s and (M − Xi)’s

For testing symmetry about a specified center, Kolmogrov-Smirnov type tests
such as the Smirnov test (Smirnov, 1947; Butler, 1969) were proposed to com-
pare the distributions of the left and the right deviations: {M − X1, . . . ,M − Xn}
versus {X1 − M, . . . ,Xn − M}. The test statistic is the supremum distance be-
tween the two distribution functions as used in the Kolmogrov-Smirnov tests. It
is equivalent to define two sets of positive deviations, that is, {M − Xi;Xi < M}
and {Xi − M ; Xi > M}.

Alternatively, one can focus on the difference in the location parameters of the
two distribution. Therefore, location tests such as the two-sample t-test can also
be applied. Modified Wilcoxon signed-rank tests have also been considered to test
for symmetry (Gupta, 1967; Bhattacharya et al., 1982). If t-test is applied directly
on (M−Xi)’s and (Xi−M)’s, the resulting test statistic equals −

√
2nC where C is

the test statistics of Cabilio and Masaro (1996). The sample means of (M −Xi)’s
and (Xi − M)’s are M − X̄ and X̄ − M respectively. The standard deviations
of these departures are both s. Therefore the t statistic is 2(M − X̄)/s

√
2/n =√

2n(M − X̄)/s. Inspired by the Kolmogrov-Smirnov test described above, we
apply two-sample location tests to {M − Xi; Xi < M} and {Xi − M ;Xi > M}
instead.

For testing the difference between the distributions of the (Xi − M)’s and
(M − Xi)’s, in this paper, we evaluate the Kolmogrov-Smirnov symmetry test
(KS), the two-sample t-test (t-test) and the Wilcoxon signed-rank test (Wilcoxon)
between the left positive deviations and the right positive deviations, which are
compared to the tests described in Section 2.2.

2.4 Bootstrap estimation

Most tests of symmetry are not distribution-free. As observed in Miao, Gel
and Gastwirth (2006), the asymptotic variance of their test statistic depends on
the unknown underlying distribution of X. Hence, basing the distribution of the
symmetry test statistic on a specific underlying distribution, e.g., the normal,
may lead to an incorrect Type I error. Resampling and permutation methods
are known to yield reliable an estimated sampling distribution of a test statistic
under the null hypothesis, while utilizing the natural variation and structure of
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the observed data.
Schuster and Barker (1987) proposed the use of bootstrap in formulating a

nonparametric test of symmetry about a known center. Their strategy involved
fitting a “smoothed version” of the closest symmetric distribution to the observed
data’s distribution. As pointed out by Modarres (2002), the symmetrized empiri-
cal distribution function F̂ s, which puts mass 1/2n at each point of {X1, . . . , Xn}
and {2ν−X1, . . . , 2ν−Xn}, is the nonparametric maximum likelihood estimate of
the underlying symmetric distribution F . Stine (1985) used a similar strategy to
symmetrize residuals. When ν is unknown as in our case, we estimate ν by M in
the symmetrized ECDF F̂ s. The resulting ECDF is asymptotically similar to the
nonparametric MLE (Efron, 1979; Hinkley, 1976). Due to this connection with
the nonparametric MLE of the distribution function, we use bootstrap samples
that were drawn from F̂ s to simulate the null distribution of the test statistics
investigated. For each bootstrap sample, the set of test statistics outlined in the
previous section are computed. After the bootstrap is repeated a large number
of times, for a given sample of observed data, the bootstrap p-value for each test
is calculated as the proportion of the bootstrap samples that have values further
away from the null hypothesis than the observed sample.
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Figure 1: Distribution models used in simulation studies.
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3. Simulation Studies

This section reports a simulation study assessing the performance of the tests
described in Sections 2.2 and 2.3. Their distribution is estimated using the sym-
metrized bootstrap. Both the level and power of the tests for sample sizes (30,
50, 100, 300) are examined.

3.1 Simulation setup

We first choose four symmetric distributions with different tail characteristics
to examine the accuracy of the type I error rate of the tests. They are the standard
normal distribution, the student’s t distribution with 3 df, Beta distribution with
parameters (2,2), and the uniform distribution on [0, 1].

To evaluate the power performance of the tests described in Sections 2.2 and
2.3, we simulate data from five asymmetric distributions. The first is a bimodal
mixture of two normal distributions, see Figure 1. The other four distributions
come from the generalized lambda distribution family (Ramberg and Schmeiser,
1974), which were also used by Miao, Gel and Gastwirth (2006). From Figure 1,
one sees that these distributions have different degrees of asymmetry. The first
two do not deviate substantially from symmetry with the 3rd, 4th and 5th become
increasingly more asymmetric. The measure of skewness γ1 = µ3/µ

3/2
2 based on

the central moments µ3 and µ2 (Stuart and Ord, 1994, page 109) is calculated
for each of these distributions and noted in Figure 1.

Several sample sizes (n = 30, 50, 100 and 300) are considered in order to de-
termine the sample size required to assure the reliability of the bootstrap method.
For each distribution in Figure 1 and each sample size, 1000 data sets are simu-
lated. The tests were then applied to these data sets with p-value evaluated by
bootstrapping from the symmetrized F̂ s. The nominal significance level α = 0.05
is used in this paper.

3.2 Size of the bootstrap tests

Table 1 reports the estimated size of the selected tests at nominal significance
level 0.05. The performance of these tests is also summarized by their average
absolute departure from the nominal level 0.05 at each sample size (see Figure 2).
The test of Miao, Gel and Gastwirth (2006) using a robust estimate of the stan-
dard deviation has the best performance among the tests based on the difference
between X̄ and M . In their original paper, Miao, Gel and Gastwirth (2006) re-
ported type I error rates when the test is carried out using the asymptotic null
distribution assuming a normal underlying distribution. The bootstrap method
works well for normal and t3 data. However, even in a sample size of 300, the level
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of all the tests deviated from 0.05 for data from a uniform distribution and only
the KS test had a near 0.05 level for the Beta(2,2) distribution. Hence, further
research is needed if “light-tailed” distributions occur in a particular application.

Table 1: Size of the bootstrap tests. Number of simulations is 1000.

dist. n tests

CM1996 M1999 MGG2006 KS t-test Wilcoxon

normal 30 0.052 0.047 0.047 0.051 0.048 0.051
50 0.068 0.063 0.061 0.047 0.066 0.058
100 0.045 0.039 0.043 0.029 0.041 0.044
300 0.056 0.059 0.055 0.039 0.060 0.055

t3 30 0.038 0.032 0.033 0.029 0.034 0.037
50 0.038 0.036 0.039 0.032 0.039 0.039
100 0.041 0.043 0.040 0.036 0.040 0.041
300 0.051 0.044 0.049 0.029 0.040 0.049

beta(2,2) 30 0.061 0.058 0.053 0.056 0.069 0.056
50 0.080 0.077 0.073 0.057 0.086 0.076
100 0.082 0.078 0.080 0.055 0.084 0.071
300 0.068 0.065 0.064 0.056 0.070 0.070

uniform 30 0.094 0.094 0.086 0.101 0.104 0.093
50 0.092 0.087 0.084 0.102 0.098 0.079
100 0.076 0.069 0.069 0.063 0.082 0.080
300 0.070 0.071 0.069 0.069 0.074 0.074

30 50 100 300
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Figure 2: Average absolute departure from the nominal type I error rate.
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Figure 3: Comparison between the MGG2006 test using the asymptotic distri-
bution assuming the data come from a normal distribution and the bootstrap
MGG2006 test.

The left panel of Figure 3 displays the estimated size of the test by Miao,
Gel and Gastwirth (2006) based on 10000 simulations. The broken line indicates
the nominal level 0.05 and the gray dotted lines are two standard deviations
away from the nominal level to allow for some perturbation due to simulation
randomness. We use the letters “n”, “t”, “b” and “u” to label the results for
the following underlying distributions: normal, t distribution with 3 df, beta(2,2)
and uniform. Since the asymptotic distribution is correct when the data come
from normal distributions, the Type I error is well approximated even when
n = 50 and approaches the nominal level as the sample size increases. For the
other distributions, the asymptotic variance for normal distribution used is an
underestimate of the variance of the test statistic which results in an inflated
type I error. Moreover the magnitude of the excess Type I error increases as the
sample size increases.

The right panel in Figure 3 shows the performance of the bootstrap MGG2006
test. The computation is based on 1000 simulations, therefore the dotted lines
are further away from the nominal level to indicate that results in this panel
may have more uncertainty due to the smaller number of simulations. As is
clear from comparing the right panel to the left one, the size of the bootstrap
test approaches the nominal level for all four underlying distributions considered,
while the approximation assuming normality will not.

For tests that compare the difference between the distributions of the (Xi −
M)’s and (M−Xi)’s, the test that modifies the Wilcoxon rank sum test preserves
the Type I error best. With respect to preserving the nominal level, these three
tests (KS, t and Wilcoxon) are roughly comparable to the tests comparing X̄ and
M .
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3.3 Power comparison
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Figure 4: Power of the bootstrap tests.

Figure 4 (Table 2 provides more detail) displays the probability for these
bootstrap tests to detect asymmetry of five different underlying distributions
using data with different sample sizes.

Overall, the normal mixture distribution is the hardest to detect due to its
bimodality. The tests that based on the the difference between the distributions
of the (Xi −M)’s and (M −Xi)’s have better power compared to the tests based
on (X̄ − M), however no test had power greater than 20% at sample size 300.

For the unimodal generalized lambda distributions, the tests based on (X̄ −
M) are generally more powerful. The performance of the t-test comparing the
differences between (Xi − M)’s and (M − Xi)’s is similar to the tests based
on X̄ − M . This is not surprising since the t-test statistic can be rewritten
(approximately) as (X̄−M) normalized by a variability measure computed using
the left positive departures and the right positive departures. Among these tests
based on (X̄−M), the test of Mira (1999) generally has slightly lower power that
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Table 2: Power of the bootstrap tests. Number of simulations is 1000.

dist. n tests

CM1996 M1999 MGG2006 KS t-test Wilcoxon

normal 30 0.007 0.006 0.004 0.035 0.025 0.045
mixture 50 0.005 0.005 0.004 0.060 0.056 0.080

100 0.010 0.008 0.005 0.078 0.076 0.104
300 0.034 0.029 0.025 0.154 0.164 0.191

λ1 = −0.1167 30 0.085 0.073 0.075 0.048 0.076 0.074
λ2 = −0.3517 50 0.101 0.105 0.099 0.044 0.103 0.090
λ3 = −0.13 100 0.170 0.155 0.160 0.079 0.157 0.117
λ4 = −0.16 300 0.221 0.209 0.218 0.081 0.224 0.120
λ1 = 0 30 0.239 0.212 0.226 0.118 0.225 0.173
λ2 = −1 50 0.409 0.404 0.408 0.208 0.407 0.244
λ3 = −0.0075 100 0.723 0.704 0.707 0.385 0.716 0.408
λ4 = −0.03 300 0.999 0.999 0.999 0.959 0.999 0.809
λ1 = 0 30 0.698 0.613 0.680 0.453 0.649 0.420
λ2 = −1 50 0.907 0.869 0.905 0.699 0.892 0.577
λ3 = −0.0001 100 0.999 0.998 1.000 0.935 0.999 0.796
λ4 = −017 300 1.000 1.000 1.000 1.000 1.000 0.995
λ1 = 0 30 0.217 0.207 0.232 0.201 0.232 0.194
λ2 = 1 50 0.291 0.276 0.310 0.286 0.310 0.239
λ3 = 1.4 100 0.474 0.469 0.489 0.495 0.490 0.347
λ4 = 0.25 300 0.850 0.849 0.853 0.934 0.853 0.644

the CM1996 and MGG2006 tests. This agrees with the study in Efron (1979)
showing that a standardized statistic is more likely to benefit from the bootstrap
procedure than a non-standardized one.

In terms of power performance, the tests of Cabilio and Masaro (1996), Miao,
Gel and Gastwirth (2006) and the t-test are similar and superior to the other
tests. As the results in Section 3.2 demonstrate that the CM1996 (Cabilio and
Masaro, 1996) and t-test produce more false positives than MGG2006 (Miao,
Gel and Gastwirth, 2006),, the test MGG2006 is the best choice among the tests
considered here.

4. Application to Education Funding Allocation Data

This study was motivated in part by the questionable use of symmetric trim-
ming of the per-pupil expenditure data for a state’s school districts when calcu-
lating a measure of relative disparity used in the allocation of federal funds. The
tests of symmetry will now be used to examine several educational funding data
sets. The first two, from New Mexico and Alaska, actually were submitted to the
U.S. Supreme Court in the Zuni School District case but were hardly mentioned
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in the decision. The third data set refers to the 1967 per-pupil expenditures on
teachers in the elementary schools in Washington D.C. The data were used in
court from the classic school segregation case, Hobson v. Hansen. As the three
previous data sets were of small to moderate size, the final data set reports the
per-pupil expenditures in Missouri’s 522 school districts during the 2001-2002
academic year.
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Figure 5: Histograms of the educational funding data sets. The measure of
skewness γ1 (Stuart and Ord, 1994, page 109) is also included.

The first data set reports revenues available per-pupil in the 89 Educational
Agencies or school districts in New Mexico and is reproduced in Gastwirth (2006)
and available in the R-package, lawstat. The results in Table 3 below show that
the CM, Mira, MGG and t-tests all reject the hypothesis of symmetry with p-
values in the neighborhood of .01-.02. These results are consistent with the right
skewness of the data seen in the histogram in Figure 5. The modified KS and
rank-sum tests, however, did not detect the lack of symmetry of the data. This
highlights the importance of power study in Section 3.3 as those two tests were
generally less powerful than the others.

The second data set reporting the per-pupil expenditures of the 44 Educa-
tional Agencies in Alaska was submitted to the Supreme Court by the state of
Alaska in its amicus brief to the Court in the Zuni School District case. All
the tests accepted the symmetry hypothesis, although the histogram suggests it
might be right skewed. The small sample size (n = 44) naturally diminishes the
power of any statistical test. All the tests detected a similar degree of skewness
in the much larger data set from Missouri (n = 522).

Table 3: P-values from bootstrap tests of symmetry on education fund alloca-
tion data. P-values are estimated based on 10000 bootstraps.

New Mexico Alaska DC DC (no top) Missouri

MGG2006 0.0077 0.474 0.292 0.761 < 0.0001
CM1996 0.0083 0.472 0.297 0.759 < 0.0001
Mira1999 0.0192 0.471 0.291 0.757 < 0.0001
KS 0.2881 0.543 0.628 0.596 < 0.0001
Wilcoxon 0.1608 0.574 0.643 0.494 < 0.0001
t-test 0.0103 0.495 0.281 0.756 < 0.0001
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The data from the Hobson v. Hansen case is given in Figure 5 (DC schools).
Here the histogram looks more symmetric with a small right-skew (which was
primarily due to the thirteen predominantly white schools). All tests of symmetry
accept that hypothesis. It is also worth noting that the p-values of the t-test and
the three tests based on the difference between the mean and median of the data
were quite close. This is consistent with the findings of the simulation study
reported in Sections 3. The subset of 110 majority black elementary schools was
considered by Gastwirth (2008) in order to eliminate the effect of segregation
(DC schools (No top) in Figure 5). The p-values of all the tests on this subset
are larger than on the entire data set, implying that the restricted data are more
symmetric than the entire data set. This is consistent with the histograms in
Figure 5 and the fact that at the time of the case predominantly white schools
were better funded than schools with larger minority proportions.

To explore the properties of the tests in a larger sample, data for the 522
districts in Missouri were examined. The histogram of the Missouri data in
Figure 5, the data of Missouri is very right-skewed. All tests considered here
estimated the p-value to be < 0.0001 when 10, 000 bootstrap samples were taken.

5. Discussion and Conclusion

This paper shows that the sampling distribution of several tests of symme-
try can be estimated using the bootstrap when re-samples are taken from the
symmetrized empirical CDF about the sample median.

For commonly occurring sample sizes, the method provides more accurate
distributions for these intuitive tests of symmetry based on the difference be-
tween sample mean and median than a previously used asymptotic approxima-
tion. The bootstrap symmetry tests preserved the nominal level, especially for the
heavy-tailed t3 distribution, better than the previously used asymptotic proce-
dure. Since the nominal level is preserved, the comparative powers of the various
symmetry tests can be evaluated more reliably. The results showed that the test
of Miao, Gel and Gastwirth (2006) (MGG2006) is a reasonable overall test of
symmetry about an unknown center, especially when the underlying distribution
is not “light-tailed.” The bootstrap method can sometimes give unreliable esti-
mates of probability of rejection if the statistic of interest is not asymptotically
pivotal. In that case, recent research on improving the reliability of bootstrap
tests (e.g. Davidson and Mackinnon, 2007) can be applied to extend the approach
used in this paper.

The methods are applied to the actual data submitted to the U.S. Supreme
Court in an educational funding case. Although the U.S. Department of Edu-
cation used a method of trimming developed for symmetric data, often the data
are not symmetric. All the tests of symmetry with reasonable power rejected the
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null hypothesis that the main data set in the legal case came from a symmetric
distribution. This result raises an important question concerning the “outlier”
deletion procedure specified in the Federal Impact Aid Act. Since Chief Justice
Roberts expressed concern about the lack of discussion of outliers by the lawyers
in the Zuni School District 89 v. U.S. Department of Education case, hopefully
the legal community will pay more attention to statistical issues in the future.
The development of statistical methods based on intuitive understandable statis-
tic measures should assist courts in assessing the meaning and implications of
statistical evidence.
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