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Abstract: Response variables that are scored as counts, for example, number
of mastitis cases in dairy cattle, often arise in quantitative genetic analysis.
When the number of zeros exceeds the amount expected such as under the
Poisson density, the zero-inflated Poisson (ZIP) model is more appropri-
ate. In using the ZIP model in animal breeding studies, it is necessary to
accommodate genetic and environmental covariances. For that, this study
proposes to model the mixture and Poisson parameters hierarchically, each
as a function of two random effects, representing the genetic and environ-
mental sources of variability, respectively. The genetic random effects are
allowed to be correlated, leading to a correlation within and between clusters.
The environmental effects are introduced by independent residual terms, ac-
counting for overdispersion above that caused by extra-zeros. In addition,
an inter correlation structure between random genetic effects affecting mix-
ture and Poisson parameters is used to infer pleiotropy, an expression of
the extent to which these parameters are influenced by common genes. The
methods described here are illustrated with data on number of mastitis cases
from Norwegian Red cows. Bayesian analysis yields posterior distributions
useful for studying environmental and genetic variability, as well as genetic
correlation.
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1. Introduction

Some traits in animal breeding are scored as counts, for example, litter size
in pigs, embryo yield produced after superovulation, and number of mastitis
cases in dairy cattle. When the number of zeros exceeds the amount expected
under a certain density, as for example, the Poisson density, a possibility for
modeling the extra-zeros has been proposed by Lambert (1992). In using the
ZIP model in animal breeding studies, it is necessary to accommodate genetic and
environmental covariances. For that, this study proposes to model the mixture



380 Mariana Rodrigues-Motta et al.

and Poisson parameters hierarchically, each as a function of two random effects,
representing the genetic and environmental sources of variability, respectively.

Models for zero-inflated count data with random effects accounting for intra-
group correlation and dependence of clustered observations either in the logistic
regression model of the mixture parameter and/or the in log-linear model of the
Poisson parameter have been discussed by Welsh et al. (1996), Hall et al. (2000),
Wang et al. (2002), Kuhnert et al. (2005), and Min and Agresti (2005). In
this article, modeling genetic effects of zero-inflated count data presents special
challenges; in addition of the problem of extra zeros, the correlation within and
between clusters, e.g., half-sibs families, needs to be taken into account. We
explore a model where the correlated genetic random effects not only accom-
modate within but between cluster correlation. The ZIP model accomodates
overdispersion (variance > mean) caused by extra zeros, however independent
environmental effects (residual effects) accommodate overdispersion above that.
Both genetic and environmental random effects are independent, and considered
at the level of the mixture and Poisson parameters. As pleiotropy is the main
genetic cause of correlation (Falconer, 1989), a correlation structure is also intro-
duced between the genetic effects on these parameters, similar to the correlation
between direct and maternal effects (Willham, 1963). The degree of correlation
from pleiotropy express the extent to which the mixture and Poisson parameters
are influenced by common genes. In a ZIP model, the mixture parameter p is
interpreted as the “perfect state” probability (Rodrigues-Motta et al., 2007), so
a negative correlation between p and the Poisson parameter would be expected,
meaning that genes in favor of the perfect state act against to the imperfect Pois-
son state. In the same way, a correlation close to zero indicates that there are no
common genes affecting those parameters simultaneously.

A hierarchical ZIP model with correlated parameters is developed to an ap-
plication to number of mastitis cases in Norwegian Red cows in first lactation.
First, a hierarchical Bayes structure is presented. Second, estimation of the pa-
rameters are suggested via a Gibbs-sampling approach. Third, a model checking
was conducted via an analysis of residuals and predictive ability.

2. The Mixed Effects ZIP Model with Independent Residual Effects

Let y = (y1,%2, .., yn) be a vector containing the number of cases of an event
per animal (e.g., number of mastitis cases in dairy cows). It is assumed that,
given A\; and p;, the distribution of observation y; on animal ¢ follows a zero-
inflated Poisson distribution, and that all such observations are conditionally
independent. The density is then

p(yi = kX, pi) = [pi + (1 — pi)e M E=0[(1 — pp)e 2 NF R IR>0 0 (2.1)
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fori = 1,...n, 0 < A\; < oo and 0 < p; < 1. Here, p; is the probability
that a 0 is from the “perfect” state, and A; is the parameter of the “imperfect”
state (Poisson distribution). This model tends to a conditional Poisson model as
pi — 0. Let A* = (log(\1),...,log(\,))" and p* = (logit(p1),...,logit(p,)) be
vectors of unobservable parameters. Further, suppose that A* and p* satisfy the

linear mixed model
A" X A 0 B A Z by 0 up EN

2.2
[p*] l:OXP:||:'8p+ 0 Z, u2+€p’()
where 3, and 3, are vectors of fixed effects; u; and uy are vectors of random
effects, and X, X, Z) and Z,, are known incidence matrices (matrices of 0 and

1,8). Factors included in 38, may or may not be the same as those in 3,,.
In (2.2), €, and €) are vectors of residuals which are assumed to follow a
multivariate normal distribution on R?" with mean zero and covariance matrix

2
o 0 . . . .
Y ®I,, where 3 = (E]A o2 , I, is an identity matrix of order n, and O'g)\ and
€p

agp are residual variances reflecting overdispersion over and above that caused by

extra zeros. The distribution of €) and €, induces the distribution

)\*]BA,ul,aé ) |:< X)\,B,\+Z)\u1 > :|
i} ~ Normal .2, ®L,], 2.3
( p*|B, u2, 02, e X8, + Zyus (2.3)

where A* and p* are as in (2.2).

Here, u = (ull, u;)/ ~ N(0,3,). In this study, we partition the Z incidence
matrices as Zy = (Z1y 0 Zyy O0)andZ,=(0 Z;, 0 Zp, ), respec-
tively; these matrices relate the random effects u; = (hj, h;,)' and uy = (aj, a;,)/
to A* and p*. The vectors hy and h,, each of dimension ny, are non-genetic ef-
fects (e.g., herd effects); the vectors ay and a,, each of dimension n,, are additive

genetic effects. Additionally,

5 _ (HeL, 0
uw 0 GRA J’

2 2
g % O and G=( o o0 ),
0 o2 o o2
hp axp ap

Further, A is a known additive genetic relationship matrix; Jl2u and azp are vari-

where

ances of non-genetic (say herd) effects affecting A* and p*, respectively; O'?L)\ and

agp are the additive genetic variances, and o, , is the additive genetic covariance.

. Lo 2 2
The genetic correlation is p = 04, ,/4/05,0% .
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2.1 Parameter estimation
The likelihood, priors and the joint posterior distribution

Let 7 = {X*,p", B, B, hy, hy,ay, 8, H, G, X} be a set of unknown quanti-
ties. The conditional (given 7) likelihood for the ZIP regression model is

Ursy) = [T+ (1 =p)e ] TT I = pi)e A /uil]. (2.4)

yi=0 y; >0

To achieve a reasonably vague prior, an uniform distribution is assigned to each
element of B’s, with large absolute values of the bounds B3,,,, x, Bimaz s Bminps
and B,,,,,- Independent scale inverse chi-square distributions with degrees of
freedom (scale parameter) v. (d.) are assigned to o2, and Jgp, respectively, and
independent inverse chi-square distributions with degrees of freedom (scale pa-
rameter) vy (dp,) are assigned to O'}QD\ and UIszv respectively. An inverse Wishart
distribution with parameter matrix (degrees of freedom) Vi (vq) is assigned to
G. Replacing (2.4) by the models in (2.2), the joint posterior density can be
written as

p(rly) o« U(r;y) x (02,)"

A Li=1
+ usdg]}
1 [ n
/ ! / 2
S by D07 = XipBy — Zia phy — 72 ,3)
p Li=1
+ VE5§]}
9 (nh+uh+2
X (Uhk) exp 2 h,\ h, + Vh(sh)
) (nh+uh+2 1
X (ahp) exp 2— (hp h + vp63)
(na+uc+3 1 _1
< T el (@), (2.5)
where X;;)\, z;;l)\, Z;;Q,/\’ x;;p, z;;l,p and zl 2, and are the ith rows of matrices X,

Zy ), 2y, Xp, 21 and Zs,, respectively, and

" A—1 " A-1
a,A 'a, a,A '3,

_ —1
Ve = [ al)\A_lap a;,A_lap ] +Vg-



Mixed Effects Model for Animal Breeding 383

The joint posterior distribution with density as in (2.5) is not recognizable, and
can be written only up to a proportionality constant. Also, marginal poste-
rior distributions cannot be obtained analytically. Therefore, a Metropolis-Gibbs
sampling scheme was tailored to sample from the marginal posterior distributions.

Sampling the parameters )] and p;

From (2.5), the conditional posterior density of the vector of log-Poisson pa-
rameters A" is p(A*[ELSE,y) o I(7;y)p(A*|By, hy,a, 02, ), given all other pa-
rameters (“ELSE”). The A!’s are assumed independent, a priori, and their prior
densities are normal with parameters according to (2.3). Hence,

p(M[ELSE,y;) o [P 4 e @XPODHB=0)[=eXP(A))+ATyi] 1(y:>0)

X exp —ﬁ()\; - X;,,\IB,\ - Z;;L,\hx - Z;;z,,\a,\>2 , (2.6)
EX
i =1,2,...,n. It can be seen that these fully conditional distributions are inde-
pendent. From (2.5), the conditional posterior density of the vector of logits p*
is p(p*|ELSE,y) l(T;y)p(p*|,8p,hp,ap,agp). The p}’s are assumed indepen-
dent, a priori, and their prior densities are normal according to (2.3). The fully
conditional distribution of these parameters are independent, i.e.,

p(pIELSE,y) o [ePi 4 e SXPODIWm=0)[1 4 pi]~1

!/

1 : D
X eXp _ﬁ(p? = XipBp = Zi php — Zippap)” | - (2.7)

Ep

The densities in (2.6) and (2.7) do not have any obviously recognizable form.
A Metropolis-Hastings algorithm was therefore tailored for drawing the A} =
log(\;) and p; = €7 /(1 +ePi ), one at a time.

Sampling location effects affecting A* and p*

From (2.5), the fully conditional posterior distribution of the 3, h and a
location parameters is p(3,h,a|ELSE,y) o« p(A*, p*|3,h,a)p(8)p(h|H)p(a|G).
This is the conditional posterior density of location parameters in a bivariate
Gaussian model with known dispersion structure, in which A* and p* play the
role of “traits”, and the only source of correlation is through genetic effects. The
derivation of the fully posterior distribution of the location parameters is given
in Sorensen and Gianola (2002). Let 8 = (8,h',a’) and

M = X)\ 0 Zl:)\ 0 227)\ 0
0o X, 0 Z, 0 Zy, |
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Note that this implies sorting of individuals within A* and p*, respectively. Then,
the standard mixed model equations of animal breeders are given by CO = t,
where C = M (2! @ I,)M + Q, with

0 0 0 A*
Q=( 0 H!'®I, 0 and t:M(El@JIn)[ *]
0 0 GloAl

The fully conditional posterior distribution of € is the multivariate normal pro-
cess O|ELSE,y ~ Normal(@, C~!) and, for any sub-vector 8; of 6, 8;|ELSE,y ~
Normal(éi, C;il), where 6; satisfies C“9~1 =t; — C;_;0;. Here, C;; is an appro-
priate sub-matrix of C; t; is the corresponding sub vector of t; C; _; is a block
of C linking the “8; equations” to the “O_; equations”, and 6_; is @ with 6;
removed. The Gibbs sampler is implemented in a scalar mode, drawing from the
appropriated fully conditional posterior distribution one element of 8 at a time.
In this case, 0~Z and C;; are scalars and C; _; is a row vector.

Conditional posterior distribution of the residual variances
From (2.5), and the fact that 3 is a diagonal matrix, it follows that

p(o? |[ELSE,y) o p(A*By,hy,an, 02 )p(o?, |ve, )
2 \-(nps2)
€x

1 n / / / 2
X exp {—%2 [Z()\f - Xi;)ﬂ,\ - Zm,)\h/\ - Zi;2,)\a>\)
€

x (o

A Li=1

+ vbZ]} (2.8)

and

p(0§p|ELSE,y) x p(p*|,@p,hp,ap,agp)p(agpws,ég)

_(ntvre+2
x (02) (=512)
]. n / ! !
X exp {20_2 [Z(p;k — XipPp — Zi;l,php - Zi;Q,pap)2
ep Li=1
+ .82}, (2.9)

These are the densities of two independent scaled inverse chi-square random vari-
ables. Sampling is straightforward.
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Conditional posterior distribution of the non-genetic variances

From (2.5), it follows directly that the two non-genetic variances are condi-
tionally independent. In particular,

9 9 7(7lh+l/h+2) 1 , 9
p(oh, |[ELSE,y) o (0},) ? e oy wd o (210)

hx
and
: R o 2
p(ghP‘ELSE?Y) X (Uhp) 2 exp —th hp+yh6h . (211)
hp

These are densities of two independent scale inverse chi-square random variables.

Conditional posterior distribution of genetic variance matrix G

From (2.5) it follows directly that

natrg +3

W(GIELSE,y) « |G ("5 )exp{—;tr(G_lVé)}, (2.12)

where V is given in (). Hence, the conditional posterior distribution of G is the
2-dimensional inverse Wishart process G|ELSE,y ~ IWa(n, + va, V*Gil).

2.2 The Gibbs-Metropolis algorithm and convergence criteria

Our Gibbs-Metropolis sampling algorithm consisted of cyclic sampling through
all components of 7, drawing each parameter or subset of parameters, condi-
tionally on the realized value of all other parameters, at each iteration of the
algorithm. At iteration ¢, an ordering of the components of 7 was chosen and
elements of 7 were sampled sequentially from their conditional distribution, given
the current value of all other elements of 7. A normal distribution with mean
equal to the value of A7, at iteration ¢ and appropriate variance was used as
proposal distribution for sampling from (2.6). Similarly, a normal distribution
with mean equal to the value of p;, at iteration ¢ and some appropriate variance
was used as proposal distribution for sampling from (2.7). The variances of the
proposal distributions were chosen to attain acceptance rates between 30% and
50% (Gelman et al., 2004). For the proposed model, a possible implementation
of the algorithm at each step t is as follows, where 7° would be some starting
value:
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e Sample [Af’t\ELSEt_l, y] via a Metropolis step applied to (2.6), i =1, ...,n.

e Sample [p;,|ELSE;_1, A}, y] via a Metropolis step applied to (2.7), i =
1,...,n.

e Sample [0;|ELSE;_1, A{, p;,y| from the multivariate normal distribution
with mean 0; and covariance matrix C~!, or from an univariate normal
distribution with mean éz}t and variance C, Z»l if sampling is element-wise,
as described in Section 2.1. ’

e Sample [O’%)ﬂt, U,levt]ELSEt_l, AL, pi, 04, y] from the scaled inverse chi-square
distributions (2.10) and (2.11), respectively.

2
Ex,t?

chi-square distributions (2.8) and (2.9), respectively.

e Sample [0 ng,t|ELSEt,1, AL, pi, 04, U,zmt, U,le’t, y] from the scaled inverse

e Sample [Gt|ELSEt_1,/\f,p?,Bt,a,zwt,a,%mt,agxyt,agp’t,y] from the inverse
Wishart distribution (2.12).

Above, “ELSE;_1” stands for all parameters, other than those that have been
updated in the preceding conditional distribution. Visual inspection of trace plots
of the MCMC run and the scale reduction factor diagnostic suggested by Gelman
and Rubin (1992) were used to determine the length of the burn-in period and the
total number of iterations for the Gibbs-Metropolis procedure. T'wo chains with
overdispersed starting points were used in the Gelman and Rubin (1992) method.
This monitors convergence of the iterative simulation by estimating the factor by
which the scale of the current distribution for a parameter under study, say T,
might be reduced if simulations were continued for an infinite amount of time.

var(rly)
w

The potential scale reduction is given by R= , which declines towards 1

as the number of iterations J goes to infinity. Here, var(t|y) = %W%—%B, where
W and B are estimates of the within and between-chain variances. Discarding
early draws as burn-in, such that the starting value is “forgotten”, samples are
drawn as needed to attain a sufficiently small Monte Carlo error of estimation of
features of the posterior distribution, such as the posterior mean.

2.3 Model adequacy
Discrepancy statistic
The adequacy of the ZIP model fitted to the data was assessed by comparing

the observed value of a statistic Tj(y,7) with its predictive distribution under
the ZIP model. As a measure of “discrepancy”, the statistic Dy = Ti(y|T) —
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Tk (Yrep|T) was used. Here, Ty(y,7) = n= 2> I(y; = k), where y; is the 4"
component of the observed vector y, Ty i(Yrept, T) = n~t Yo I Yivepy = k),
where y;. ¢, is the ith component of the replicated vector Yrep Of size n in sample
l=1,..,L, k=0,1,..., and I(.) is an indicator function. A distribution of Dy
values was generated for each value of k; if the model holds, Dj should be cen-
tered at 0. Computations were as follows: 1) For L = 100, vectors v = (v, ..., vp)
of size n = number of individuals in the data set were drawn. Each element v; of
v followed a ZIP density evaluated at the posterior mean of A} and pj, respec-
tively, as inputs for the Poisson and mixture parameters. 2) For each realization
of v at sample [, n~! Z?:l I(Yisreps = k) was calculated at each k, leading to 100
“future” relative frequencies. 3) Dy was calculated for each k, with values far
from zero being interpreted as evidence against the model.

Residual analysis

Another tool used for model adequacy was a residual analysis. A residual
for the i*" record was defined as 7; = y; — E(y;|7). The posterior mean of the
(i—E(yi|r9))) P =

=1,...,n
\/Var(yi\‘r(j))’ L

and J being the number of posterior samples. The expectation and variance used
were E(y;|70)) = (1 — p;)A\;i and Var(y;|70)) = E(yi|79))(1 4+ \ip;), respectively.
An observation would be unusual if the posterior distribution of r; is concentrated
away from zero.

standardized residual was estimated as #; = J =1 Z}]:1

2.4 Model comparison

ZIP models were contrasted against a Poisson model; all specifications in-
cluded genetic and residual effects in the structure A*. Models were contrasted
using the pseudo-Bayes factor (Geiser and Eddy, 1979; Gelfand, 1996). The pre-
dictive log-likelihood of each observed datum was estimated as the harmonic mean
of the likelihood evaluated at samples from the posterior distribution (Gelfand
and Dey, 1994; Newton and Raftery, 1994). At each iteration, the likelihood
was stored for each observation, and the harmonic mean of the likelihood across
samples was calculated as L; = (J -1 Z}-le(ng ))*1>, where LEJ ) is the likelihood
of subject i, evaluated at draw j from the posterior distribution. The predictive
likelihood of the model M was them estimated as p(y|M) = [[i~, L;, and the

pseudo-Bayes factor is the ratio between the predictive likelihoods of competing
models.
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3. An Animal Breeding Application

Quantitative genetic analysis of mastitis data has been carried out mainly with
linear models (e.g., Carlén, Schneider and Strandberg, 2005) and with threshold
models (Gianola and Foulley, 1983; Heringstad et al., 2001; Heringstad et al.,
2004; Chang et al., 2004), with the latter ones accounting for the binary structure
of the data, at least when mastitis is categorized as “absent” or “present”. When
cows have more than one case of mastitis during lactation, longitudinal binary
response models have been used as well (Heringstad et al., 2003). However,
the number of episodes of a disease is a random count, and a more appropriate
sampling model would be the Poisson distribution. Further, the “zero count”
(e.g., no disease) may have higher frequency than the expected under Poisson
sampling, so a ZIP model might be suitable. If so, an extension for quantitative
genetics analysis of counts with an excess of zeros is needed. The objective of
this application was to investigate alternative specifications for modeling number
of incidences of mastitis via a ZIP model, and to make inferences about genetic
(co)variation between the Poisson and mixture parameters involved.

The hierarchical ZIP model was fitted to a data set consisting of number of
mastitis cases in 36, 175 first-lactation Norwegian Red cows. The data is described
in detail in Rodrigues-Motta et al. (2007). The ZIP model in terms of (2.2) in-
cluded 4 “fixed” factors affecting both A* and p*. Here, 8 = (81, 82,1, B3 1, ﬂ4,>\)/
and 8, = (,817p,,827p,ﬁ37p,ﬁ47p)/, respectively. The vector 3, ; included effects of
15 ages at first calving (< 20,...,32,> 32 months), the vector B, ; included ef-
fects of 12 months at first calving, B3 ; consisted of effects of 3 years at first
calving (1990, 1991 and 1992), and 34 ; was a regression on the logarithm of the
number of days from first calving to the defined end of first lactation (culling, sec-
ond calving, or 300 days after calving, whichever occurred first), with j = A, p.
To achieve a reasonably vague prior, each element of 3, and B, was sampled
from an uniform distribution spanning from —999 to 999. Herd effects repre-
sented the non-genetic random factor contained in hy and hy,, respectively. The
non-genetic herd effects, represented by h = (h;, h;))/, were assumed to follow a
priori a multivariate normal distribution with mean zero and covariance matrix
0}2U 0

0 O'}%p
fitted, thus ay and a, are vectors containing half of the breeding values affecting
A7 and pj, respectively; each of these vectors was of order 437 x 1. The sire
(genetic) effects, represented by a = (a;\,a;)/, were assumed to follow a multi-
variate normal distribution with mean zero and covariance matrix G ® A, where

H® I,,, where H = and ny = 5,286. A ZIP “sire” model was

2

g, g, . . .. . . .

G = ( - ax ;2“’ ), and A is a known matrix of additive genetic relationship
ax p ap
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Figure 1: Posterior distributions of the residual, herd, and sire variance affect-
ing A* and of sire covariances and correlations between A* and p*.

of dimension 437. The A matrix was built from a sire pedigree file with a total
of 437 males, where the pedigree of the 245 sires with daughters in the data set
were traced back, through sires and maternal grandsires, as far back as possible.
In quantitative genetics theory, variation between sires accounts only for 1/4 of
the total additive genetic variation (Falconer, 1989); the rest of the variation
(genetic and environmental) is captured by the residual terms e and €,. There-
fore, the residual term in the model accounts for more overdispersion, and for
environmental effects beyond those due to herds. The degrees of belief parame-
ters of the scale inverse chi-square and inverse Wishart distributions assigned as
priors for variance components and matrix G were v, = v, = vg = 5. Further,

Vo = 0-45 _8'2;5 , 0c = 0 = 1. Added to high dimension of the data

set and the pedigree, the complexity of the hierarchical model demanded that a
Fortran program was written to sample the unknowns, following the scheme pro-
posed in Section 2.2. The Gelman and Rubin (1992) convergence criterion used
2 chains starting from overdispersed values, with 10° iterations and a burn-in
period of 5 x 10° samples. The scale reduction factors for the residual, herd and
sire variances affecting A* were 1.05, 1 and 1, respectively; the scale reduction
factors for the residual, herd and sire variances affecting p* were 1.04, 1.05 and
1, respectively. The scale reduction factor for the sire covariance was 1. These
values suggest convergence to the equilibrium distribution. However, the trace
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Figure 2: Posterior distribution of the residual, herd, and sire variance affecting
p* and distribution of the posterior means of the probability of the perfect state
(p) under the ZIP model with correlated A* and p* parameters.

plots (results not shown) indicated that additional iterations would produce more
accurate posteriori estimates of the residual variance associated to A*, and of all
variance components associated to p*. A total of 500,000 after-burn-in samples
(without thinning) from one of the two chains were used to calculate Monte
Carlo errors associated to the posterior mean of the variance components. The
Monte Carlo error variances of residual, herd and sire variances affecting A*
were 2.1 x 1078, 5.8 x 107 and 8 x 10719, respectively; the Monte Carlo error
of variances of residual, herd and sire variances affecting p* were 1.7 x 1077,
2.3 x 1077 and 1.7 x 107, respectively. The Monte Carlo error variance of the
covariance between sire effects was 5.7 x 107?. These small Monte Carlo errors
indicated that posterior mean estimates were precise enough.

The posterior distributions of the dispersion components affecting A* and
p* are given in Figures 1 and Figure 2, respectively, and the posterior means
and standard deviation (SD) of the residual, herd and sire variances affecting
A* were 0.76 (0.04), 0.36 (0.02) and 0.07 (0.01), respectively, with the most
important source of variation being that due to residual effects, followed by herds
and then by sires. In Figure 1, the posterior distribution of the residual and
herd variances were nearly symmetric, while the posterior distribution of the sire
variance was slightly asymmetric with a longer tail to the right. The posterior
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means (SD) of the residual, herd and sire variances affecting p* were 0.4 (0.11),
0.45 (0.13) and 0.27 (0.11), respectively, with the largest source of variation
being herd effects, followed by residuals and then sires. As shown in Figure 2,
the posterior distributions of the residual, herd and sire variances affecting p*
were all skewed, with long tails to the right. These results suggest that it is more
difficult to infer components of variance precisely for p* than for A*. Additionally,
the posterior distribution of the covariance (correlation) between sire effects on A*
and p* is shown in Figure 1, with the mean (SD) of the sire covariance being 0.01
(0.02). The 90% credible interval is given by (—0.02;0.05), suggesting that genetic
effects affecting A* and p* are uncorrelated. There was large uncertainty about
the sire correlation (which is equal to the genetic correlation, under additive
inheritance at the A* and p* levels). The posterior distribution assigned high
density to values of the correlation varying from —0.4 to 0.4. As shown in Figure 2,
the distribution (over observations) of the average posterior mean of the perfect
state probabilities p was skewed, and its mean (SD) was 0.07 (0.11); the 5% and
95% percentiles yielded the 90% interval (0.02;0.22). The average of the posterior
means of elements of p* lead to the inference that, on average, about 7% of first-
lactation cows would not get mastitis, either due to being totally resistant to the
disease or for never being exposed to mastitis.

Posterior predictive density of D, Posterior means of residuals

—_ o

= v

0.02 0.04
Il Il
peo oo

0.00
I

-0.02

-0.04
t

number of mastitis cases number of mastitis cases

Figure 3: Posterior predictive density of Dy = Tk(y|.) — Tk(Yrep|.) and pos-
terior means of the residuals under the ZIP model with correlated A* and p*
parameters.

For model assessment, the posterior predictive density of Dy = Ti(y|.) —
Ty (yrep|.) displayed in Figure 3 (left panel) indicates an agreement between the
observed (Tj(y|.)) and replicate data (T (Yrep|.)), in special for number of mastitis
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cases greater than 1. The plot of posterior means of residuals displayed in Figure 3
(right panel) suggested that the model fitted the zero counts reasonably; but that
it is less successful for fitting number of mastitis cases larger than 0 because the
mean residual values were far from zero. In the analysis of residuals, standardized
residuals were obtained by replacing A* and p* by point estimates; however, in the
complex models considered with a huge number of random effects such residuals
are far from being standard normal. In particular, the lack of model adequacy
may have been aggravated by a poor estimation of the parameters in the case of
small number of observations for number of mastitis cases greater than 0: 15.8,
5.1, and 1.6% cows had 1, 2, and 3 cases, respectively; only 315 cows had more
than 3 episodes of clinical mastitis during first lactation.

For comparative purposes, two other models were fitted to the data: (1) a
Poisson model having the same exploratory structure for A* and (2) a ZIP model
having the same exploratory structure but uncorrelated A* and p*. The predic-
tive log-likelihood values for the Poisson, ZIP with correlated A* and p* and ZIP
with uncorrelated A* and p* models were —27059.8, —27019.9 and —27017.9,
respectively, favoring the ZIP with uncorrelated A* and p* model in a log-scale
basis. The pseudo-Bayes factor was 40 between the ZIP model with correlated
A" and p* and the Poisson model, and 41.9 between the ZIP model with uncor-
related A* and p* and the Poisson model, both favoring the ZIP model. The
pseudo-Bayes factor between ZIP models with uncorrelated and correlated A*
and p*, respectively, was 2, favoring weakly the ZIP with uncorrelated parame-
ters. Estimates of the variance components affecting p* and A* are summarized
in Table 1. The posterior mean (SD) of the residual variance affecting A* was
larger in the Poisson (0.9 (0.03)) than in the ZIP models (posterior means (SD)
were 0.72 (0.04) and 0.76 (0.04) in the ZIP model with uncorrelated and corre-
lated A* and p*, respectively), suggesting that the overdispersion due to zeros
was absorbed by the residual term in the Poisson model. The posterior mean
(SD) of the herd variance affecting A* was similar in all models: 0.35(0.02) in the
Poisson model and 0.36(0.02) in the two ZIP models. The ZIP models captured
more genetic variation affecting A*, since the variation between sires was larger
(posterior means (SD) were 0.09 (0.01) and 0.07 (0.01) in the ZIP model with
uncorrelated and correlated A* and p*, respectively) than in the Poisson model
(posterior mean (SD) was 0.05 (0.01)). The mean (SD) of the posterior distri-
bution of p* in the ZIP model with uncorrelated and correlated parameters were
0.1 (0.11) and 0.07 (0.11), respectively. Estimates were similar in the two ZIP
models, except for o,, where the mean was 37% larger in the ZIP model with
uncorrelated A* and p*. Since the credible interval for the covariance between
sire effects included zero, the principle of parsimony favors the ZIP model with
uncorrelated A* and p*.
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Table 1: Posterior mean (standard error) of residual (o2, , ng)7 herd (U,QWU%F)
and sire (02, ,ng) variances from Poisson and ZIP models with correlated and

uncorrelated A* and p*.

Posterior mean (standard error)

Poisson ZIP with Z1P with
uncorrelated A* and p* correlated A* and p*

o2 0.90 (0.03) 0.72 (0.04) 0.76 (0.04)
o 0.35 (0.02) 0.36 (0.02) 0.36 (0.02)
o2 0.05 (0.01) 0.09 (0.01) 0.07 (0.01)
o2 - 0.36 (0.10) 0.40 (0.11)
o - 0.41 (0.13) 0.45 (0.13)
o2 : 0.37 (0.10) 0.27 (0.11)

4. Discussion

Count data models have been developed for animal breeding applications,
which pose either a Poisson mixed effects model (Foulley et al., 1987) or accom-
modate “extra-Poisson” residual variation explicitly (Tempelman and Gianola,
1996). However, part of this extra variation may be due to extra zeros relative
to a Poisson sampling. In this case, a ZIP model may provide a better fit to the
data (Lambert, 1992). From an animal breeding perspective, quantities of main
interest are the genetic values of candidates for selection and associated variance
components. Here, the ZIP model was extended to accommodate genetic ef-
fects by introducing correlated random effects in the structure of the log-Poisson
parameter (A*) and of the logit of the mixture probability (p*); the correlated
random effects accounted for correlation within and between half-sibs families.
The model structure is analogous to that of a multiple-trait linear model de-
scribed, for example, in Sorensen and Gianola (2002). Moreover, a correlation
between these two genetic effects would account for pleiotropic genes affecting the
Poisson and the mixture probability, as in models in which a correlation between
direct and maternal effects is fitted (Willham, 1963). Additionally, to account
for overdispersion over and above that caused by extra zeros, residual terms were
included in the structure of A* and p*. The hierarchical structures posed for A*
and p* would permit to discriminate between individuals being resistance to a
certain disease and those that are mildly liable.

In an application of this model to number of mastitis cases in first-lactation
Norwegian Red cows, it seemed that a Poisson regression model absorbs overdis-
persion due to zeros in the residual term reasonable well. If this is so, the Poisson
mixed model would produce poor estimates of the variance components. In the
ZIP model, the components of variance affecting p* were inferred less precisely
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than those affecting A*. The small number of observations in each combination
of levels of random effects may have been the cause that large residuals were pro-
duced in the residual analysis (in special, for counts greater than 0). However, in
a predictive analysis random effects were integrate out and the model seems to
fit the data.

Although the scale reduction factor value proposed by Gelman and Rubin
(1992) as a convergence criterion was satisfied, trace plots (not shown here) sug-
gested that, in the case of variance components affecting p*, additional iterations
are needed for convergence. However, this can be computationally very intensive,
and mixing might be improved by switching sampling order of the unknowns at
each iteration of the Gibbs-Metropolis algorithm as this would reduce the serial
correlation between successively sampled quantities. We found a high poste-
rior correlation between the genetic variance affecting A* and genetic covariance
(0.93); between the genetic variance affecting p* and genetic covariance (0.86),
and between the genetic variances affecting A* and p* (0.63). Another form of
imposing mixing would be via a blockwise Gibbs-Metropolis sampler, as proposed
by Gelman et al. (2004).

The fully conditional distribution of A* and p* are not recognizable, so a
Metropolis-Hastings scheme was needed to sample the appropriate unknowns.
We found that a normal proposal distribution had a better performance than a
random-walk proposal. It would be of interest to examine the performance of
the Metropolis-Hastings scheme under different proposal distributions. Besag,
York and Mollie (1991), working in a different problem, suggested that although
a proper flat prior leads to a proper joint posterior distribution, it may produce a
singularity invalidating the Gibbs sampler. This problem was not detected here,
but a zero-mean normal prior with a large variance may be a better option.
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