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ABSTRACT 

In reliability and life–testing experiments, the researcher is often 

interested in the effects of extreme or varying stress factors on the lifetimes 

of experimental units. In this paper, a step–stress model is considered in 

which the life–testing experiment gets terminated either at a pre–fixed time 

(say, 1mT + ) or at a random time ensuring at least a specified number of 

failures (Say, y  out of n ). Under this model in which the data obtained are 

Type–II hybrid censored, the Kumaraswamy Weibull distribution is used for 

the underlying lifetimes. The maximum Likelihood estimators (MLEs) of 

the parameters assuming a cumulative exposure model are derived. The 

confidence intervals of the parameters are also obtained. The hazard rate 

and reliability functions are estimated at usual conditions of stress. Monte 

Carlo simulation is carried out to investigate the precision of the maximum 

likelihood estimates. An application using real data is used to indicate the 

properties of the maximum likelihood estimators. 

 

Keywords: Accelerated testing; Coverage probability; Cumulative exposure 

model; Kumaraswamy Weibull distribution; maximum likelihood 

estimation; Step–stress model; Type–II hybrid censored; Monte Carlo 

simulation. 
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1. Introduction 

In order to obtain highly reliable products long life spans, consuming and expensive 

tests are often required to collect enough failure data. The standard life testing methods are 

not appropriate in such situations, and to overcome this difficulty accelerated life tests are 

applied; where in the test units are run at higher stress levels (which includes temperature, 

voltage, pressure, vibration, cycling rate and etc.) to cause rapid failures. Accelerated life 

tests (ALT) allow the experimenter to apply sever stresses to obtain information on the 

parameters of the lifetime distributions more quickly than under normal operating 

conditions. Such tests can reduce the testing time and save a lot of man power, material 

sources and money. The stress can be applied in different ways: commonly used methods 

are constant stress, progressive stress and step–stress [Nelson (1990), Bagdonavicius and 

Nikulin (2002)]. 

In step–stress ALT, the stress for survival units is generally changed to a higher stress 

level at a predetermined time. This model assumes that the remaining life of a unit depends 

only on the current cumulative fraction failed and current stress [Lydersen and Rausand 

(1987)]. Moreover, if it is held at the current stress, survivors will continue failing 

according to the cumulative distribution function (CDF) of that stress but starting at the age 

corresponding to previous fraction failed. This model is called the Cumulative Exposure 

(CE) model. Some references in the failed of the accelerated life testing include [Jones 

(2009)].  See also for more details Hassan et al. (2016) and Chunfang and Yimin (2017). 

Constructed a distribution with two shape parameters on (0,1). Kumaraswamy (KUM) 

distribution is applicable to many natural phenomena whose outcomes have lower and 

upper bounds, such as heights of individuals; scores obtain in a test, atmospheric 

temperatures and hydro logical data. Also, Kum distribution could be appropriate in 

situations where scientists use probability distribution which has infinite lower and or upper 

bounds to fit data, when in reality the bounds are finite. A compound between Kum 

distribution and any distribution was constructed by [Cordeiro, et. al. (2010)]. 

Weibull distribution is one of the most popular models; it has been extensively used for 

modeling data in reliability, engineering and biological studies. The need for forms of 

Weibull distribution arises in many applied areas. In this paper, simple step–stress is applied 

to Kumaraswamy Weibull (KUMW) distribution. The cumulative distribution function 

(CDF) and probability density function (pdf) of KUMW distribution are obtained as follows; 

( )( )( ; , , , ) 1 1 1 , 0 (1)xF x e x





    − 
= − − −  

 

 

and, 

( )
1

1
1 ( ) ( ) ( )( ; , , , ) ( ) ( ) 1 1 1 (2)

0 , , , , 0

x x xf x x e e e

x

  
 

           

   

−
−

− − − −  = − − −     

 

 

where, ,   and   are the shape parameters,   is the scale parameter. 

It has three shape parameters, these parameters allows for highly degree of flexibility. 

Some special cases can be obtained from KUMW distribution such as KUM exponential, 

KUM Rayleigh, Weibull and exponential. It is wide applicable in reliability, engineering 

and in other areas of research. For more details about the KUMW distribution see [AL–

Dayian, et. al. (2014)]. 
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The reliability function (Rf) and the hazard rate function (Hrf) corresponding to (1) can 

be written, respectively as follows; 

( )( )( ; , , , ) 1 1 , 0 (3)xR x e x





    − 
= − −  

 

 

and, 

( )

1
1 ( ) ( )

( )

( ) ( ) . 1

( ; , , , ) , 0 (4)

1 1

x x

x

x e e

H x x

e

 




   




   
   

−
− − −

−

 −
  

= 
 
− − 

 

 

In this article, a step–stress model is considered in which the life testing experiment gets 

terminated either at a prefixed time (say, 1mT + ) or at random time ensuring at least a 

specified number of failures (say, r  out of n ). Under this model in which the data obtained 

are Type–II hybrid censored, the case of two stress levels is proposed with underlying 

lifetimes being KUMW distributed. The model considered here is discussed in detail in 

section (2). The statistical inference for simple step–stress life testing based on type–II 

hybrid censored is obtained in section (3). 

 

2. Model Description 

Assuming K step–stress ALT, the model of constant stress is considered in the first step. 

In this model, the lifetime of the unit is affected by a certain level of stress 1S , where 1S  is 

larger than the usual stress 0S . In the consecutive steps, other stresses are considered as 

2 3, ,..., kS S S , where 0 1 2 ... kx x x x    , then the cumulative exposure model reflects 

the effect of moving from one stress to another one. In the following subsection some basic 

assumptions are considered [Trujillo, and Bonat (1989)]. 

2.1 Basic Assumptions: 

1. For any stress , 1,2,...,jS j k= , the pdf of the KUMW ( , , , )     distribution can 

be written as follows; 
1

1
( ) ( ) ( )1( ; , , , ) ( ) ( ) 1 1 1 (5)ij ij ijx x x

ij j j ijf x x e e e
  


 

          

−
−

− − −−
    

= − − −        

 

where ijx  is a random variable of time at the step j  and  j  is the number of failures 

at step j ,  0 , , , , 0 , 1,2,...,ijt j k     =  and  1,2,..., ji = . 

2. , ,    are constants with respect to the stress S and the shape   parameter is 

affected by the stress  , 1, 2,...,jS j k= , through the inverse Power–Law in the form; 

(6)b
j jc S =

 

where c and b  are unknown parameters depending on the nature of the unit and test 

method.  
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3. Suppose that, for a particular pattern of stress, units run at stress jS  starting at time  

1j −  and reaching to time 0, 1, 2,..., ( 0)j j k = = . The behavior of such units is as 

follows; 

At step 1: the population fraction 1( )F x of units failing by time 1 under constant stress 

1S  is; 

1.
( )

1 1( ) 1 1 1 ,0 , , , , , 0 (7)

b

ij

c S
x

F x e x a b





   

−
 

  = − − −    
  
 

 

If ( )G x is the population cumulative distribution on fraction of units failing under step–

stress, then in the first step;  

1 1( ) ( ) , 0 (8)G x F x x =  

 

where 1  is the time when the stress is raised from 1S  to 2S . 

where step 2: starts, units have equivalent age 1U ,  which have produced the same 

fraction failed seen at the end of step 1. In other words the survivors at time 1  will be 

switched to the stress 2S  beginning at the point 1U  which can be determined as the 

solution of [Hassan and AL–Thobety (2012)]; 

2 1 1 1( ) ( )F U F =  

1

2 21

..
.( )( )

1 1 1 1 (9)

bb jj
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e e
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        − − = − −            

 

where 0 1 0 0, 0U  = − =  and  2 1 2 , 2,3,...,j j j j k − − − = − = , by solving (9), 

one obtain;  

( )
1

2 21

.
.( )( )

1 1

b
j

jj jj

S
c

SUU
e e

 

−

− −−
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By taking the logarithm for two sides, it follows that; 

( )
1

2 2

1

.
.( )

1

1
. 1 1 (10)

b
j

jj j

S
b
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jU n e









−

− −

 
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 

−  +  

−

  
     = − − −      

    

 

The cumulative exposure model for j  steps can be written as follows; 

1 1 1 1( ) ( ) ,j j j jG x F x U x  − − −= − +    

1

1 1
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Substituting 1jU −  in (11), it is seen that ( )G x , for a step–stress pattern which consists 

of segments of the CDF,  1 2, ,..., kF F F , can be written in the form; 

0

1 0 1

1 1 1

1 1 1

0 ,

( ) ,

( ) (12)

( ) , , 2,3,..., 1

( ) ,

j j j j j

k k k k

x

F x x

G x

F x U x j k

F x U x



 

  

 

− − −

− − −

 


 


= 
 − +   = −

 − +   

 

and the associated pdf,has the following form;, ( )g x   
1 0 1

1 1 1

1 1 1

( ) ,

( ) , , 2,3,..., 1

( ) (13)

( ) ,

,

j j j j j

k k k k

f x x

f x U x j k

g x

f x U x

zero otherwise

 

  
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− − −

− − −

 


− +   = −



= 
 − +   



 

2.1 Cumulative Exposure Model: 

The life time distribution at 1S  and 2S  from (12) and (13); ( )G x  and ( )g x , can be 

written in the form; 

( )

( )

1
1
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2 1 1

.
( )

1 1 1
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2 2 1 2
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and the associated density functiontten in the form;is wri ( )g x   
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( ) ( )

( ) ( )

1 1
1 1 1

2 1 1

2
2 1 1 2 1 1

. 1 .
( ) ( ) ( )1

1 1 1 1

0 1

1

2 2 2 2 1 1

. 1 .
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3. Inference Simple Step–Stress Accelerated Life Tests Based on Type II– 

Hybrid Censored Samples: 
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Based on the type–II hybrid censored sample (HCS), there is n  identical units under an 

initial stress level 1S . The stress level is changed to 2S  at time 1 , and the life testing 

experiment is terminated at random time 2
 . Here 2 , 2max ( , )r nx  = , where;   

(i) ( )r n  and 1 20       are fixed in advance,  

(ii) 1  denotes a fixed time at which the stress level is changed from 1S  to 2S , 

(iii) 1, 2, ,...n n r nx x x    denote the order failure times of n units under test,  

(iv) ,r nx  denotes the time when the rth failure occurs,  

(v) 2  denotes a fixed time before which if the rth failure occurs the experiment is 

terminated at time 2 . 

(vi) 2
  denotes the random time when the life–testing experiment is terminated 

[Balakrishnan, and Xie (2007)]. 

Let,  

1N = Number of units that fail before time 1 ; 

2N =Number of units that fail before time 2  at stress level 1S ; and  

2
N  =  Number of units that fail before time 2

  at stress level 1S .  

Then, it is evident that; 

1 , 2 , , 2

2 2

2 , 2 2 , 2

, ,

(16)

, ,

r n r n r n

r n r n

r N if x x if x

N

N if x if x

 



  

 

−   
 

=  = 
   

 

With the notation, we will observe one of the following three cases for the observations: 

 

 

Case 1: if , 1 2 ,r nx    we will observe that;  

 
1 1 1 2(1, ) ( , ) ( , ) 1 ( 1, ) ( , ) 2... ... ...n r n N n N n N N nx x x x x + +          

Case 2: if 1 , 2 ,r nx   we will observe that;  

 
1 1 1 2(1, ) ( , ) 1 ( 1, ) ( , ) ( , ) 2... ... ...n N n N n r n N N nx x x x x + +          

Case 3: if , 2 ,r nx  we will observe that;  

 
1 1 1 2 1 2(1, ) ( , ) 1 ( 1, ) ( ) 2 ( 1, ) ( , )... ...n N n N n N N N N n r nx x x x x x + + + +            

The failure time distribution is assumed to be KUMW distribution and the shape 

parameter   is shown as a function of the stress through the inverse power law model. 

3.1 Maximum Likelihood Estimation:  

From the CED in (14) and the corresponding  pdf  in (15), the likelihood function of  

, , ,c b    and   based on the type–II HCS is obtained as follows; 

1

1

1 1 2 2 2 2

1 1

!
( , , , , ) ( ) ( ) 1 ( )

( )!

N r n r

i i

i i N

n
L c b x g x g x G

n r
   

 −



= = +

  
  = −   −      

   
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where;
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In this situation the log likelihood function of , , ,c b    and   is given by; 
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and,  

  

( ) ( )
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. 1. 1
. (.)(

5(.) 1 1

bb

i

c Sc S
Hx U

H e e


 
−−

−− − +   
= − = −   
   

 

 

The first derivatives of the logarithm of likelihood function (18) with respect to, 

, , ,c b    and   are obtained. Therefore, the MLE can be obtained by equating the first 

derivatives of ( )n L  to zero. As shown they are nonlinear equations, the estimates 

ˆ ˆ垐, , ,c b    and ̂  are numerically using Newton Raphson method [Chenhua (2009)]. 

Depending on the invariance of the MLEs, the MLE of the shape parameter j , of the 

KUMW distribution at usual stress uS , can be estimated using the following equation; 
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ˆ

2 2
ˆ .̂ (19)b

U Uc S =  

also, the MLE of the rf  under the same usual conditions can be given by; 

( )
2ˆ

0

ˆ
ˆ .

ˆ.

0
ˆ ( ) 1 1 (20)

U

R e






 


−
 

 
 = − −   

   

 

and, the MLE of the hrf under the same conditions is given as follows; 

( ) ( )

( )

2垐

0 0

2ˆ

0

ˆ 1
垐. .垐 1

2 0

0 ˆ

ˆ.

垐 ?ˆ ˆ. . . . 1

ˆ ( ) (21)

1 1

U

U

U e e

H

e

 




    


 

    



−

− −−

−

  
−    

  =
 

  − −     
 

 

Where, 0  is a mission time. The asymptotic Fisher–Information Matrix can be written 

as follows; 

2

2

( )
, , 1, 2,3, 4,5 (22)

i j

n L
I i j

 

 
= − = 

   

 

Where, 1 2 3 4 5, , , ,c b       = = = = =  and the elements of the 

information matrix (22) were derived. 

3.2 The Confidence Interval (CIs) Based on Type–II HCS: 

Based on large sample size, the MLEs under appropriate regularity conditions are 

consistent and asymptotically unbiased as well as asymptotically normally distributed. 

Therefore, the two side approximate 100(1 )%−  confidence intervals for the MLE say, ŵ  

of population value w  can be obtained by 
ˆ

ˆ
1

w

w w
P Z Z 



 −
−   = − 
 

, where Z  is the 

100(1 2)−  the standard normal percentile. The two sides approximate 100(1 )%−  

confidence intervals for  , , ,c b    and   will be respectively, as follows; 

2 2垐 垐. , . (23)w w w wL w Z and U w Z  = − = +  

where ˆw  is the standard deviation and this study ŵ  is ĉ  or b̂  or ̂  or ̂  and or ̂ , 

respectively [Nelson (1982)].  

 

4. Numerical Results 

This section aims to investigate the precision of the theoretical results of both estimation 

and optimal design plans on basis of simulated and real data. 

4.1 Simulation Study: 

Several data sets are generated from KUMW distribution for a combination of the initial 

parameters values of  , , ,c b    and    for sample sizes 25, 50, 75, 100 and 125 using 

1000 replications for each sample size. The transformation between uniform distribution 

and KUMW distribution in step 1j =  is; 
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( )
1.

( )
1 1 1 1 (24)

b
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c S
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U e




−
 

= − − − 
  

 

While the transformation between uniform distribution and KUMI distribution in step 

2j =  is; 

( )
2.

( )
2 1 1 1 (25)

bc S
SU e





−
 

= − − − 
  

 

where, 

( )

1

1

21( )
2 1

1
. 1 1 (26)

b

i

S

Sx
iS x n e

N






 
 

−  

 
      
 = − − − −  
   
   
 
 

 

 The whole size n  is with initial values of parameters 0.5, 1, 2, 1c  = = = =  and 

1b =  given 1 20.4 , 0.5N n N n= =  and 0.1cN n= . It is assumed that there are only two 

level of stress of  1( 2) 1k S= =  and 2 2S =  which are higher than the stress at usual 

condition, 0.5uS = . Number of (l) of stress where, 

1 20.4, 0.5, 40%( ) , 80%( ) , 1,2j jG G r n and r n j= = = = = . The initial parameter values of 

, , ,c b    and   are used in this simulation study to generate  , 1, 2ijx j =  and 

1,2,..., ji r = . 

Computer program is used depending on "Mathcad 14" using Newton Raphson method 

to solve the derived nonlinear logarithmic likelihood equations simultaneously. 

 Based on 1000 replications S  with  1 2 11, 2, 1S S = = =  and 2 1.5 =  are fixed and 

different sample sizes and r . Once the values of ˆ ˆ垐, , ,c b    and ̂  are obtained, the 

estimates are used to obtain, depending on (18) and the design stress, 0.5uS = , the shape 

parameter under this stress u  is estimated as 
ˆˆ ˆ. b

u uc S = . Also, the rf  and hrf are 

estimated at different values of mission times under usual conditions using (20) and (21). 

The performance of ˆ ˆ垐, , ,c b    and ̂  has been evaluated through some measurements 

of accuracy. In order to study the precision and variation of MLEs, it is convenient to use 

the root mean squares error. The coverage probabilities and length for , , ,c b    and  , 

Root Mean Squares Error (RMSE), Absolute Value of Reliability Error (ARE) and Relative 

Bias (RB) will be obtained. The different sample size of 25,50,75,100n =  and 125 are 

considered. These sample sizes are chosen to present the small, moderate and large sizes. 

The results are displayed in tables (1) to (3). 

It is clear from table (1) that, the MLEs are much closed to the initial values of the 

parameters as sample size increases. Also, as shown in the numerical results RMSE, ARE 

and RB are decreasing when the sample size is increasing. For all sample sizes the 

following are observed; 

− ˆˆ ,c b and ̂  performs better than ̂  and ̂ . 
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− b̂  and ̂  performs better than ĉ . 

− b̂  performs better than ĉ . 

Table 1: MLEs of Unknown Parameters , , ,c    and b , RMSE, ARE and RB  with  different 

Censoring Scheme 0.5 , 1, 2 , 1c  = = = =  and 1b =  

n 
r = 

n% 
Parameters MLE RMSE ARE RB 

25 

0.4 

  0.615 0.691 1.383 0.23 
  1.116 1.278 2.556 1.233 
  1.67 1.713 0.857 0.165 
c  1.161 1.581 1.581 0.161 
b  0.893 1.647 1.647 0.107 

0.8 

  0.623 0.716 1.432 0.246 
  1.257 1.316 2.631 1.514 
  1.906 2.242 1.121 0.047 
c  1.055 1.375 1.375 0.055 
b  0.834 1.565 1.565 0.166 

50 

0.4 

  0.609 0.682 1.363 0.219 
  1.051 1.145 2.29 1.103 
  1.618 1.537 0.768 0.191 
c  0.991 1.153 1.153 0.00895 
b  0.867 1.608 1.608 0.133 

0.8 

  0.638 0.707 1.413 0.275 
  1.153 1.16 2.32 1.305 
  1.889 2.018 1.009 0.056 
c  0.985 1.194 1.194 0.015 
b  0.942 1.703 1.703 0.058 

75 

0.4 

  0.719 0.773 1.546 0.439 
  1.065 1.09 2.181 1.131 
  2.061 1.891 0.945 0.03 
c  1.075 1.123 1.123 0.075 
b  1.02 1.799 1.799 0.02 

0.8 

  0.696 0.734 1.467 0.392 
  1.016 1.001 2.002 1.033 
  1.963 1.916 0.958 0.018 
c  1.046 1.176 1.176 0.046 
b  1.026 1.757 1.757 0.026 

100 

0.4 

  0.622 0.688 1.376 0.245 
  1.025 1.104 2.208 1.05 
  1.617 1.492 0.746 0.192 
c  0.98 1.341 1.341 0.02 
b  0.907 1.666 1.666 0.093 

0.8 

  0.702 0.724 1.449 0.404 
  1.001 0.979 1.959 1.001 
  1.95 1.806 0.903 0.025 
c  1.014 1.069 1.069 0.014 
b  1.078 1.804 1.804 0.078 

125 

0.4 

  0.597 0.639 1.277 0.194 
  0.961 1.033 2.066 0.923 
  1.652 1.422 0.711 0.174 
c  0.979 1.006 1.006 0.021 
b  0.809 1.514 1.514 0.191 

0.8 
  0.703 0.729 1.458 0.405 
  1.062 1.09 2.18 1.123 
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  1.919 1.838 0.919 0.041 
c  1.01 1.083 1.083 0.01 
b  1.07 1.777 1.777 0.07 

 

Table (2) indicates that; the reliability decreases when the mission time to increases. 

The results get better in the sense that the aim of an accelerated life testing experiments is to 

get large number of failure (reduce the reliability) of the device with high reliability. As to 

and when the sample size increase, the rf  increase. The  hrf  increases when the mission 

time to increase. 
Table (2): The Reliability Function and the Hazard Rate Function with Different Censoring 

Scheme 

n                     t  0.1 0.5 0.75 1 1.5 

25 

( 40% )r n=  

ˆ ( )R t  0.821 0.482 0.352 0.257 0.136 
ˆ ( )H t  7.663 13.047 17.861 24.454 46.271 

( 80% )r n=  

ˆ ( )R t  0.814 0.426 0.28 0.18 0.07 
ˆ ( )H t  7.551 14.446 21.98 34.132 87.595 

50 

( 40% )r n=  

ˆ ( )R t  0.777 0.457 0.342 0.258 0.148 
ˆ ( )H t  7.613 12.932 17.275 22.887 39.841 

( 80% )r n=  

ˆ ( )R t  0.752 0.387 0.262 0.177 0.079 
ˆ ( )H t  7.587 14.767 21.807 32.284 72.225 

75 

( 40% )r n=  

ˆ ( )R t  0.701 0.323 0.21 0.137 0.058 
ˆ ( )H t  7.413 16.056 24.784 37.999 89.265 

( 80% )r n=  

ˆ ( )R t  0.695 0.342 0.234 0.162 0.079 
ˆ ( )H t  7.458 15.141 22.165 32.027 65.854 

100 

( 40% )r n=  

ˆ ( )R t  0.756 0.439 0.329 0.249 0.145 
ˆ ( )H t  7.612 13.1 17.501 23.121 39.801 

( 80% )r n=  

ˆ ( )R t  0.67 0.327 0.224 0.156 0.077 
ˆ ( )H t  7.482 15.321 22.343 32.076 64.766 

125 

( 40% )r n=  

ˆ ( )R t  0.765 0.461 0.354 0.276 0.171 
ˆ ( )H t  7.239 12.011 15.625 20.047 32.303 

( 80% )r n=  

ˆ ( )R t  0.688 0.332 0.223 0.151 0.07 
ˆ ( )H t  7.61 15.776 23.507 34.695 75.126 

 

The two sides 95% central asymptotic CIs for the parameters of KUMW are displayed in 

table (3). This table contains the lower bound (L), upper bound (U), length of the intervals 

and the coverage probabilities. The interval estimate of the parameters becomes narrower as 

the sample size increases. For all sample sizes, it is clear that; 
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− The length of the interval for   is shorter than the other lengths. 

− The length of the interval for c  is shorter than the length of the interval b . 

− Among CIs seems to have considerably low coverage (especially  ) compared to 

the nominal level. The coverage probabilities better and closer to the nominal level in 

general. 

 

Table (3): The Confidence Interval Results and the Coverage Probability with Different 

Censoring Scheme 

n r =n% LL UL Length Cov 

 

25 

 

 

0.4 

-0.721 1.951 2.673 91.4 

-1.078 3.311 4.389 89.2 

-1.625 4.965 6.591 97.4 

-1.921 4.965 6.164 97.4 

-1.831 3.618 5.449 93.7 

0.8 

-0.76 2.006 2.765 92 

-0.852 3.366 4.219 84.8 

-2.483 6.296 8.779 95 

-1.637 6.296 5.385 95.6 

-1.775 3.443 5.218 94.2 

50 

0.4 

-0.709 1.928 2.638 90.7 

-0.916 3.019 3.935 88 

-1.3 4.535 5.835 96.7 

-1.268 4.535 4.519 97.5 

-1.799 3.533 5.332 92.7 

0.8 

-0.721 1.996 2.717 91.1 

-0.726 3.032 3.758 84.6 

-2.06 5.837 7.897 95.3 

-1.356 5.837 4.682 96.2 

-1.851 3.735 5.586 93.7 

75 

0.4 

-0.734 2.172 2.906 90.1 

-0.762 2.893 3.654 87.1 

-1.643 5.765 7.408 95 

-1.121 5.765 4.392 96.1 

-1.9 3.939 5.839 93.1 

0.8 

-0.689 2.082 2.771 91.5 

-0.664 2.697 3.361 86.4 

-1.791 5.718 7.509 94.7 

-1.257 5.718 4.605 95.9 

-1.782 3.834 5.617 94.6 

100 

0.4 

-0.705 1.95 2.655 90 

-0.878 2.929 3.807 87.8 

-1.208 4.442 5.65 97 

-1.648 4.442 5.256 98.9 

-1.843 3.658 5.501 92.7 

0.8 

-0.661 2.066 2.727 91.1 

-0.649 2.65 3.3 86.3 

-1.588 5.487 7.075 94.1 

-1.08 5.487 4.19 95.6 

-1.771 3.927 5.699 95.2 

125 0.4 

-0.64 1.834 2.474 91.3 

-0.85 2.773 3.624 87.5 

-1.05 4.355 5.406 96.5 
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-0.993 4.355 3.944 97 

-1.713 3.33 5.043 93.5 

0.8 

-0.67 2.075 2.745 91.3 

-0.769 2.892 3.661 86.1 

-1.681 5.518 7.199 96.2 

-1.112 5.518 4.245 96.2 

-1.727 3.866 5.593 95.3 

 

4.2 Illustrative Example: 

In this subsection, the main aim is to demonstrate how the proposed method can be used 

in practice. Using Kolomogrov–Smirnov goodness of fit test where the data points 

representing failure time. The data were taken from [Murthy, et. al. (2004).] and analyzed 

by [Rezk1et al. (2014)], the data were 20 items (n=20) tested with test stopped after 20th 

failure ( 20)r = . The Kolomogrov–Smirnov test shows that the KUMW distribution 

provides a good fit to the data. It is assumed that 2k = , i.e. there are only two different 

levels of stresses 1 1S =  and 2 2S = , which are higher than the stress at usual conditions, 

0.5uS = . The failure times in the first and the second steps are; 

Stress–

level 
Time–to–failure 

1 1S =
 0.02 0.06 1.38 2.01 2.53 2.82 3.15 4.98 5.55 5.82 5.87 7.47 

2 2S =
 7.51 7.67 8.61 9.04 9.12 9.65 

10.1

6 

10.7

6 
    

The initial parameter values of , , ,c b    and   used in this application are 

0.5, 0.5, 2, 1c  = = = =  and 1b = . Once the estimate values of , , ,c b    and   are 

obtained, the estimators are used to estimate u , as 
ˆ

ˆ. b
u uc S = . Letting the design stress, 

0.5uS = . Also, the reliability function is estimated at different values of mission times 

under conditions depending on (20). 

 In this case, we had a fixed time  2 10 =  and 15,19r = , the MLEs of  , , ,c b    and 

  from (18) are  and ˆ 1.93,1.90 =  

respectively. Note that when 15r = , we have  2 15,30 2max ,x  = =   max 8.61,10 10= , 

Similarly, when 18r = , we find 2 10.16  =  (Type–II HSC). 

 

5. Summary and Conclusions 

In this paper, a simple step–stress model with two stress levels from KUMW distribution 

is considered where the data are type–II HCS. The MLEs of the unknown parameters 

ˆ ˆ垐, , ,c b    and ̂  are derived. A simulation study is conducted to compare the performance 

of all these procedures. It is observed that the approximation method of constructing CIs 

(based on the asymptotic normality of MLEs,  , , ,c b    and ) is satisfactory in terms of 

coverage probabilities (quite close to the nominal level) for the parameters , , ,c b    and 

 . An example is presented to illustrate all methods of inference discussed here as well as 

to support the conclusions drawn. As a future work, one can estimate the KUMW 

distribution parameters under simple step–stress model based on some recently introduced 

schemes like joint progressive Type-I censored scheme, . Abo-Kasem and Nassar (2019). 
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The results obtained in this paper can be modified to obtain results for sub–models of 

KumW distribution under type–II HCS such as; the KumW exponential distribution, if 1 = , 

the KumW Rayleigh distribution, if 2 = , the exponentiated Wibull distribution, if 

1 = ,the exponentiated Rayleigh distribution, if 1, 2 = = , the exponentiated 

exponential distribution, if 1 = = , the Wibull distribution, if 1. = =  [Khamis (1997)], 

the exponential distribution, if 2, 1  = = = , and the Rayleigh distribution, if 

1  = = = . 
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