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Abstract: Information fusion has become a powerful tool for challenging ap-
plications such as biological prediction problems. In this paper, we apply a
new information-theoretical fusion technique to HIV-1 protease cleavage site
prediction, which is a problem that has been in the focus of much interest
and investigation of the machine learning community recently. It poses a
difficult classification task due to its high dimensional feature space and a
relatively small set of available training patterns. We also apply a new set
of biophysical features to this problem and present experiments with neural
networks, support vector machines, and decision trees. Application of our
feature set results in high recognition rates and concise decision trees, pro-
ducing manageable rule sets that can guide future experiments. In particu-
lar, we found a combination of neural networks and support vector machines
to be beneficial for this problem.

Key words: Classifier combination, cleavage site detection, decision trees,
HIV, information fusion, neural networks, support vector machines.

1. Introduction

The fight against AIDS is one of the most prominent endeavors in current
health programs. One of the important strategies followed is to stop viral repli-
cation in people with HIV (human immunodeficiency virus) infection. In order
to do so, a possible starting point is the inhibition of enzymes essential to the
replication of the AIDS virus. HIV-1 protease is such an enzyme. The proteins
comprising the human immunodeficiency virus are produced in the form of long
polyproteins, which must be cleaved in order to yield the active protein compo-
nents of the mature virus. HIV-1 functions to cleave the nascent polyproteins
during viral replication, with the chemical action taking place at a localized active
site on its surface. Researchers have the idea of preventing the chemical action
of the protease by binding molecules, so-called HIV-1 protease inhibitor drugs,
to its active site. These inhibitors permanently occupy the active site and thus
prevent permanently the normal functioning of the HIV-1 protease enzyme (Lu-
mini and Nanni, 2006). The development of efficient inhibitors is a difficult task,
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though. HIV-1 protease cleaves at different sites with little or no sequence simi-
larity (You, Garwicz and Rögnvaldsson, 2005). Where a peptide will be cleaved
by HIV-1 protease is largely unknown. However, a comprehensive understanding
of the cleavage site structure is necessary to synthesize efficient inhibitors. The
standard model for protease-peptide interaction is the “lock-and-key” principle
in which a sequence of amino acids fits as a key to the active site in the pro-
tease (Lumini and Nanni, 2006). In the case of HIV-1 protease, the length of the
key is eight; i.e., it comprises eight amino acids. Given that there are altogether
20 different amino acids, the size of the total search space for potential cleavage
sites is 208. An exhaustive search of this space is currently prohibitive; a fact
that is not likely to change in the foreseeable future. Therefore, this situation
calls for a computer-aided approach.

We can formulate cleavage site detection as a typical classification problem,
with the key of amino acids defining the input features and a corresponding bi-
nary class label indicating the presence or absence of a cleavage site. The problem
therefore allows us to apply the whole plethora of techniques developed in the
pattern recognition field, such as neural networks, etc. Of course, this does not
mean that there is an out of the box solution for this kind of problem. On the
contrary, classifier design and feature selection for HIV-1 protease cleavage site
detection are hard problems still waiting for an efficient solution. In particular,
the high-dimensional feature space and very small training sets are an especially
challenging obstacle here. The manageable number of existing publications deal-
ing with this problem have created decent recognition rates. Nevertheless, the
recognition rates still leave much to be desired in view of the ultimate goal:
generating powerful rules for cleavage site characteristics that could lead future
in-vitro experiments. HIV-1 protease cleavage site detection is a hard problem in
this respect.

Here, we present a new set of features for HIV-1 protease cleavage site pre-
diction, and also experiment with classifier combination. The idea of applying
multiple classifiers to cleavage site detection is relatively new. The few existing
approaches are basically ensemble methods that have their focus on the creation
of classifiers (Lumini and Nanni, 2006). However, we concentrate on the ac-
tual combination, trying to show the usefulness of a new information-theoretical
combination method that the authors have already successfully applied to other
application domains. We structured our paper as follows: Section 2 discusses the
advantages of classifier combination, listing the most important research direc-
tions in this field. Section 3 then presents existing approaches for HIV-1 protease
cleavage site prediction, and also introduces our own feature set and approach.
In Section 4, we show our practical results, followed by a conclusion at the end
of the paper.
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2. Classifier Combination

The combination of classifiers has turned out to be one of the most promis-
ing approaches in pattern recognition. Many researchers currently investigate
this interesting field in areas as different as handwriting recognition for human
computer interaction or cleavage site detection for applications in computational
biology (Jaeger, Ma and Doermann, 2008). Multiple classifier systems (MCS)
offer an advantage over single classifier systems in that they distribute informa-
tion among more than one classifier. This reduces the complexity of the problem,
given that one individual classifier is often overburdened with the task of ac-
commodating different information in a single architecture. For instance, hyper-
planes provided by statistical classifiers, such as neural networks, represent only
one type of information that is usually quite different from the class boundaries
computed by decision trees or nearest neighbor classifiers. Generally speaking,
a set of simple classifiers is easier to train and optimize than a single system
with high complexity. The main motivation for multiple classifier systems is, of
course, the prospect of outperforming the best single classifier with the combined
performance of the whole classifier set. In fact, a multiple classifier system can
provide excellent recognition rates, even if all its constituent classifiers show only
mediocre performance when applied individually. In such a system, the weak-
ness of one classifier is usually compensated by the strength of at least one other
classifier.

An important issue that needs to be addressed when implementing multiple
classifier systems is the combination scheme; i.e., the question of how to integrate
the diverse outputs of the various classifiers of a multiple classifier system into
a single classification result. In practice, classifier outputs are not necessarily
probabilities in the mathematical sense. Very often they describe distances to
decision boundaries and can thus have arbitrary values. This poses no problem for
a single classifier system where only values of the same kind need to be considered.
For multiple classifier systems, however, the incompatibility between outputs is
a serious problem.

Outputs of classifiers are denoting the confidence of the classifiers in their
classification result. Incompatibility between these confidence values typically
shows in the different ranges and scales they have. In order to combine classi-
fiers in a meaningful manner, we have to overcome these incompatibilities. Many
combination schemes tackling this problem have been proposed in the literature.
Unfortunately, despite the large number of techniques proposed, there is still no
widely accepted framework that most experts would agree to be optimal (Jaeger,
Ma and Doermann, 2008). In fact, the large number of quite different techniques
proposed shows the uncertainty present. Given this unsatisfactory situation, we
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confine ourselves to mention just a few approaches that have gained some signif-
icance over the past years: the approach by Dempster/Shafer or the Behavior-
Knowledge Space (BKS) method. The former is the familiar theory of evidence
based on belief functions as it is known in the field of artificial intelligence, while
the latter computes extensive statistics for the n-best lists of each classifier. Both
methods are relatively complex techniques that need a lot of training data in order
to be able to compute meaningful statistics on the classifier’s confidence values.
The same holds for techniques trying to solve the compatibility problem by just
applying another classification step on the output values during post-processing.
For this reason, these techniques are not suited to HIV-1 protease cleavage site
detection. It is also by no means obvious that more complex combination schemes
are indeed more powerful than elementary methods, such as selecting the class
with the maximum classifier score (max-rule) or selecting the class with the max-
imum sum of classifier scores (sum-rule). Much theoretical work still needs to be
done here to fully understand the theoretical basis of classifier combination.

Here, we apply two simple methods, namely voting and a new information-
theoretical method. The simple idea behind voting is to count for each specific
class the number of classifiers that output this particular class as the most likely
class for a given input pattern. The final classification result is then simply
the class that receives the most votes, after applying a tie-breaker in case of
ties, if necessary. Since voting considers only the position of candidate classes
in the n-best list of classifiers, incompatible output does not negatively affect
voting. Despite its simplicity, majority voting can be very powerful. The second
combination method, a new information-theoretical method developed recently
by the authors, will be explained in more detail below. Both combination schemes
do not guarantee performance improvements; i.e., recognition rates higher than
the best individual classifier of the multiple classifier system. In case of the
information-theoretical method, however, the authors have achieved consistently
good results in various application domains.

3. HIV Cleavage Site Prediction as a Classification Problem

In recent years, the predominant understanding of HIV cleavage site predic-
tion has been that of a classification problem, and this is also the point of view
that we adopt in this paper. For a review of earlier attempts, readers are referred
to Chou (1996). Two things are key to the design of a classifier: the input
coding and the classification architecture itself, which we are going to discuss in
the following two subsections.
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3.1 Coding

The input data to a classifier is of utmost importance since a careless choice
of input variables can easily compound the classifier’s problem of finding the
decision boundaries for each class. There is no obvious input coding that would
seem to be the natural choice for HIV cleavage site prediction. Most authors of
recent works use octapeptide sequences (octamers) to encode the classifier input.
An octapeptide sequence is composed of eight amino acids: a1a2a3a4a5a6a7a8,
with each position ai denoting one of twenty possible amino acids. The point
of cleavage, which is also known as scissile bond, is located in the middle of the
peptide sequence; i.e., between a4 and a5. For instance, a typical input to the
classifier could be

TQIMFETF 1

where each character denotes an amino acid (e.g. T stands for Threonine) and
the last digit indicates whether or not a scissile bond is present (either 1 or 0).

Figure 1: Grouping of amino acids according to their properties (Taylor, 1986).

To input octapeptide sequences into a classifier, such as a neural network,
we need a suitable representation. Again, the representation best suited for this
problem is not known, and so several different representations have been used
in practice. The straightforward orthonormal encoding scheme, which represents
each amino acid by a 20 bit vector with exactly one bit set to one and all of
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the remaining bits set to zero, has been widely used ( Cai and Chou, 1998;
Narayanan, Wu and Yang, 2002; Rögnvaldsson and You, 2004).

However, given that we have a sequence of eight amino acids, this type of
encoding defines a very high-dimensional feature space, with each octamer being
a corner in a 20 ∗ 8 = 160 dimensional hypercube. Due to the small number
of training patterns typically available for HIV cleavage site prediction, we do
not consider the orthonormal representation very promising as it leads to an ex-
tremely sparse space. A better alternative is the property-based encoding (You,
Garwicz and Rögnvaldsson, 2005). Here, each amino acid is described by its phys-
ical or chemical properties. For instance, Figure 1 groups amino acids according
to their properties (Taylor, 1986). This is just one of many possible groupings,
but arguably covers the most protein context.

Without going into the details of the categorization in Figure 1, we see that
there are three major attributes: small, polar, and hydrophobic. The latter refers
to a molecule’s property of being repelled from water. You et al. used two of
these features to code amino acids, namely size and hydrophobicity (You, Gar-
wicz and Rögnvaldsson, 2005). For example, the amino acid with the character
code “F”, which stands for Phenylalanine, transforms into the binary code “01”,
representing the fact that it is not small and that it belongs to the group of hy-
drophobic acids. This type of coding transforms an octamer to a binary string
with 16 bits, replacing each amino acid at each position with the two bits for the
two properties. As a result, the feature space becomes more dense compared to
the orthonormal encoding scheme. It now covers 216 instances.

In case of using as little as two features for property-based encoding, as in
You, Garwicz and Rögnvaldsson (2005), different octamers can have identical
codings. Apart from this undesired characteristic, we do not think that a coarse
binary representation is the ideal solution. Instead of the binary encoding scheme,
we propose to use the actual values of each physical or chemical property. This
should enable the classifier to learn finer decision boundaries. In the following,
we are going to encode each amino acid based on the values of four properties:

• Hydropathy index

• Molecular mass

• Polarity

• Occurrence percentage

The hydropathy index is a scale combining hydrophobicity and hydrophilicity of
R groups. It can be used to measure the tendency of an amino acid to seek an
aqueous environment (negative values) or a hydrophobic environment (positive
values) (Nelson and Cox, 2005). The occurrence percentage describes the average
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occurrence of a particular amino acid (R group) in a set of more than 1, 150
proteins (Nelson and Cox, 2005). All four properties together describe an amino
acid by a group of four real values. The four properties chosen by us are by no
means the only possible choice. Other sets with a larger, or even smaller, number
of features may work as well. The properties listed above seemed appealing to
us and indeed lead to good recognition rates, so we did not see the necessity to
investigate further into finding the optimal feature set. This may be a promising
area for future research, though. The important point for us was to operate on
real-valued features instead of binary input vectors, and show their effectiveness
for this kind of problem.

Figure 2 shows a typical 32-dimensional, real-valued feature vector.

H1 M1 P1 P4M4H4O3P3M3H3O2P2M2H2O1 O4

O8P8M8H8O7P7M7H7O6P6M6H6O5P5M5H5

A1 A2 A3 A4

A5 A6 A7 A8

F1 F2 F11F10F9F8F7F6F5F4F3 F15F14F13F12 F16

F32F31F30F29F28F27F26F25F24F23F22F21F20F19F18F17

0.93 -0.35-0.320.40.620.66-0.19-0.780.41.0-0.2-0.130.840.35-0.2-0.35

-0.78 0.27-0.890.12-0.780.5-0.2-1.0-0.09-0.27-0.280.1-0.78-0.27-0.280.1

Figure 2: A typical feature vector.

The first sixteen features (F1 to F16) describe the four amino acids (A1 to A4)
in front of the potential cleavage site, while the last sixteen features (F17 to F32)
describe the succeeding amino acids (A5 to A8). Accordingly, each amino acid Ai

is encoded by four features at four different positions, F4(i−1)+k, k = 1, . . . , 4.
The features of Ai are Hi,Mi, Pi, Oi, describing its hydropathy index, molecular
mass, polarity, and occurrence percentage, respectively. The actual feature values
shown in Figure 2 are the result of a linear normalization of mean values and
standard deviations. In particular, we normalize each feature Fi independently
according to

Fi := (Fi − mean(Fi))/std(Fi), (3.1)

where mean and std compute the mean and standard deviation of Fi, respectively.
This operation assigns each feature a mean of zero and a standard deviation of 1.
It is the only pre-processing operation we perform on the features.

3.2 Classifiers

We employ three types of classifiers: neural networks, support vector ma-
chines, and decision trees. Artificial neural networks are a tried and trusted
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technique that has been successfully applied to many different pattern recogni-
tion problems. They are statistical classifiers by nature. And so are support
vector machines, which minimize the empirical classification error and maximize
the geometric margin. Generally speaking, they provide recognition rates com-
parable to those of neural networks. However, they are based on an arguably
nicer theoretical framework and have less parameters to tune.

On the other hand, decision trees are symbolic classifiers, which, in most
practical cases, provide slightly inferior recognition rates compared to neural
networks and support vector machines. Nevertheless, they are an interesting
alternative because a trained decision tree allows deduction of rules providing
insight into the problem, while most statistical classifiers treat the problem merely
as a black box. With HIV-1 protease cleavage site detection in mind, let us have
a closer look at each classification architecture.

Neural networks

Thompson et al. were the first to apply artificial neural networks to the
problem of HIV-1 protease cleavage site detection (Thompson et al., 1995; Kim et
al., 2008). Other noteworthy approaches applying neural networks are the works
of Cai and Chou (1998), Kesmir et al. (2002) and Thomson et al. (2003). The
latter exploited prior knowledge in combination with neural networks, achieving
slightly higher recognition rates. Generally speaking, neural networks are at
the forefront of powerful recognition techniques for HIV-1 protease cleavage site
detection. They can reach recognition rates around 90% for this kind of problem.

Biologists are very much interested in getting a better understanding of HIV-1
protease cleavage site characteristics. Unfortunately, the distributed knowledge
of neural networks is difficult to extract. There is no straightforward way to
generate symbolic rules from a trained network that could guide future in vitro
experiments. Nevertheless, extraction of rules from neural networks is possible,
see e.g., Andrews et al. (1995), Diederich et al. (1999). In fact, several rule
extraction techniques have already been applied to HIV-1 protease cleavage site
detection, e.g., Kim et al. (2008), Yang, Dalby and Qiu (2004). Rögnvaldsson
and You, and You et al., use simpler linear classification models to extract rules to
facilitate the rule extraction task ( Rögnvaldsson and You, 2004; You, Garwicz
and Rögnvaldsson, 2005). The method they use is computationally expensive,
however, and there is no guarantee that cleavage site detection is linear by nature.

Support vector machines

Gaussian support vector machines are similar in performance to neural net-
works (Cai and Chou, 1998; Cai et al., 2002; Narayanan, Wu and Yang, 2002).
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Like neural networks, they show better performance than linear support vector
machines and decision trees (Rögnvaldsson and You, 2004; You, Garwicz and
Rögnvaldsson, 2005).

Decision trees

Decision trees are a very appropriate architecture for obtaining explicit knowl-
edge about cleavage sites. From a decision tree, we can derive symbolic rules in
a straightforward way. In terms of recognition performance, decision trees are
largely overshadowed by neural networks and other classifiers. Their appealing
way of representing knowledge makes them an interesting alternative nonetheless
(Narayanan, Wu and Yang, 2002). The higher performance of neural networks
can result in rules that are more powerful in the sense that they describe cleavage
sites more accurately. On the other hand, the rules of a decision tree are straight-
forward to extract. There is a good chance that rules taken from a decision tree
a more concise and also more intuitive. In addition, rules from a decision tree
will most certainly be very different from the rules derived from a neural network
for instance. They will thus provide new insights, despite their slightly lower
performance. It is also possible that a comparison of rules derived from multiple
classifiers may help to get more confidence in a particular rule: If two different
classifiers produce a similar rule, then it is very likely that this rule indeed reflects
the biological reality. In such a case, experimentalist can try to verify this rule
by carrying out further experiments in the biological search space in order to
confirm this rule empirically, generating as a by-product more training material
with which the classifiers can be retrained. The advantages of such an iterative
method over a blind search are obvious.

Our intention in this paper is to first create a classification system and build
a better foundation for rule extraction before actually deriving rules. In this
paper, we therefore confine ourselves to the classification problem and present
only rules derived from decision trees. We use a standard design for our decision
trees (Breimann et al., 1993).

4. Experimental Results

In this section, we present our data sets, set-ups, and recognition rates.

4.1 Datasets

There is a notorious shortage of training and test data in many pattern recog-
nition applications, including HIV-1 protease cleavage site detection. There are
only a few publicly available datasets for this problem. Cai and Chou compiled
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a popular dataset with 362 peptides that has been used in several publications
(Cai and Chou, 1998; Narayanan, Wu and Yang, 2004; You, Garwicz and T.
Rögnvaldsson, 2005).

Kim et al. collected another dataset with 392 new example patterns. They
created this new dataset by collecting experimental data from published literature
for oligopeptide sequences that have been exposed to the HIV-1 protease (Kim
et al., 2008).

Taken together, the datasets of Cai/Chou and Kim et al. provide a set of 754
distinct peptide sequences.

Another dataset produced by de Oliveira et al. is the result of experiments
on variations of protease cleavage sites related to HIV-1 subtype C (Kim et al.,
2008; deOliveira et al. 2003). This dataset contains 133 cleaved octamers; 131 of
which do neither occur in the Cai/Chou database nor in the database of Kim et
al..

At the time of this writing, all three databases are publicly available un-
der http://www.cise.ufl.edu/∼suchen/sbl, where the Cai/Chou and Kim et al..
databases have been merged into a single file, with the filenames indicating the
number of patterns included in the database, respectively, and the duplicates be-
ing removed from de Oliveira’s database. As in Kim et al. (2008), we will refer
to these two datasets as 754-dataset and 133-dataset, respectively.

Table 1: Neural network parameter tests

#Neurons 300 Epochs 500 Epochs 750 Epochs 1000 Epochs

10 88.28 87.46 86.41 86.70
20 89.02 88.41 88.55 88.14
30 88.64 88.90 88.40 87.86
40 89.15 88.70 87.97 88.03
50 88.36 89.21 88.64 88.78
60 89.21 89.35 89.38 87.61
70 88.98 89.72 88.79 89.30
80 88.73 89.35 88.98 88.84
90 89.08 88.82 89.27 89.16
100 88.81 89.86 89.38 89.18

4.2 Individual classifiers

Before we present our combined recognition rates, let us show the single recog-
nition rates for each classifier and also some of the rules derived from the decision
trees.
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Neural networks

In our experiments, we use a two-layer feed-forward network with hidden
neurons and two output neurons, one for each possible answer (cleavage site or
non-cleavage site). Each of the 32 input features connects to each of the hidden
neurons. All neurons use the standard log-sigmoid transfer function to compute
their output. As training function, we use the typical gradient descent method
implemented through backpropagation in combination with an adaptive learning
rate. Table 1 lists the recognition rates for different numbers of hidden neurons
and training epochs.

All recognition rates are based on a 10-fold cross-validation performed on
the entire set of samples described above. We observe only moderate difference
in recognition performance, with the highest recognition rate achieved with 100
hidden neurons and the net trained with 500 epochs. These are the parameters
we will use in our combination experiments later on.

Support vector machines

For our experiments with support vector machines, we used the implementa-
tion in Chang and Lin (2001). Table 2 shows the recognition rates for a 10-fold
cross-validation on our data set.

Table 2: Support vector machines: recognition rates for different kernels.

Kernel Type 1 2 3 4 5 6 7 8 9 10 avg.

linear 84.79 86.16 85.31 86.44 87.54 87.57 88.67 86.16 85.35 84.75 86.27
polynomial 86.12 88.67 91.22 88.98 88.14 88.45 87.32 85.59 85.92 86.16 87.66
radial basis 88.42 89.55 88.42 88.70 88.14 88.10 89.83 88.17 88.98 89.83 88.81
sigmoid 80.00 81.97 81.07 80.51 83.29 83.29 80.45 79.94 81.41 78.53 81.05

The table shows that the radial basis kernel is superior to other kernels. We
will therefore use this kernel in our combination experiments.

Decision trees

Figure 3 shows an example of a decision tree based on the features introduced
in Section 3.1.
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10

F14 < 0.13

10 10

F09 < 0.88 F17 < -0.5

F16 < 0.83 F16 < 0.37

Figure 3: Tree 1.

We built the tree by using three-quarters of the 754-dataset for training. It
is a fairly-well structured tree of moderate size. It takes only maximal three
decisions to come to a conclusion for an unknown input pattern. The tree shown
in Figure 3 reaches a performance of about 86.3% on the 133-dataset, which is a
recognition rate that already performs favorably with other decision trees based
on the orthonormal encoding schemes or other features discussed in Section 3.1
(Kim et al., 2008). We see this result as a first confirmation that our proposed
features are indeed powerful. The small size of the tree results in a compact set
of short rules. For instance, following the rightmost branch of the tree, we can
derive the following rule:

IF (F14 >= 0.13) AND (F17 >= −0.5)
−→ clevage site dected

According to this rule, we have detected a cleavage site if Feature F14 is greater
than, or equal to 0.13, and Feature F17 is greater than, or equal to −0.5. In
other words, the rule predicts a cleavage site if the normalized molecular mass
value of the fourth amino acid is at least 0.13 and the normalized hydropathy
index of the fifth amino acid is at least −0.5. The appealing characteristic of all
rules derivable from the tree in 3, including the rule given above, is their locality:
Almost all features occurring on the left-hand side of each rule fall into a small
section around the potential cleavage site. For example, the rule given above,
contains the features F14 and F17 as building blocks, describing properties of
amino acids at Position 4 and 5 of the given octamer. These are the positions right
next to the potential cleavage site. This is another indication of the descriptive
power of the chosen features, as one would expect a close proximity of causal
connections to the cleavage site.
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Figure 4 shows a second tree that we trained with the whole 754-dataset,
instead of only using three-quarters of it.

0

F14 < 0.13

1

0

10

F09 < 0.88 F17 < -0.5

F16 < 0.83 F16 < 0.37

01

F15 < -0.006

0

F24 < 0.58

1

F17 < 0.58

Figure 4: Tree 2.

Given the larger training set, the second tree is more complex than the first
one in Figure 3. On the other hand, it provides a better performance: We tested
the second tree with the same 133-dataset on which it achieves a recognition rate
of over 90.0%; i.e., almost 4% more than the first tree. The second tree accom-
plishes this improvement by augmenting the first tree with additional branches
defining a finer breakdown of the original coarse structure. For instance, follow-
ing again the rightmost branch of the tree, we obtain the following, more specific
rule:

IF (F14 >= 0.13)

AND (F17 >= −0.5)
AND (F15 >= −0.006)

−→ no cleavage site found

This rule contains an additional exception, stating that in order for the site to
be a cleavage site, the F15 value must be smaller than −0.006, in addition to the
preconditions required by the previous rule.

Figure 5 shows a third tree, which is the result of a 10-fold cross-validation
run on the whole dataset.
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0

F16 < -0.31

1 0

F10 < -0.1 F09 < 0.9

1

Figure 5: Tree 3.

This tree is even more concise than the two previous trees, while at the same
time providing a relative good recognition rate of 85.31%. Expressed as a rule,
the entire tree reads as follows:

IF ((F16 < −0.31) AND (F10 < −0.1))
OR ((F16 >= −0.31) AND (F09 >= 0.9))

−→ cleavage site detected

It is surprising that such a simple rule can already account for about 85% of all
cleavage sites.

We also experimented with tree pruning, hoping that a pruned tree may
perhaps be able to better generalize on the test set (Breimann et al., 1993).
However, we found that the unpruned trees perform better than their pruned
correspondents. Table 3 shows a recognition run for pruned and unpruned trees.

Table 3: Decision tree: pruning vs no pruning

Type 1 2 3 4 5 6 7 8 9 10 avg.

Pruning 83.10 83.90 84.14 82.15 87.22 85.55 85.59 83.38 83.15 83.94 84.21
No pruning 85.03 84.75 83.85 86.72 86.16 82.77 87.57 84.75 85.35 85.59 85.25

4.3 Combination

When it comes to combining classifiers another drawback of decision trees
reveals. While neural networks and support vector machines readily provide con-
fidence values, decision trees offer crisp decisions by nature. For this reason, we
use voting to combine the output of neural networks, support vector machines,
and decision trees. In order to take advantage of the confidence values of neu-
ral networks and support vector machines, we employ so-called informational
confidence values, which replace the original confidence values (Jaeger, Ma and
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Doermann, 2008). Informational confidence values have provided good results
for character recognition and document processing (Jaeger, Ma and Doermann,
2008), and we are going to show their usefulness for HIV-1 protease cleavage
site prediction as well. The next section will shortly explain the main idea of
informational confidence.

Informational confidence

Generally speaking, a confidence value describes the confidence of a classifier
in its recognition result. Confidence values are thus very important for post-
processing techniques, such as language models or classifier combination, where
they allow integration of information from different sources. Unfortunately, there
is currently no commonly agreed standard method for computing confidence val-
ues. Confidence values come in flavors as different as distances to hyperplanes
and probability estimates. Resting on information theory, one of the goals of
informational confidence is to provide a standard representation for confidence.
Assuming that every confidence value conveys information, informational confi-
dence values have the following form:

Knew = −E ∗ ln
(
1 − p(Kold)

)
(4.1)

where Kold denotes the raw confidence, provided by a neural network or support
vector machine in our case, and Knew is the newly computed informational con-
fidence value. The scalar E denotes an expectation value, which we simply set
to the classifier’s recognition rate in our experiments. The so-called performance
function p(Kold) describes the performance of the raw confidence values, mea-
sured on an evaluation set. A small performance will result in low confidence
and, vice versa, a high performance will lead to high informational confidence.
Resolving for p in Equation (4.1) reveals the definition of the performance func-
tion:

p(Kold) = 1 − e−
Knew

E (4.2)

Based on the observation that the performance function describes an exponential
distribution, we can compute performance estimates as follows, given a discretiza-
tion and an evaluation set:

p̂(Kold
i ) =

∑i
k=0 ncorrect(Kold

k )
N

(4.3)

where Kold
i is the ith confidence value, assuming discrete values, and N is the

number of patterns in the evaluation set. The help function ncorrect(Kold
k ) re-

turns the number of patterns correctly classified with confidence Kold
k . The term
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p̂(Kold
i ) thus estimates the relative number of patterns correctly classified with a

confidence smaller than or equal to Kold
i . It defines a partial sum according to

which the newly computed confidence values progress. Furthermore, the estimate
defines a monotonously increasing function, ensuring that the new confidence val-
ues Knew

i will also increase monotonously and will thus not change the relative
order of the old values Kold

i . Insertion of the performance estimates into Equation
(4.1) provides us with the new estimated informational confidence values K̂new

i :

K̂new
i = −R ∗ ln

(
1 − p̂(Kold

i )
)

(4.4)

where R is the recognition rate of the classifier estimated on the evaluation set.
We perform this estimation process independently for each classifier; i.e., each
neural network and support vector machine, and then simply combine all classi-
fiers by summing up confidences for every class and choosing the class with the
maximum overall confidence.
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Figure 6: Confidence (left) and Informational Confidence (right) for a neural
network.
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Figure 7: Confidence (left) and Informational Confidence (right) for a support
vector machine.

Figure 6 shows an example for a neural network. The x-axis of both graphs
in Figure 6 represents the training patterns, sorted according to their confidence
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values. The y-axis shows the accumulated recognition rates (left-hand side) and
the corresponding, progressing informational confidence values (right-hand side),
both computed according to the equations given above. Figure 7 shows the analog
diagrams for a support vector machine.

We used the training set to compute these statistics for both the neural net-
work and the support vector machine. Table 4 shows the training rates for all
three architectures.

Table 4: Training recognition rates of NN, SVM, and decision tree

Classifier 1 2 3 4 5 6 7 8 9 10 avg.

NN 98.12 98.87 98.49 98.49 98.49 98.49 99.25 97.93 96.99 96.99 98.21
SVM 96.80 96.99 96.23 96.42 96.80 96.60 96.42 95.68 95.86 96.61 96.44
Tree 95.86 95.86 96.61 95.48 96.80 95.09 95.29 95.86 95.48 95.67 95.80

All recognition rates are high, with the decision trees falling a bit behind, as
expected. For classifiers performing less reliably or uniformly on the training set,
the differences in Figures 6 and 7 would be more pronounced.

Combined recognition rates

Table 5 shows the individual and the combined recognition rates for all three
architectures and a 10-fold cross-validation run.

Table 5: Combination of NN, SVM, and decision tree by voting and informa-
tional confidence.

Classifier 1 2 3 4 5 6 7 8 9 10 avg.

NN 88.67 85.88 89.01 86.24 87.04 87.57 87.57 89.24 89.80 88.95 88.00
SVM 89.80 88.42 87.89 88.20 89.01 87.29 88.70 89.24 88.10 88.39 88.50
Tree 82.72 82.49 83.38 84.55 82.82 81.36 79.94 84.99 84.42 84.70 83.14
Voting 87.82 87.57 89.58 87.92 88.73 87.57 88.70 90.08 90.65 90.08 88.87
Inf. Conf. 90.08 88.98 89.30 86.80 89.30 88.42 88.70 89.24 90.93 90.65 89.24

We can see that the support vector machines provide slightly higher recogni-
tion rates than the neural networks. Compared to these two classifiers, decision
trees fall behind. They perform about 5% worse. The last two lines in Table
5 contain the combined rates achieved by voting and informational confidence,
respectively. Voting provides very often, but not always, recognition rates that
are at least as good as the best individual recognizer. It is, on average, about
0.37% better than the best individual recognizer; i.e., the support vector machine.
This proves that, despite their inferior performance, decision trees can contribute
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information that is useful for discrimination and that is not covered by other clas-
sifiers; albeit only little information in this case. We can make similar statements
for the combination of neural networks and support vector machines. Again, the
combined recognition rates are often better than the individual rates. On aver-
age, the combined recognition rates based on informational confidence are about
0.74% better than the best individual classifier. In particular, the combination
of just two classifiers, support vector machines and neural networks, outperforms
the voting combination of all three architectures. This shows that confidence val-
ues convey important information and our information-theoretical combination
method succeeds in exploiting it.

5. Conclusion

In our paper, we have modeled HIV-1 protease cleavage site detection as
a classification problem. In contrast to previous works, we have employed the
physical and chemical properties of amino acids by using them as features for
the classification process. In particular, we use the hydropathy index, molecular
mass, polarity, and occurrence percentage. Our results show that these proper-
ties provide useful information for cleavage site prediction. We have applied three
different classification architectures, namely neural networks, support vector ma-
chines, and decision trees. The first two provide slightly higher recognition rates
than the latter; a fact that is in accordance with most publications comparing
these architectures. Neverthless, using physical and chemical properties, we have
shown that it is possible to generate very concise decision trees whose performance
is only slightly worse. We think that decision trees still have a place in cleav-
age site prediction, arguing that the prospect of straightforward rule derivation
should offset their slightly inferior performance.

We have shown that classifier combination leads to improved recognition rates
for the task of cleavage site detection. Both of the combination schemes we in-
vestigated; i.e., voting as well as informational confidence, lead to better classi-
fication performances. While voting is an established technique, informational
confidence is a rather new technique developed by the authors that, given the
experiments reported here, has proven its usefulness for yet another application.

In conclusion, the recognition rates reported in this paper are comparable with
the state-of-the-art in this area. We have shown that our chosen set of features
provides appealing rules that can guide future practical experiments. We are
convinced that there are still many useful chemical and physical properties of
amino acids waiting to be discovered for HIV-1 protease cleavage site prediction.
Finding these features is a goal of future work.
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