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Abstract: The classical coupon collector’s problem is concerned with the
number of purchases in order to have a complete collection, assuming that
on each purchase a consumer can obtain a randomly chosen coupon. For
most real situations, a consumer may not just get exactly one coupon on
each purchase. Motivated by the classical coupon collector’s problem, in
this work, we study the so-called suprenewal process. Let {Xi, i ≥ 1} be a
sequence of independent and identically distributed random variables, Sn =∑n

i=1 Xi, n ≥ 1, S0 = 0. For every t ≥ 0, define Qt = inf{n | n ≥
0, Sn ≥ t}. For the classical coupon collector’s problem, Qt denotes the
minimal number of purchases, such that the total number of coupons that
the consumer has owned is greater than or equal to t, t ≥ 0. First the process
{Qt, t ≥ 0} and the renewal process {Nt, t ≥ 0}, where Nt = sup{n|n ≥
0, Sn ≤ t}, generated by the same sequence {Xi, i ≥ 1} are compared. Next
some fundamental and interesting properties of {Qt, t ≥ 0} are provided.
Finally limiting and some other related results are obtained for the process
{Qt, t ≥ 0}.

Key words: Coupon collector’s problem, geometric distribution, negative
binomial distribution, renewal process, sample path, suprenewal process.

1. Introduction

Starting from the end of April 2005, collecting Hello Kitty magnets became
an immensely popular hobby in Taiwan. President Chain Stores Corp., which
runs Taiwanese largest convenience store chain, 7-Eleven, was giving away one
of a series of commemorative Hello Kitty magnets for each NTD77 a consumer
spends at 7-Eleven store. There are 41 different patterns of Hello Kitty magnets
in total. Because the cover of each package of magnet is the same, it is reasonable
to assume that the magnets are given randomly.

We now review the classical coupon collector’s problem. Assume there are
N distinct coupons in a collection, and a series of random draws is made with
replacement from these. Let T denote the number of draws necessary for all N
coupons to have been drawn at least once. Properties of T had been studied
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by many authors, see e.g. Goodwin (1949) and Feller (1968). Among others,
expectation and variance of T can be obtained as follows. For every k ≥ 1, let
Ck ∈ {1, 2, · · · , N} be the type of coupon obtained at the k-th draw. The k-th
draw is called a success, if Ck has not been obtained before the k-th draw. For
1 ≤ i ≤ N , let Ti denote the number of draws after the (i − 1)-th success, till
the i-th success. Then T =

∑N
i=1 Ti. Obviously, T1, T2, · · · , TN are independent,

and Ti has a geometric distribution with parameter pi = (N − i + 1)/N , then
E(Ti) = N/(N − i + 1), and Var(Ti) = (1 − (N − i + 1)/N)/((N − i + 1)/N)2,
1 ≤ i ≤ N . Thus

E(T ) =
N∑

i=1

E(Ti) = NHN , (1.1)

where for N ≥ 1, HN =
∑N

i=1 1/i is the N -th Harmonic number, and

Var(T ) =
N∑

i=1

Var(Ti) = N2
N∑

i=1

1
i2

− NHN . (1.2)

The above coupon collector’s problem can be generalized. Assume the i-th
coupon has probability pi of being drawn, where 0 < pi < 1, 1 ≤ i ≤ N , such that∑N

i=1 pi = 1, the pi’s are allowed to be unequal. This was studied by von Schelling
(1954). Some limiting results were derived by Baum and Billingsley (1965) and
Hoslt (1971), and others. Related problems had also been discussed, such as
the collector’s brotherhood problem. As an example, Foata et al. (2001) and
Foata and Zeilberger (2003) considered the situation that the collector shares his
harvest with his brothers. They answered the question that when the collection
of the collector is completed, the number of coupons each brother still lacks.

For our present problem, the expected number of magnets needed for col-
lecting a complete set of 41 magnets is 41

∑41
i=1 1/i

.= 176.42. For a particular
consumer, in each purchase, if his spending is less than NTD77, then he gets 0
magnet, if his spending is at least NTD77 and less than NTD154 (= 2 × 77),
than he gets 1 magnet, if his spending is at least NTD154 and less than NTD231
(= 3 × 77), then he gets 2 magnets on that purchase, and so on. Now what is
the number of purchases needed in order to get magnets greater than or equal to
176.42? To solve this problem, first we introduce a new process and study some
of its properties.

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed
(i.i.d.) random variables, Sn =

∑n
i=1 Xi, n ≥ 1, S0 = 0. For every t ≥ 0, define

Qt = inf{n | n ≥ 0, Sn ≥ t}. For the magnets problem, Xi can be viewed as the
number of magnets received on the i-th purchase, i ≥ 1, and Qt can be viewed
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as the minimal number of purchases, such that the total number of magnets is
greater than or equal to t, t ≥ 0.

Recall that the renewal process {Nt, t ≥ 0} generated by the same sequence
{Xi, i ≥ 1}, where for t ≥ 0, Nt = sup{n | n ≥ 0, Sn ≤ t}, Nt denotes the
number of renewals in [0, t]. Qt can be referred to as the minimal number of
renewals in [t,∞), and we call {Qt, t ≥ 0} the suprenewal process. In Section
2, we compare {Qt, t ≥ 0} with {Nt, t ≥ 0}. In Section 3, some fundamental
and interesting properties of {Qt, t ≥ 0} are studied. Those tedious proofs will
be given in the Appendix. Also some limiting results are presented in Section 4.
Finally, in Section 5, we give an example to provide a partial answer of the Hello
Kitty magnets problem.

2. Comparisons of {Qt, t ≥ 0} and {Nt, t ≥ 0}

Let X1, X2, · · · be i.i.d. random variables with the same distribution as X,
where X, a nonnegative random variable, has the distribution function F with
F (0−) = 0 and F (0) < 1. Let Sn =

∑n
i=1 Xi, n ≥ 1, S0 = 0. Let {Qt, t ≥ 0}

and {Nt, t ≥ 0} be the suprenewal process and renewal process generated by
{Xi, i ≥ 1}, respectively. Obviously, Q0 = 0 and Qt ≥ 1, if t > 0. Also Qt ≤ n if
and only if Sn ≥ t. Hence for every t > 0 and integer n ≥ 1,

P (Qt = n) = P (Qt ≤ n) − P (Qt ≤ n − 1)
= P (Sn ≥ t) − P (Sn−1 ≥ t)
= P (Sn−1 < t) − P (Sn < t). (2.1)
= Fn−1(t−) − Fn(t−), (2.2)

where Fn is the n-fold convolution of F with itself, n ≥ 1, and F0(t) = 1, t ≥ 0. If
F is continuous, then Sn is a continuous random variable for every integer n ≥ 0.
Consequently,

P (Qt = n) = Fn−1(t) − Fn(t), t > 0, n ≥ 1, (2.3)

We now compare the two processes {Qt, t ≥ 0} and {Nt, t ≥ 0}. First instead
of having right continuous sample paths for {Nt, t ≥ 0}, {Qt, t ≥ 0} has left
continuous sample paths. Next instead of (2.1) and (2.3), whether F is continuous
or not,

P (Nt = n) = P (Sn ≤ t) − P (Sn+1 ≤ t) = Fn(t) − Fn+1(t), t ≥ 0, n ≥ 0. (2.4)

On the other hand, {Qt, t ≥ 0} and {Nt, t ≥ 0} have the same jump times.
Denote the sequence of jump times by 0 = τ0 < τ1 < τ2 < · · · . Then

Nt = Qt − 1, if t 6∈ {τ0, τ1, τ2, · · · }, (2.5)
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and

Nτi = Qτi + Yτi − 1, i ≥ 0, (2.6)

where

Yτ0 = 1,

Yτi = Qτi+ − Qτi = Nτi − Nτi−, i ≥ 1, (2.7)

denotes the common jump size at τi of the processes {Qt, t ≥ 0} and {Nt, t ≥ 0}.
It can be seen that for i ≥ 1, Yτi has a Ge(λ) distribution, where λ = 1 − F (0),
if F (0) > 0; and Yτi ≡ 1, hence Qτi = Nτi , i ≥ 1, if F (0) = 0. Yτi and Qτi are
independent, and Yτi and Nτi−1 are also independent. If F is continuous, then
F (0) = 0, and

Nt =


Qt − 1, t /∈ {τ0, τ1, τ2, · · · },

Qt, t ∈ {τ0, τ1, τ2, · · · }.
(2.8)

As an example, let F (x) = 1 − e−λx, λ > 0, x > 0. Then it is well known that
Nt has a P(λt) distribution, t > 0. By (2.8), Qt − 1 is also P(λt) distributed
for almost all t on [0,∞). Note that except (2.5) and (2.6), we also have the
following relationship

Qτi ≤ Nτi ≤ Qτi+1 , i ≥ 0. (2.9)

Although Qt may be less than Nt (if F (0) > 0), from the definitions of Qt and
Nt, we have

SNt ≤ t ≤ SQt , t ≥ 0. (2.10)

In particular

SNτi
= SQτi

= τi, i ≥ 0. (2.11)

Recall that SNt+1− t, t−SNt , and XNt+1 = SNt+1−SNt are called residual life at
time t, current life at time t, and total life at time t, respectively, for the renewal
process {Nt, t ≥ 0}. It is known that P (XNt+1 > x) ≥ P (X1 > x), x ≥ 0, and
E(XNt+1) ≥ E(X1), t ≥ 0. This is the so-called inspection paradox. Similarly,
it can be shown

P (XQt > x) ≥ P (X1 > x), x ≥ 0. (2.12)

That is XQt is stochastically larger than X1. Consequently,

E(XQt) ≥ E(X1), t ≥ 0. (2.13)
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Furthermore, using the fact that a renewal process probabilistically starts over
when a renewal occurs, for every increasing function g, the following inequality
is immediate:

E(g(Nt+s − Nt)) ≤ E(g(Ns + 1)), t, s ≥ 0. (2.14)

Similarly, we have

E(g(Qt+s − Qt)) ≤ E(g(Qs)), t, s ≥ 0. (2.15)

In particular

E(Qt+s − Qt) ≤ E(Qs), t, s ≥ 0. (2.16)

We give a typical sample paths of {Qt, t ≥ 0} and {Nt, t ≥ 0}, respectively, to
illustrate the relationships (2.5), (2.6) and (2.9). Assume X1 = 2, X2 = 0, X3 =
1, X4 = 4, X5 = 0, X6 = 0, X7 = 3, · · · , then S1 = 2, S2 = 2, S3 = 3, S4 = 7, S5 =
7, S6 = 7, S7 = 10, · · · . Figure 1 gives the sample paths of {Qt, t ≥ 0} and
{Nt, t ≥ 0}.
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Figure 1. Sample paths of {Qt, t ≥ 0} and {Nt, t ≥ 0}

3. Some Fundamental Properties of {Qt, t ≥ 0}

There are many investigations for properties of renewal process in the litera-
tures. In this section, we explore some basic properties of the process {Qt, t ≥ 0},
especially for the case that X takes on nonnegative integer values. Through-
out this section, let P (X < ∞) = 1, and P (X = k) = pk, where pk ≥ 0,
k = 0, 1, 2, · · · , p0 < 1, and

∑∞
k=0 pk = 1. Also let N = sup{i | i ≥ 0, pi > 0}.

First we introduce some notation which will be used often in this work. Let
dte and btc denote the ceiling function and the floor function, respectively, namely
dte = the least integer greater than or equal to t, and btc = the greatest integer
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less than or equal to t. For example, d3.7e = 4, b3.7c = 3, and d6e = b6c = 6.
For integers a, b, c, with a ≤ b ≤ c, and nonnegative integers x0, x1, · · · , xN , if
N < ∞, let

Aa,b = {(x0, x1, · · · , xN )|
N∑

i=0

xi = a, and
N∑

i=0

ixi = b},

Ba,b,c = {(x1, x2, · · · , xN )|
N∑

i=1

xi = a, and
N∑

i=1

ixi = b, b + 1, · · · , c},

and

Ca = {(x1, x2, · · · , xN )|
N∑

i=1

xi = a};

if N = ∞, let

A1
a,b = {(x0, x1, · · · )|

∑
i≥0

xi = a, and
∑
i≥0

ixi = b},

and

B1
a,b,c = {(x1, x2, · · · )|

∑
i≥1

xi = a, and
∑
i≥1

ixi = b, b + 1, · · · , c}.

Note that if (x0, x1, · · · , xN ) ∈ Aa+x0,b, then (x1, x2, · · · , xN ) ∈ Ba,b,b; if (x0, x1, · · · ) ∈
A1

a+x0,b, then (x1, x2, · · · ) ∈ B1
a,b,b, and Ba,a,Na = Ca.

We give three simple examples in the following.

Example 1. Let p1 = p2 = p3 = 1/3. Then the support of Q3.5 is {2, 3, 4},
and P (Q3.5 = 2) = 2/3, P (Q3.5 = 3) = 8/27, P (Q3.5 = 4) = 1/27.

Example 2. Let p0, p1, p2 > 0, and p0 + p1 + p2 = 1. Then P (Q2 = i) =
(i− 1)pi−2

0 (1− p0)p1 + pi−1
0 p2, i ≥ 1. In particular, if p0 = 0.2, p1 = 0.3, p2 = 0.5,

then P (Q2 = 1) = 0.5, P (Q2 = 2) = 0.34, P (Q2 = 3) = 0.116, P (Q2 = 4) =
0.0328, · · · .

The next example indicates that Qt has a negative binomial distribution.

Example 3. Assume 0 < p0 < 1 and p1 = 1−p0. In this case τi = i, i ≥ 1. That
is X1, X2, · · · are i.i.d. Ber(p1) random variables, and Sn is B(n, p1) distributed, n ≥
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1. Then obviously for every t > 0, SQt = dte, Qt ∼ NB(dte, p1), and for every
integer k ≥ 2, Q1, Q2 − Q1, · · · , Qk − Qk−1, are i.i.d. random variables with the
common Ge(p1) distribution. Consequently, for every t > 0, E(Qt) = dte/p1,
E(SQt − t) = dte − t, and E(t − SQt−1) = t − dte + 1. Hence E(XQt) =
E(SQt − SQt−1) = 1 > p1 = E(X1). Moreover, it can be seen easily, for the
above {Xi, i ≥ 1} , for any 0 < p0 < 1, there is an infinite number of positive t’s,
such that E(SQt − t) > E(X1).

Remark 1. As a comparison, for the {Xi, i ≥ 1} defined in Example 3, we
have SNt = btc,

P (Nt = n) =
(

n

btc

)
p
btc+1
1 p

n−btc
0 , n ≥ btc,

and P (Nt = n) = 0, for n < btc. That is Nt + 1 ∼ NB(btc + 1, p1), t > 0.
This also can be seen by (2.5), (2.6) and Example 3. Now E(Nt) = (btc+p0)/p1,
E(t−SNt) = t−btc, E(SNt+1−t) = btc+1−t, and E(XNt+1) = 1 > E(X1), t > 0.

Although it is rather cumbersome, the distribution of Qt, t > 0, can be ob-
tained. We present this in the following.

Theorem 1. For every integer n ≥ 1 and t > 0,

P (Qt = n) =


gn−1,t − gn,t , p0 = 0,
dte−1∑
m=0

gm,tp
n−m−1
0 (

(
n − 1

m

)
−

(
n

m

)
p0) , 0 < p0 < 1,

(3.1)

where if N < ∞,

gm,t =


(1 − p0)m , 0 ≤ m ≤ b dte−1

N c,∑
(x1,x2,··· ,xN )∈Bm,m,dte−1

m!(
N∏

i=1

pxi
i

xi!
) ,m ≥ b dte−1

N c + 1; (3.2)

if N = ∞,

gm,t =


1 ,m = 0,∑
(x1,x2,··· )∈B1

m,m,dte−1

m!(
∏
i≥1

pxi
i

xi!
) ,m ≥ 1. (3.3)
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By using Theorem 1, the Laplace transform φt(s) of Qt, s ≥ 0, t ≥ 0, that is

φt(s) = E(e−sQt) =
∞∑

n=1

P (Qt = n)e−sn, s ≥ 0,

and the moments of Qt can be obtained immediately. We summarize the results
in the following corollary.

Corollary 1. Let integer n ≥ 1, p0 ≥ 0, and t > 0.
(i).

φt(s) = 1 − 1 − e−s

1 − p0e−s

dte−1∑
m=0

gm,t(
e−s

1 − p0e−s
)m, s ≥ 0. (3.4)

(ii).

E(Qt) =
dte−1∑
m=0

gm,t

(1 − p0)m+1
. (3.5)

(iii).

Var(Qt) =
dte−1∑
m=0

(1 + 2m + p0)
gm,t

(1 − p0)m+2
− {

dte−1∑
m=0

gm,t

(1 − p0)m+1
}2, (3.6)

where gm,t, m ≥ 0, are defined in (20) and (21).

The proofs of Theorem 1 and Corollary 1 will be given in the Appendix.

Example 3.(Continued) We use Theorem 1 and (i) of Corollary 1, respec-
tively, to demonstrate Qt ∼ NB(dte, p1), t > 0.

By letting N = 1 in Theorem 1, it yields

gm,t =
{

pm
1 , 0 ≤ m ≤ dte − 1,

0 ,m ≥ dte. (3.7)
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Hence

P (Qt = n) =
dte−1∑
m=0

gm,tp
n−m−1
0 (

(
n − 1

m

)
−

(
n

m

)
p0)

=
dte−1∑
m=0

pm
1 pn−m−1

0 {
(

n − 1
m

)
− (

(
n − 1

m

)
+

(
n − 1
m − 1

)
)p0}

=
dte−1∑
m=0

(
n − 1

m

)
pm+1
1 pn−m−1

0 −
dte−2∑
m=0

(
n − 1

m

)
pm+1
1 pn−m−1

0

=
(

n − 1
dte − 1

)
p
dte
1 p

n−dte
0 , n ≥ dte,

where
(
n−1
−1

)
is defined to be 0. This shows Qt ∼ NB(dte, p1), t > 0.

Next from (i) of Corollary 1 and (24), we have

φt(s) = 1 − 1 − e−s

1 − p0e−s

dte−1∑
m=0

gm,t(
e−s

1 − p0e−s
)m = 1 − 1 − e−s

1 − p0e−s

dte−1∑
m=0

(
p1e

−s

1 − p0e−s
)m

= 1 − 1 − e−s

1 − p0e−s
{
1 − ( p1e−s

1−p0e−s )dte

1−e−s

1−p0e−s

} = (
p1e

−s

1 − p0e−s
)dte, s ≥ 0,

which is exactly the Laplace transform of a NB(dte, p1) distributed random vari-
able.

Note that for integers a, b, with a ≤ b, B1
a,a,b =

∪b−a
i=0 B1

a,a+i,a+i , where
B1

a,a,a,B1
a,a+1,a+1, · · · ,

B1
a,b,b, are disjoint. Also let Hn

k =
(
n−1+k

k

)
, n ≥ 1, k ≥ 0, denote the number of

k-combinations with repetition of n distinct things. Before giving Example 4, we
need the following lemma.

Lemma 1. For integers n ≥ 1, and k ≥ 0, we have

∑
(x1,x2,··· )∈B1

n,n+k,n+k

n!∏
i≥1 xi!

=
(

n − 1 + k

k

)
. (3.8)

The proof of Lemma 1 will also be given in the Appendix.

Example 4. Assume p0 = 0 and pk = p(1−p)k−1, k ≥ 1, where 0 < p < 1. Then
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for dte ≥ n,

P (Qt = n) =
dte−n∑
k=0

(
n − 2 + k

k

)
pn−1(1 − p)k −

dte−n−1∑
k=0

(
n − 1 + k

k

)
pn(1 − p)k,

and P (Qt = n) = 0, for dte < n.

Proof. For dte < n, the result is obvious. We now prove the case for dte ≥ n.
By letting p0 = 0 and pk = p(1 − p)k−1, k ≥ 1, in Theorem 1, and from Lemma
1, we obtain

P (Qt = n) = gn−1,t − gn,t

=
∑

(x1,x2,··· )∈B1
n−1,n−1,dte−1

(n − 1)!(
∏
i≥1

(p(1 − p)i−1)xi

xi!
)

−
∑

(x1,x2,··· )∈B1
n,n,dte−1

n!(
∏
i≥1

(p(1 − p)i−1)xi

xi!
)

=
dte−n∑
k=0

{
∑

(x1,x2,··· )∈B1
n−1,n−1+k,n−1+k

(n − 1)!∏
i≥1 xi!

p
P

i≥1 xi(1 − p)
P

i≥2(i−1)xi}

−
dte−n−1∑

k=0

{
∑

(x1,x2,··· )∈B1
n,n+k,n+k

n!∏
i≥1 xi!

p
P

i≥1 xi(1 − p)
P

i≥2(i−1)xi}

=
dte−n∑
k=0

(
n − 2 + k

k

)
pn−1(1 − p)k −

dte−n−1∑
k=0

(
n − 1 + k

k

)
pn(1 − p)k.

(3.9)

That the last equality of (3.9) holds is because if (x1, x2, · · · ) ∈ B1
n−1,n−1+k,n−1+k,

0 ≤ k ≤ dte − n, i.e.
∑

i≥1 xi = n − 1 and
∑

i≥1 ixi = n − 1 + k, then∑
i≥2(i − 1)xi = k. Similarly, if (x1, x2, · · · ) ∈ B1

n,n+k,n+k, 0 ≤ k ≤ dte − n − 1,
i.e.

∑
i≥1 xi = n and

∑
i≥1 ixi = n + k, then

∑
i≥2(i − 1)xi = k.

Remark 2. As a comparison, for the pk, k ≥ 0, defined in Example 4, we
have

P (Nt = n) =
btc−n∑
k=0

(
n − 1 + k

k

)
pn(1 − p)k −

btc−n−1∑
k=0

(
n + k

k

)
pn+1(1 − p)k, btc ≥ n,



A Study of the Suprenewal Process 223

and P (Nt = n) = 0, for btc < n.

4. Limiting and Some Other Related Results

For the process {Qt, t ≥ 0}, properties about moments and limiting behaviors
are similar to the renewal process {Nt, t ≥ 0}, which can be obtained immediately
by using (2.5), (2.6) and (2.9).

Theorem 2. Let µ = E(X1).
(i). For t > 0 and r > 0, E(Qr

t ) < ∞.
(ii). If t → ∞, then Qt

a.s.−→ ∞.
(iii). Let µ < ∞. If t → ∞, then Qt/t

a.s.−→ 1/µ.
(iv). Let µ < ∞. If t → ∞, then E(Qt)/t → 1/µ.

The central limit theorem also holds for {Qt, t ≥ 0}.

Theorem 3. Let µ = E(X1) < ∞, and σ2 = Var(X1) < ∞, then

Qt − t/µ

σ
√

t/µ3
d−−−−→t → ∞ N (0, 1). (4.1)

For the process {Nt, t ≥ 0}, it is well known that

E(SNt+1) = E(X1 + · · · + XNt+1) = E(X1)E(Nt + 1), t ≥ 0. (4.2)

Although Nt is not a stopping time, Qt nevertheless is a stopping time. Hence
by the Wald equality and (i) of Theorem 2, we have

E(SQt) = E(X1)E(Qt), t ≥ 0. (4.3)

We use Example 3 to illustrate (4.3).

Example 3.(Continued) For t = 0, Q0 = 0, and SQ0 = 0, hence (4.3) holds.
For t > 0, as E(SQt) = dte, E(Qt) = dte/p1, and E(X1) = p1, (4.3) holds again.

5. An Example

We now give an example to provide a partial answer of the Hello Kitty mag-
nets problem mentioned in the Introduction. Note that if one magnet is given at
each purchase, the expected number of purchases to collect a complete set of 41
magnets is t = 176.42.
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Example 5. Let Y1, Y2, · · · be i.i.d. random variables with the same distribution
as Y , where for every i ≥ 1, Yi denotes the amount that a consumer spends at
the i-th purchase at 7-Eleven. Assume that Y ∼ Uniform{1, 2, · · · , 250}. Then

p0 = P (X1 = 0) = P (1 ≤ Y ≤ 76) =
76
250

,

p1 = P (X1 = 1) = P (77 ≤ Y ≤ 153) =
77
250

,

p2 = P (X1 = 2) = P (154 ≤ Y ≤ 230) =
77
250

,

p3 = P (X1 = 3) = P (231 ≤ Y ≤ 250) =
20
250

,

E(X1) = 1.164, Var(X1) = 0.905104, and N = sup{i | i ≥ 0, pi > 0} = 3. Thus
by routine computations, we obtain

P (Qt = n) =

b dte−1
N

cX
m=0

(1 −
76

250
)m(

76

250
)n−m−1(

�n − 1

m

�
−
�n

m

� 76

250
)

+

dte−1X

m=b dte−1
N

c+1

dte−1−mX
k=0

m−d k
2 eX

v=m−k

m!

v!(2m − 2v − k)!(k − m + v)!
(

77

250
)2m−v−k

·(
20

250
)k−m+v(

76

250
)n−m−1(

�n − 1

m

�
−
�n

m

� 76

250
), n ≥ 59,

E(Qt) =
b dte−1

N
c + 1

1 − P0
+

dte−1X

m=b dte−1
N

c+1

dte−1−mX
k=0

m−d k
2 eX

v=m−k

m!

v!(2m − 2v − k)!(k − m + v)!

·
250 × 772m−v−k × 20k−m+v

174m+1
,

and

Var(Qt) =

b dte−1
N

cX
m=0

81500 + 125000m

1742
+

dte−1X

m=b dte−1
N

c+1

dte−1−mX
k=0

m−d k
2 eX

v=m−k

m!

v!(2m − 2v − k)!(k − m + v)!

·
2502 × 772m−v−k × 20k−m+1

174m+2
− (E(Qt))

2.

Now for t = 176.42, E(Q176.42)
.= 152.466, and Var(Q176.42)

.= 101.888. Hence
the expected number of purchases to get magnets greater than or equal to 176.42
is about 152.466. Furthermore from (4.3), we have

E(SQ176.42) = E(X1)E(Q176.42)
.= 1.164 × 152.466 .= 177.470,

which is slightly greater than 176.42. Recall that, SQt ≥ t, t ≥ 0.
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Figure 2: The probability density function of Q176.42
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Figure 3: The probability density functions of Z176.42(dotted line) and
N (0, 1)(solid line)

Finally, we give the curve of the probability density function of Q176.42 in
Figure 2, and plot the probability density functions of Z176.42 and N (0, 1) in
Figure 3, where

Z176.42 =
Q176.42 − 176.42/1.164√
0.905104

√
176.42/1.1643
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is the normalization of Q176.42. As expected, due to Theorem 3, the normal
approximation to the probability density function of Z176.42 is very accurate.

Appendix

Proof of Theorem 1. Obviously we only need to prove (3.1) holds for positive
integer t. We prove this by induction. (i) First we prove the case p0 = 0 and N <
∞. That (3.1) holds for t = 1 can be seen as following. From the assumptions,
we have P (Sn < 1) = 0, n ≥ 1, P (S0 < 1) = 1. Thus

P (Q1 = n) = P (Sn−1 < 1) − P (Sn < 1)

=
{

1 , n = 1,
0 , n ≥ 2,

= gn−1,1 − gn,1, n ≥ 1,

where the last equality holds is due to for every n ≥ 1, Bn,n,0 is a null set, hence
gn,1 = 0. This together with g0,1 = 1 implies g0,1 − g1,1 = 1, and gn−1,1 − gn,1 =
0, n ≥ 2. Now suppose (3.1) is true for t = r ≥ 1, i.e. we have

P (Qr = n) = gn−1,r − gn,r.

Then

P (Qr+1 = n) = P (Sn−1 < r + 1) − P (Sn < r + 1)

= [P (Sn−1 < r) − P (Sn < r)] + [P (Sn−1 = r) − P (Sn = r)]

= [gn−1,r − gn,r] + [P (Sn−1 = r) − P (Sn = r)]

= {
X

(x1,x2,··· ,xN )∈Bn−1,n−1,r−1

(n − 1)!(

NY
i=1

p
xi
i

xi!
) −

X
(x1,x2,··· ,xN )∈Bn,n,r−1

n!(

NY
i=1

p
xi
i

xi!
)}

+{
X

(x1,x2,··· ,xN )∈Bn−1,r,r

(n − 1)!(
NY

i=1

p
xi
i

xi!
) −

X
(x1,x2,··· ,xN )∈Bn,r,r

n!(
NY

i=1

p
xi
i

xi!
)}

=
X

(x1,x2,··· ,xN )∈Bn−1,n−1,r

(n − 1)!(
NY

i=1

p
xi
i

xi!
) −

X
(x1,x2,··· ,xN )∈Bn,n,r

n!(
NY

i=1

p
xi
i

xi!
)

= gn−1,r+1 − gn,r+1.

This proves (3.1) holds for t = r + 1. By the induction argument this completes
the proof for the case p0 = 0 and N < ∞. The proof of (3.1) for the case p0 = 0
and N = ∞ is similar, hence is omitted.

(ii) Next we prove the case 0 < p0 < 1 and N < ∞. The proof of (3.1) for
t = 1 is as following.

P (Q1 = n) = P (Sn−1 < 1) − P (Sn < 1) = P (Sn−1 = 0) − P (Sn = 0)

= pn−1
0 − pn

0 = g0,1p
n−1
0 (

(
n − 1

0

)
−

(
n

0

)
p0).
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Now suppose (3.1) is true for t = r ≥ 1, i.e. we have

P (Qr = n) =
r−1∑
m=0

gm,rp
n−m−1
0 (

(
n − 1

m

)
−

(
n

m

)
p0). (A.1)

Then

P (Qr+1 = n) = P (Sn−1 < r + 1) − P (Sn < r + 1)
= [P (Sn−1 < r) − P (Sn < r)] + [P (Sn−1 = r) − P (Sn = r)]
= P (Qr = n) + [P (Sn−1 = r) − P (Sn = r)], (A.2)

and

P (Sn−1 = r) =
X

(x0,x1,··· ,xN )∈An−1,r

(n − 1)!(
NY

i=0

p
xi
i

xi!
)

= (
X

(x1,x2,··· ,xN )∈B
b r−1

N
c+1,r,r

(n − 1)!

(n − b r−1
N

c − 2)!
p

n−b r−1
N

c−2

0 (
NY

i=1

p
xi
i

xi!
)) + · · ·

+(
X

(x1,x2,··· ,xN )∈Br,r,r

(n − 1)!

(n − r − 1)!
pn−r−1
0 (

NY
i=1

p
xi
i

xi!
))

=
� n − 1

b r−1
N

c + 1

�
{

X
(x1,x2,··· ,xN )∈B

b r−1
N

c+1,r,r

(b
r − 1

N
c + 1)!(

NY
i=1

p
xi
i

xi!
)}pn−b r−1

N
c−2

0 + · · ·

+
�n − 1

r

�
{

X
(x1,x2,··· ,xN )∈Br,r,r

r!(
NY

i=1

p
xi
i

xi!
)}pn−r−1

0 . (A.3)

That the second equality of (A.3) holds is because if (x0, x1, · · · , xN ) ∈ An−1,r,
i.e.

∑N
i=1 xi = n−1−x0 and

∑N
i=1 ixi = r, then

∑N
i=1 xi ≤ r, hence x0 ≥ n−r−1.

On the other hand, if x0 ≥ n − b(r − 1)/Nc − 1, then
∑N

i=1 xi ≤ b(r − 1)/Nc,
and

∑N
i=1 ixi ≤ r − 1 follows. This proves n− r − 1 ≤ x0 ≤ n− b(r − 1)/Nc − 2.

Hence
∑N

i=1 xi = b(r−1)/Nc+1, · · · , r. This together with
∑N

i=1 ixi = r, implies
(x1, x2, · · · , xN ) ∈ Bb(r−1)/Nc+1,r,r, · · · ,Br,r,r. Similarly,

P (Sn = r) =
� n

b r−1
N

c + 1

�
{

X
(x1,x2,··· ,xN )∈B

b r−1
N

c+1,r,r

(b
r − 1

N
c + 1)!(

NY
i=1

p
xi
i

xi!
)}pn−b r−1

N
c−1

0 + · · ·

+
�n

r

�
{

X
(x1,x2,··· ,xN )∈Br,r,r

r!(
NY

i=1

p
xi
i

xi!
)}pn−r

0 . (A.4)
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Substituting (A.1), (A.3) and (A.4) into (A.2), it yields

P (Qr+1 = n) = {
�n − 1

0

�
pn−1
0 +

�n − 1

1

�
(1 − p0)pn−2

0 + · · · +
� n − 1

b r−1
N

c

�
(1 − p0)b

r−1
N

c

·p0
n−1−b r−1

N
c +
� n − 1

b r−1
N

c + 1

�
(

X
(x1,x2,··· ,xN )∈B

b r−1
N

c+1,b r−1
N

c+1,r

(b
r − 1

N
c + 1)!

·(
NY

i=1

p
xi
i

xi!
))p

n−b r−1
N

c−2

0 + · · · +
�n − 1

r − 1

�
(

X
(x1,x2,··· ,xN )∈Br−1,r−1,r

(r − 1)!(

NY
i=1

p
xi
i

xi!
))

·pn−r
0 +

�n − 1

r

�
(

X
(x1,x2,··· ,xN )∈Br,r,r

r!(

NY
i=1

p
xi
i

xi!
))pn−r−1

0 } − {
�n
0

�
pn
0

+
�n
1

�
(1 − p0)pn−1

0 + · · · +
� n

b r−1
N

c

�
(1 − p0)b

r−1
N

cp0
n−b r−1

N
c

+
� n

b r−1
N

c + 1

�
(

X
(x1,x2,··· ,xN )∈B

b r−1
N

c+1,b r−1
N

c+1,r

(b
r − 1

N
c + 1)!(

NY
i=1

p
xi
i

xi!
))p

n−b r−1
N

c−1

0

+ · · · +
� n

r − 1

�
(

X
(x1,x2,··· ,xN )∈Br−1,r−1,r

(r − 1)!(
NY

i=1

p
xi
i

xi!
))pn−r+1

0

+
�n

r

�
(

X
(x1,x2,··· ,xN )∈Br,r,r

r!(
NY

i=1

p
xi
i

xi!
))pn−r

0 }

=

b r−1
N

cX
m=0

(1 − p0)mpn−m−1
0 (

�n − 1

m

�
−
�n

m

�
p0)

+
rX

m=b r−1
N

c+1

(
X

(x1,x2,··· ,xN )∈Am,m,r

r!(
NY

i=1

p
xi
i

xi!
))pn−m−1

0 (
�n − 1

m

�
−
�n

m

�
p0)

=

b r
N

cX
m=0

(1 − p0)mpn−m−1
0 (

�n − 1

m

�
−
�n

m

�
p0)

+
rX

m=b r
N

c+1

(
X

(x1,x2,··· ,xN )∈Bm,m,r

m!(
NY

i=1

p
xi
i

xi!
))pn−m−1

0 (
�n − 1

m

�
−
�n

m

�
p0)

=

rX
m=0

gm,r+1pn−m−1
0 (

�n − 1

m

�
−
�n

m

�
p0), (A.5)

where the third equality holds is because if
∑N

i=1 Xi = m, then m ≤
∑N

i=1 iXi ≤
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Nm, hence if r ≥ Nm, i.e. m ≤ br/Nc, then Bm,m,r = Bm,m,Nm and

∑
(x1,x2,··· ,xN )∈Bm,m,r

m!(
N∏

i=1

pxi
i

xi!
) =

∑
(x1,x2,··· ,xN )∈Bm,m,Nm

m!(
N∏

i=1

pxi
i

xi!
)

=
∑

(x1,x2,··· ,xN )∈Cm

m!(
N∏

i=1

pxi
i

xi!
)

= (p1 + p2 + · · · + pN )m

= (1 − p0)m.

This proves (3.1) holds for t = r + 1, and the proof for the case 0 < p0 < 1 and
N < ∞ is completed.

(iii) Finally we consider the case 0 < p0 < 1 and N = ∞. The proof of (3.1)
for t = 1 is the same as in (ii). Now suppose the induction statement is true for
t = r ≥ 1, i.e. we have

P (Qr = n) =
r−1∑
m=0

gm,rp
n−m−1
0 (

(
n − 1

m

)
−

(
n

m

)
p0). (A.6)

Then

P (Qr+1 = n) = P (Sn−1 < r + 1) − P (Sn < r + 1)
= P (Qr = n) + [P (Sn−1 = r) − P (Sn = r)], (A.7)

and

P (Sn−1 = r) =
∑

(x0,x1,··· )∈A1
n−1,r

(n − 1)!(
∏
i≥0

pxi
i

xi!
)

= (
∑

(x1,x2,··· )∈B1
1,r,r

(n − 1)!
(n − 2)!

pn−2
0 (

∏
i≥1

pxi
i

xi!
)) + · · ·

+(
∑

(x1,x2,··· )∈B1
r,r,r

(n − 1)!
(n − r − 1)!

pn−r−1
0 (

∏
i≥1

pxi
i

xi!
))

=
(

n − 1
1

)
{

∑
(x1,x2,··· )∈B1

1,r,r

(
∏
i≥1

pxi
i

xi!
)}pn−2

0 + · · ·

+
(

n − 1
r

)
{

∑
(x1,x2,··· )∈B1

r,r,r

r!(
∏
i≥1

pxi
i

xi!
)}pn−r−1

0 , (A.8)
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where the second equality holds is by using the same argument as in the discussion
of the paragraph after (A.3). Similarly,

P (Sn = r) =
(

n

1

)
{

∑
(x1,x2,··· )∈B1

1,r,r

(
∏
i≥1

pxi
i

xi!
)}pn−1

0 + · · ·

+
(

n

r

)
{

∑
(x1,x2,··· )∈B1

r,r,r

r!(
∏
i≥1

pxi
i

xi!
)}pn−r

0 . (A.9)

Substituting (A.6), (A.8) and (A.9) into (A.7), it yields

P (Qr+1 = n) = {
(

n − 1
0

)
pn−1
0 +

(
n − 1

1

)
(

∑
(x1,x2,··· )∈B1

1,1,r

(
∏
i≥1

pxi
i

xi!
))pn−2

0 + · · ·

+
(

n − 1
r

)
(

∑
(x1,x2,··· )∈B1

r,r,r

r!(
∏
i≥1

pxi
i

xi!
))pn−r−1

0 }

−{
(

n

0

)
pn
0 +

(
n

1

)
(

∑
(x1,x2,··· )∈B1

1,1,r

(
∏
i≥1

pxi
i

xi!
))pn−1

0 + · · ·

+
(

n

r

)
(

∑
(x1,x2,··· )∈B1

r,r,r

r!(
∏
i≥1

pxi
i

xi!
))pn−r

0 }

= pn−1
0 (

(
n − 1

0

)
−

(
n

0

)
p0)

+
r∑

m=1

pn−m−1
0 (

∑
(x1,x2,··· )∈B1

m,m,r

m!(
∏
i≥1

pxi
i

xi!
))(

(
n − 1

m

)
−

(
n

m

)
p0)

=
r∑

m=0

gm,r+1p
n−m−1
0 (

(
n − 1

m

)
−

(
n

m

)
p0). (A.10)

This proves (3.1) holds for t = r + 1. The proof is completed.

Proof of Corollary 1. (i). Due to the expression (3.1), the proof of (3.4)
is divided into two parts: 0 < p0 < 1, and p0 = 0. First we prove the case
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0 < p0 < 1.

φt(s) =
∞∑

n=1

{
dte−1∑
m=0

gm,tp
n−m−1
0 (

(
n − 1

m

)
−

(
n

m

)
p0)}e−sn

=
∞∑

n=1

dte−1∑
m=0

(
n − 1

m

)
gm,tp

n−m−1
0 e−sn −

∞∑
n=1

dte−1∑
m=0

(
n

m

)
gm,tp

n−m
0 e−sn

=
dte−1∑
m=0

gm,t

pm+1
0

{
∞∑

n=1

(
n − 1

m

)
(p0e

−s)n} −
dte−1∑
m=0

gm,t

pm
0

{
∞∑

n=1

(
n

m

)
(p0e

−s)n}

= A − B. (A.11)

Now

A =
g0,t

p0
{

∞X
n=1

�n − 1

0

�
(p0e−s)n} +

dte−1X
m=1

gm,t

pm+1
0

{
∞X

n=1

�n − 1

m

�
(p0e−s)n}

=
g0,te−s

1 − p0e−s
+

dte−1X
m=1

gm,t

pm+1
0

{
∞X

n=1

n − m

m

� n − 1

n − m

�
(p0e−s)n}

=
g0,te−s

1 − p0e−s
+

dte−1X
m=1

gm,t

pm+1
0

{
∞X

n=1

(
n

m
− 1)
� n − 1

n − m

�
(1 − p0e−s)m(p0e−s)n−m}(

p0e−s

1 − p0e−s
)m

=
g0,te−s

1 − p0e−s
+

dte−1X
m=1

gm,t

pm+1
0

(
1

1 − p0e−s
− 1)(

p0e−s

1 − p0e−s
)m

=
g0,te−s

1 − p0e−s
+

dte−1X
m=1

gm,t(
e−s

1 − p0e−s
)m+1

=

dte−1X
m=0

gm,t(
e−s

1 − p0e−s
)m+1, (A.12)

and

B = g0,t{
∞X

n=1

�n
0

�
(p0e−s)n} +

dte−1X
m=1

gm,t

pm
0

{
∞X

n=1

�n

m

�
(p0e−s)n}

= g0,t
p0e−s

1 − p0e−s
+

dte−1X
m=1

gm,t

pm
0

{
∞X

n=1

(
n

m
)
�n − 1

m − 1

�
(p0e−s)n}

= g0,t
p0e−s

1 − p0e−s
+

dte−1X
m=1

gm,t

pm
0

{
∞X

n=1

(
n

m
)
�n − 1

m − 1

�
(1 − p0e−s)m(p0e−s)n−m}(

p0e−s

1 − p0e−s
)m

= (−g0,t +
g0,t

1 − p0e−s
) +

dte−1X
m=1

gm,t

pm
0

(
1

1 − p0e−s
)(

p0e−s

1 − p0e−s
)m

= −g0,t +

dte−1X
m=0

gm,t

1 − p0e−s
(

e−s

1 − p0e−s
)m. (A.13)
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The assertion follows by substituting A and B in (A.12) and (A.13) into (A.11),
and noting that g0,t = 1.

The proof for the case p0 = 0 is given below.

φt(s) =
∞∑

n=1

(gn−1,t − gn,t)e−sn

=
∞∑

m=0

gm,te
−s(m+1) − (

∞∑
m=0

gm,te
−sm − g0,t)

= 1 − (1 − e−s)
dte−1∑
m=0

gm,te
−sm, s ≥ 0. (A.14)

(ii). Taking the derivative of φt with respect to s, we obtain for s > 0,

φ′
t(s) = −

e−s(1 − p0e−s) − (1 − e−s)p0e−s

(1 − p0e−s)2

dte−1X
m=0

gm,t(
e−s

1 − p0e−s
)m

−
1 − e−s

1 − p0e−s

dte−1X
m=0

m(
e−s

1 − p0e−s
)m−1gm,t{

−e−s(1 − p0e−s) − e−s(p0e−s)

(1 − p0e−s)2
}

= −
(1 − p0)e−s

(1 − p0e−s)2

dte−1X
m=0

gm,t(
e−s

1 − p0e−s
)m +

e−s(1 − e−s)

(1 − p0e−s)3

dte−1X
m=0

m(
e−s

1 − p0e−s
)m−1gm,t.

Hence

E(Qt) = − lim
s↓0

φ′
t(s) =

dte−1∑
m=0

gm,t

(1 − p0)m+1
.

(iii). As in (ii), we obtain

E(Q2
t ) = lim

s↓0
φ′′

t (s) =
dte−1∑
m=0

(1 + 2m + p0)
gm,t

(1 − p0)m+2
.

Hence

Var(Qt) = E(Q2
t ) − (E(Qt))2

=
dte−1∑
m=0

(1 + 2m + p0)
gm,t

(1 − p0)m+2
− {

dte−1∑
m=0

gm,t

(1 − p0)m+1
}2

as required.
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Proof of Lemma 1. For n ≥ 1, let y1, y2, · · · , yn be any n positive integers. For
every i ≥ 1, let zi =

∑n
j=1 I{yj=i}, where

I{yj=i} =
{

1 , yj = i,
0 , yj 6= i,

is the indicator function. Then
∑

i≥1 zi = n, and
∑

i≥1 izi =
∑n

j=1 yj . Conversely,
for every (z1, z2, · · · ) ∈ B1

n,n+k,n+k, i.e.
∑

i≥1 zi = n, and
∑

i≥1 izi = n + k, k ≥
0, there exists exactly one multiset {y1, y2, · · · , yn} satisfying

∑n
j=1 yj = n +

k. Hence for every (z1, z2, · · · ) ∈ B1
n,n+k,n+k, (n!/

∏
i≥1 zi!) is the number of

distinct permutations of the corresponding multiset {y1, y2, · · · , yn}. For n ≥
1, k ≥ 0,

∑
(z1,z2,··· )∈B1

n,n+k,n+k
n!/(

∏
i≥1 zi!) is the total number of combinations

of (y1, y2, · · · , yn), such that
∑n

j=1 yj = n + k, i.e.

∑
(z1,z2,··· )∈B1

n,n+k,n+k

n!∏
i≥1 zi!

= Hn
(n+k)−n = Hn

k =
(

n − 1 + k

k

)
,

as desired.
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