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Abstract: This paper discusses a comprehensive statistical approach that
will be useful in answering health-related questions concerning mortality
and incidence rates of chronic diseases such as cancer and hypertension.
The developed spatio-temporal models will be useful to explain the patterns
of mortality rates of chronic disease in terms of environmental changes and
social-economic conditions. In addition to age and time effects, models in-
clude two components of normally distributed residual effects and spatial
effects, one to represent average regional effects and another to represent
changes of subgroups within region over time. Numerical analysis is based
on male lung cancer mortality data from the state of Missouri. Gibbs sam-
pling is used to obtain the posterior quantities. As a result, all models
discussed in this article fit well in stabilizing the mortality rates, especially
in the less populated areas. Due to the richness of hierarchical settings,
easy interpretation of parameters and ease of implementation, any models
proposed in this paper can be applied generally to other sets of data.
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1. Introduction

The objective of this paper is to develop a comprehensive statistical approach
that will be useful in answering health-related questions concerning mortality and
incidence rates of chronic diseases such as cancer and hypertension. The methods
will employ hierarchical models which include demographic variable (i.e., age)
and geographic variable to identify regional differences. The proposed models
will also include a longitudinal variable that will describe temporal trends in
mortality and incidences for different population groups. The developed spatio-
temporal models will be useful to explain the patterns of mortality rates of chronic
disease in terms of environmental changes and social-economic conditions.
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Within the last two decades, many authors have proposed fully (hierarchical)
Bayesian or empirical Bayes estimates of mortality rates with spatial correlation,
along with Binomial or Poisson sampling processes. This paper is closely related
to the general development in this area, which is typified, among others, by Tsu-
takawa (1985, 1988), Clayton and Kaldor (1987), Ghosh et al. (1998), Best et
al. (1998), Sun et al. (2000), and Kim and Oleson (2008). These studies are
based on hierarchical models that use a Poisson model for the first stage and
incorporate covariates by various modeling of the Poisson parameters at the sec-
ond stage. Spatial (Regional) effects are usually treated as random with some
distributions whose parameters must be estimated. Hyper-parameters are typi-
cally estimated by maximum likelihood methods, and the Poisson parameters and
rates are estimated by Bayesian or empirical Bayes method. Tsutakawa (1985)
shows that the empirical Bayes method could seriously underestimate the uncer-
tainty in the estimated rates. Ghosh et al. (1998) and Best et al. (1998) consider
special cases of pairwise difference prior (cf. Besag, York and Mollié, 1991) for
spatial effects without specifying the degree of spatial correlation. Waller et al.
(1997) and Knorr-Held (2000) propose spatio-temporal interaction models where
the spatial effects are nested within time so that they can examine the evolu-
tion of heterogeneity and spatial patterns over time. Sun et al. (2000) and Kim
and Oleson (2008) assume normal distributions for residual effects which account
for the extra-Poisson variations. However, our specification of simultaneously
autoregressive (SAR) and conditional autoregressive (CAR) priors includes pa-
rameters to represent the degree of spatial correlation among regional areas while
we assume both normal and gamma distributions for residual effects based on the
choice of the first-stage model.

In this paper, we will modify the spatio-temporal models proposed by Sun
et al. (2000). Their log-linear mixed model of mortality rates includes two
components of normally distributed residual effects and spatial effects, one to
represent average regional effects and another to represent changes of subgroups
within region over time. Our modifications are made in two directions: first,
replace the normally distributed residual effects by those which have log-gamma
distributions; second, replace the CAR (Besag, 1974) effects by those which are
SAR effects (Ord, 1975; Cliff and Ord, 1981). In order to examine the effect of
these modifications we also consider making changes in one direction at a time,
giving us a total of four possible models. Those four models are compared using
Missouri lung cancer data.

The developed methods will not only be applicable to data obtained from
other states or countries, but also be useful in analyzing mortality due to other
chronic diseases. Moreover, the methods can be applied more generally to mea-
sure problems such as crime rates, accident rates, and high school dropouts rates.
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In addition, this study motivates more general research in statistics such as model
selection, formulation of prior distributions for hierarchical models, and designs
for computer simulation.

The subsequent sections are in the following orders. In Section 2 we introduce
multiplicative and log-linear mixed models with residual effects for mortality rates
where, for a given period of time, age effects are fixed and spatial effects are ran-
dom. A CAR model by Besag (1974) and an SAR model by Ord (1975) are chosen
to describe the random spatial effects. The necessary prior distributions for the
parameters and hyper-parameters are given. In Section 3, we derive the available
full conditional distributions for the four proposed models. Our choice of SAR
and CAR models allows us to sample all regional effects simultaneously without
computing the inverses of matrices each time, which improves the efficiency of the
computation greatly. Numerical results on age effects, spatial effects, mortality
rates, variance components, spatial correlations and residuals are presented in
Section 4. The convergence of Gibbs sampling is investigated using Gelman and
Rubin’s (1992) diagnostics. Also, model selection using cross-validation predictive
density and deviance information criterion is done and followed by conclusions in
Section 5.

2. Hierarchical Modeling of Chronic Disease Rates

2.1 Multiplicative and log-linear mixed models

The Poisson distribution arises naturally when data set takes the form of
counts; for instance, a major area of application is epidemiology, the study of
incidence of diseases. Let yijk denote the frequencies of deaths due to a specific
cause for the kth time period within the jth age group of the ith county. Each
cell has its population size nijk. We assume that yijk have independent Poisson
distributions with means nijkpijk.

In order to model the effects of county, age and time on pijk, first we consider
the multiplicative model (Tsutakawa, 1988; Kim et al., 2002) having the form,

pijk = Z∗
i θ∗j (µ

∗
jW

∗
i )(tk−t̄)ε∗ijk, (2.1)

where tk are the midpoints of the kth time period and t̄ = K−1
∑K

k=1 tk, i =
1, · · · , I; j = 1, · · · , J ; k = 1, · · · ,K. Here Z∗

i are the effects of the ith county,
θ∗j the effects of the jth age group, µ∗

j the overall rates of change over time for
the jth age group, W ∗

i the rates of change in the ith county over time, and ε∗ijk
unexplained residual effects for the ijkth cell. We may express this multiplicative
model in the log-linear form,

log(pijk) = Zi + θj + (µj + Wi)(tk − t̄) + εijk, (2.2)
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where Zi, θj , µj , Wi and εijk are natural logarithms of Z∗
i , θ∗j , µ∗

j , W ∗
i and ε∗ijk,

respectively.
In the specification of the model we treat θ∗j and µ∗

j (or equivalently, θj and
µj) as fixed effects while Z∗

i , W ∗
i and ε∗ijk (or equivalently, Zi, Wi and εijk) are

treated as random effects. The parameterization will be made unique by placing
restrictions on the distributions of the random effects. Depending on the specifi-
cation of the distributions for the random effects, several cases can be constructed.
We focus on two distributions for residual effects εijk and two distributions for
the spatial effects (Zi, Wi), resulting in four distinct combinations. These are
described below.

2.2 Distributions of residual effects

To estimate the rates of chronic diseases such as lung cancer, the extra vari-
ation (residual) arises from socio-economic status, air pollution, smoking preva-
lence, and many other factors not included in the model. These factors are
unknown or hard to quantify in most instances. The role of the residual effects
is not only to account for the lack of fit, but also to use it as a tool to detect
irregular patterns and changes (Kim et al., 2002). The residual effect will sum
up all those county, age group, and period effects which are not spatially diffused
(i.e., local). Here we have two distributions for residual effects.

• Normal: Suppose the εijk are independent and identically distributed (iid)
normal with mean 0 and variance δ0.

• Gamma: Suppose the ε∗ijk = exp(εijk) are iid gamma (ψ−1, ψ−1) so that
ε∗ijk have mean 1 and variance ψ.

2.3 Distributions of spatial effects

We represent the spatial correlation among the counties by a CAR model
introduced by Besag (1974) and an SAR model by Ord (1975). Although CAR
and SAR models have been available for more than 30 years, their relative merits
have not been fully investigated.

• SAR: The SAR model is defined by the autoregressive relation

Ui = ρ
∑

j

cijUj + τi,

where τi are iid N (0, δu). We define the adjacency matrix C with entries
cij = 1 if county i and j are neighbors and cij = 0 otherwise, with the
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diagonal entries cii = 0. It can be shown that (I− ρC) is nonsingular when
ρ is restricted to some interval depending the eigenvalues of C. Then, it
follows that U = (U1, U2, · · · , UI)′ has a multivariate normal distribution
with mean 0 and covariance matrix δu(I − ρC)−2.

• CAR: The CAR model is defined by the conditional probability density
function

f(Ui|Uj , j 6= i) =
( 1

2πδu

)1/2
exp

{
− 1

2δu

(
Ui − ρ

∑
j 6=i

cijUj

)2}
,

where δu > 0 and |ρ| < 1. This model is a modified version of that used
by Besag (1974) and Ripley (1981). This modified version was also used
by Clayton and Kaldor (1987) and Ripley (1988). Sun, Tsutakawa and
Speckman (1999) show that if λ−1

1 < ρ < λ−1
I where λ1 and λI are smallest

and largest eigenvalues, with λ1 ≤ · · · < 0 < · · · ≤ λI , of the adjacency
matrix C, then U has a multivariate normal distribution with mean 0 and
nonsingular covariance matrix δu(I − ρC)−1.

Now, if we let Z = (Z1, · · · , ZI)′, then the spatial effects Z follow MVN I(0, δ1A
−γ
1 )

with A1 = I − ρ1C. Similarly, the spatial effects over time W = (W1, · · · , WI)′

are distributed as MVN I(0, δ2A
−γ
2 ) with A2 = I− ρ2C where (ρ1, ρ2) represent

the degrees of spatial correlation between regions and (δ1, δ2) the dispersion pa-
rameters. Note that the choices of γ are 1 for CAR and 2 for SAR. Contrary to
CAR model, it is difficult to write the conditional distribution of (Zi|Zj , j 6= i)
for the SAR model in a higher dimension. Most statisticians prefer to use a
CAR model, however, the computational methods for SAR and CAR are almost
identical except for the choice of γ. Although it may appear more suitable to
work with the gamma distribution under the multiplicative model and the normal
distribution under the log-linear model, such pairing is not crucial for Bayesian
hierarchical modelings (cf. Kim et al., 2002).

2.4 Choice of priors

One objective of specifying priors is to stabilize the estimates of mortality
rates by ‘smoothing’ the crude map. In hierarchical models, the selection of the
hyper-prior distribution of dispersion parameter is crucial, in general, when the
sample size is not large enough. The crude map using the standardized mortality
rates (Mason and McKay, 1974), for each (i, j, k) estimates (usually the maximum
likelihood estimation) of pijk based only on yijk, often features large outlying
mortality rates in less (sparsely) populated areas, so that the map is visually
dominated by the rates having the highest uncertainty. One problem with the
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maximum likelihood is that a zero incidence case in any area provides a zero
estimate of mortality rate in that area. This approach also fails to account for the
possible similarity of spatial effects in adjacent areas. To choose hyper-parameters
for the computation, we begin with proper but very flat priors. For both Poisson-
Lognormal and Poisson-Gamma Structures, we define p = (p111, p112, · · · , pIJK)′,
θ = (θ1, · · · , θJ)′, µ = (µ1, · · · , µJ)′, δ = (δ1, δ2)′ and ρ = (ρ1, ρ2)′ where δ
and ρ are vectors of variance components and spatial correlations, respectively.
For the Poisson-Lognormal structure, we assume that for given (Z, θ, µ,W),
the first stage prior distributions of pijk follow equation (2.2), where εijk are
iid N (0, δ0). As mentioned earlier, given (Z, θ, µ,W), vijk = log(pijk) have
independent normal distributions with means Zi + θj + (µj + Wi)(tk − t̄) and
variance δ0. The following conditional independence assumptions are also needed.

• Given (Z, θ, µ,W), p is conditionally independent of δ and ρ;

• Given (δ, ρ), (Z,W) are independent of (θ, µ, δ0);

• θ1, · · · , θJ , µ1, · · · , µJ , δ1, δ2, ρ1, ρ2 and δ0 are mutually independent.

To fully specify the Bayesian hierarchical model, we must specify the second and
third stage prior distributions of θ, µ, δ, ρ and δ0. In particular, we assume that

• The age effects, θj ∼ N (ξmj , δmj), j = 1, · · · , J ;

• The slope effects of jth age group, µj ∼ N (ξsj , δsj), j = 1, · · · , J ;

• δl ∼ IG(al, bl), l = 0, 1, 2;

• ρ1, ρ2 ∼ iid U(λ−1
1 , λ−1

I ) where λ1 and λI are eigenvalues of the adjacency
matrix C.

Here the hyper-parameters (ξmj , δmj), (ξsj , δsj) and (al, bl) are fixed constants.
On the other hand, for the Poisson-Gamma structure, we assume that for given
(Z, θ, µ,W), the first stage prior distributions of pijk follow equation (2.1),
where ε∗ijk are iid G(ψ−1, ψ−1). Thus, for given (Z, θ, µ,W), pijk have in-
dependent gamma distributions with shape and scale parameters as ψ−1 and{

ψZ∗
i θ∗j (µ

∗
jW

∗
i )(tk−t̄)

}−1
, respectively. The conditional independence assump-

tions are same as those for Poisson-Lognormal structure except replacing δ0 with
ψ. The following (conditional) prior distributions are assumed.

• θ∗j ∼ IG(aθj
, bθj

), j = 1, · · · , J ;

• µ∗
j ∼ IG(aµj , bµj ), j = 1, · · · , J ;

• δl ∼ IG(al, bl), l = 1, 2;
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• ψ ∼ IG(aψ, bψ);

• ρ1, ρ2 ∼ iid U(λ−1
1 , λ−1

I ).

Again, the hyper-parameters (aθj
, bθj

), (aµj , bµj ), (al, bl) and (aψ, bψ) are fixed
constants.

In order to compare Poisson-Lognormal and Poisson-Gamma structures nu-
merically, we decide to use the values of above hyperparameters which give ap-
proximately equal first and second moments in their distributions under the two
structures. Detailed values will be given in the following Section.

3. Estimation via MCMC

For the data set considered in this article, we use the Missouri male lung
cancer mortality data. This data set contains 115 counties, 4 age groups (45-
54, 55-64, 65-74, 75+), and 4 time periods (1973-1977, 1978-1982, 1983-1987,
1988-1992). There are a few large urban areas and many rural communities
in Missouri. The state is geologically diverse and has experienced considerable
changes in mortality patterns in the recent decades. The total number of param-
eters (p,θ, µ,Z,W, δ, ρ) and δ0 or ψ is equal to 2, 083. We use a Gibbs sampling
(Gelfand and Smith, 1990) to obtain the posterior moments and densities. All
of the full conditional distributions for a Gibbs sampling and generating random
samples are listed in the Appendices A through C. Some of them are standard dis-
tributions such as normal (univariate or multivariate) and inverse gamma, while
others require sampling from log-concave densities.

3.1 Specification of prior distributions

When we choose hyper-parameters for the computation, we decide to use the
values of hyper-parameters which give approximately equal first and second mo-
ments in their distributions under the two different structures. This will enable
us to compare the posterior distributions numerically, somewhat free of the im-
pact of prior selections (cf. Kim et al., 2002). In both structures, the values of
hyper-parameters for the variance components are (al, bl) = (aψ, bψ) = (3.0, 0.1).
This is equivalent to assuming that the prior of the reciprocal of the variance
components has mean 30 and variance 300. Under Poisson-Lognormal structure,
the values of hyper-parameters for age and overall slope of age effects are set to
(ξmj , δmj) = (ξsj , δsj) = (−0.5, 0.75). These values are comparable to those set
(aθj

, bθj
) = (aµj , bµj ) = (3.0, 2.0) for Poisson-Gamma structure. It appears that

the posterior estimates for each of the four different models are quite robust in
terms of the choices of hyper-parameters.
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4. Numerical Results

We define PLS for Poisson-Lognormal-SAR, PLC for Poisson-Lognormal-
CAR, PGS for Poisson-Gamma-SAR, and PGC for Poisson-Gamma-CAR mod-
els.

4.1 Posterior Quantities

A summary of the posterior quantities of the parameters (θ, µ, δ,ρ), δ0 and ψ
for four different models is presented in Table 1. As seen in Table 1, all posterior
means except estimates for the spatial correlations ρ, from four different models
based on 50, 000 Gibbs cycles, are about the same while the posterior standard
deviations for (θ, ρ) disagree. It is interesting to note that posterior standard
deviations, except for ρ1, from Poisson-Gamma structure are smaller than or
equal to those from the Poisson-Lognormal structure. Such results are likely due
to the different tails of the gamma distribution with respect to the lognormal
distribution.

Table 1: Posterior estimates based on 50, 000 Gibbs

para- PGC PGS PLC PLS

meters Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

θ1 -5.678 0.0248 -5.676 0.0251 -5.691 0.0358 -5.683 0.0398
θ2 -4.510 0.0192 -4.510 0.0194 -4.511 0.0320 -4.508 0.0365
θ3 -3.870 0.0178 -3.870 0.0180 -3.870 0.0304 -3.867 0.0357
θ4 -3.802 0.0195 -3.802 0.0189 -3.801 0.0320 -3.798 0.0364
µ1 -0.0086 0.0076 -0.0091 0.0077 -0.0086 0.0082 -0.0071 0.0077
µ2 0.0121 0.0057 0.0125 0.0059 0.0121 0.0064 0.0123 0.0063
µ3 0.0204 0.0055 0.0208 0.0053 0.0204 0.0056 0.0203 0.0057
µ4 0.0344 0.0055 0.0344 0.0057 0.0339 0.0061 0.0332 0.0060
δ1 0.0178 0.0031 0.0181 0.0032 0.0181 0.0032 0.0173 0.0032
δ2 0.0030 0.0004 0.0030 0.0004 0.0031 0.0004 0.0031 0.0004
δ0 - - - - 0.0132 0.0021 0.0131 0.0021
ψ 0.0131 0.0020 0.0131 0.0021 - - - -
ρ1 0.10940 0.0375 0.06959 0.0271 0.14469 0.0217 0.11239 0.0227
ρ2 0.00592 0.0599 0.00665 0.0374 0.00820 0.0611 0.00950 0.0395

• Age effects θ and µ: The posterior means of θj increase rapidly with age,
except for the two upper groups which have similar values. The posterior
means of µj show a gradual increase with age. The negative value for the
youngest group indicates an overall decrease in mortality over the 20 year
period.
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Figure 1: Frequency estimates of annual mortality rates per 105 population by
age group, county and time period.

• Spatial effects Z and W: It is important to note that the spatial effects
for the same Poisson-Gamma or Poisson-Lognormal structure are almost
identical regardless of the choice of a CAR or an SAR model. On the other
hand, the spatial effects for the different structures under the same CAR or
SAR model are different. That is, error structures cause the differences in
the spatial effects. Examination of disease maps suggests that such spatial
effects in the Poisson-Gamma structure have more shrinkage toward the
‘average’ value (of 1), compared to those from Poisson-Lognormal structure.
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Figure 2: Bayesian posterior estimates of annual mortality rates per 105 pop-
ulation by age group, county and time period.

Through the MCMC simulations we have compared the marginal correlations
of Zi between adjacent counties and also between non-adjacent counties. We con-
clude that marginal correlations based on adjacent counties are, on the average,
larger than those based on non-adjacent counties. For a given specific county,
we have observed that correlations with adjacent counties are consistently larger
than correlations with non-adjacent counties. We also approximate the spatial
covariance matrix of Z, δ1A

−γ
1 , using the posterior estimates of (δ1, ρ1). We

notice that almost all of diagonals and absolute values of off-diagonals of spatial
covariance matrix based on Poisson-Gamma structure are less than those based
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Figure 3: Plots of annual mortality rates for four selected areas over time period
given age group. Solid line is for raw rates; dotted line is for PLC; and dashed
line is for PLS.

on Poisson-Lognormal structure. The generalized variances, which are the de-
terminants of the matrices, of spatial covariance matrix of Z indicate that the
SAR model gives less variability in Zi since the generalized variances under SAR
models are smaller than those under CAR models.

• Mortality rates p: Disease maps show the patterns of possible changes over
time and the concentration of counties of high and low rates. Figures 1 and
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2 map the frequency and Bayesian posterior estimates (based on the PGC
model for the purpose of illustration since other models show the similar
patterns) of the rate pijk, which have been rescaled to represent the annual
rates per 105 population. In Figure 2, we note that most of the extreme
rates in Figure 1 have disappeared. In particular, the isolated cases of
high rates among the two lower age groups have disappeared as well as the
isolated lower rates among the two upper age groups. It can clearly be seen
how the rates have increased over time for the two upper age groups and
how they tend to decrease over time for the youngest group. In spite of
the general trends, it is worth to note that in each age group there exist
several counties where the trend is reversed or in the opposite direction of
the general trend.

Figure 3 shows plots of the annual mortality rates for four selected areas.
Based on population sizes, we choose the smallest (Worth, county=113), medium
(Perry, county=79), largest (St. Louis, county=95) and a special county (St.
Louis city, county=115) for the purpose of demonstration. Mortality rates be-
tween the Poisson-Gamma and Poisson-Lognormal structures are close enough to
each other that a difference is negligible. On the other hand, frequency estimates
vary drastically for less populated counties. The Bayesian posterior estimates for
densely populated counties are close to the frequency rates with small standard
errors, while less populated counties have posterior means around the overall
mean rates with larger standard errors. We observe that mortality rates from the
Poisson-Gamma structure for less populated counties are relatively larger (toward
the overall mean rates) than those from the Poisson-Lognormal structure because
of more shrinkage effects. Table 2 gives the summary of the relative errors. The
relative errors are defined as |p̂ijk − p̂∗ijk|/p̂ijk, where p̂∗ijk is from one model and
p̂ijk from another, based on posterior means or standard deviations of the mor-
tality rates. The relative errors support that the same structure generates the
similar values of posterior estimates.

Table 2: Relative errors (RE) between models based on posterior means and
standard deviations of mortality rates.

model RE of mean RE of s.d.

p̂ijk p̂∗ijk max. value %(< 0.01) max. value %(< 0.01)

PGC PGS 0.04578 90.76 0.08232 66.30
PGC PLC 0.12049 44.62 0.31836 40.60
PLC PLS 0.04201 86.85 0.09188 61.85
PGS PLS 0.11602 40.87 0.31656 37.23
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• Spatial Correlations ρ: Table 1 and density plots (not shown) of the poste-
rior distributions of the ρ indicate the spatial correlation ρ1 for Z is clearly
positive but ρ2 for W are centered, roughly about zero. We construct
95% Bayesian credible intervals for each of (ρ1, ρ2) and find that the in-
terval for ρ1 excludes zero while that for ρ2 does not. The positive values
of ρ1 indicate the similarities between neighboring counties. Based on ρ1,
Poisson-Lognormal structure gives larger posterior means with smaller pos-
terior standard deviations than the Poisson-Gamma structure does. Also,
the CAR model gives larger posterior means than does the SAR.

• Variance Components δ: The variability in Z,W and e may be seen in the
posterior estimates of their variance δ1, δ2 and δ0 or ψ in Table 1. The
concentration of the posterior distributions away from zero indicates the
importance of Z,W and e in the model, though the estimates are small.

• Residual Effects eps: We have computed the ordinary sums of squares due
to errors of the fitted models. About 67.00% (SAR) and 67.04% (CAR)
of the total variation in log(p̂ijk) are explained by the linear fit under the
Poisson-Lognormal structure, while 65.59% (SAR) and 65.70% (CAR) of
the total variation in p̂ijk under the Poisson-Gamma structure. In other
words, about 32.96% ∼ 34.41% of the total variation remains in the residu-
als, which is due to other factors that are not included in the model. There-
fore, the residual effects are needed. The detailed discussion on including
residual effects in hierarchical models is in Kim et al. (2002).

• Convergence Diagnostic: In monitoring the convergence of Gibbs sampling,
we have run several parallel MCMC chains with different starting values
and used graphical monitoring of the chains for a representative subset of
the parameters. It is noted that the estimates are quite stable after about
10, 000 iterations. Among 50, 000 cycles of Gibbs sampling, we have chosen
to use the last 40, 000 cycles for an estimation purpose following a burn-in
of first 10, 000 cycles.

4.2 Model selection

In order to compare two competing models M1 and M2 that have equal prior
probabilities of being selected, the Bayes factor BF12, the relative weight of evi-
dence for model M1 compared with model M2, is defined as

BF12 =
f(y|M1)
f(y|M2)

,
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where f(y|Mi) denotes the marginal density of the data y under Mi, i=1, 2
(Dey, Chen and Chang, 1997). Generally, the Bayes factor is the ratio of the
posterior odds for M1 versus M2 to the prior odds for M1 versus M2. Hence,
model selection requires no more than the Bayes factor (Jeffreys, 1961; Kass
and Raftery, 1995). Unfortunately in complex hierarchical models, in which pa-
rameters generally outnumber observations, the Bayes factor cannot be directly
applied (Gelfand and Dey, 1994). Instead we use the alternative methods such
as the cross-validation predictive density (Dey et al., 1997) and the deviance
information criterion (Spiegelhalter et al., 2002).

A Monte Carlo integration of the predictive density yields the estimated con-
ditional predictive ordinate (CPO). Between competing models M1 and M2, each
observation favors a specific model of which the CPO is larger. In Table 3, we
present the summaries of model selections based on the estimated CPOs. The
values in the third and fourth columns indicate that the number of observations
(out of 1, 840 total observations) which favor the models M1 and M2, respec-
tively. The last column shows that the percentage of supporting the model M1.
The value of 50% implies the data set supports two competing models equally.
Poisson-Lognormal structure seems to be the ones as being selected. However,
the percentages of supporting (or favoring) M1 over M2 are not very far away
from 50% mark, so no model is strictly superior to others.

Table 3: Summary of model selections based on the estimated CPOs.

model comparison favor M1
M1+M2

× 100

M1 M2 M1 M2

P G C P G S 966 874 52.5
P G C P L C 824 1016 44.8
P G C P L S 817 1023 44.4
P G S P L C 808 1032 43.9
P G S P L S 810 1030 44.0
P L C P L S 846 994 46.0
P G C PGC with ρ2 = 0 929 911 50.5
P G S PGS with ρ2 = 0 924 916 50.2
P L C PLC with ρ2 = 0 925 915 50.3
P L S PLS with ρ2 = 0 933 907 50.7

The second method we use is based on the Deviance Information Criterion
(DIC). Spiegelhalter et al. (2002) compare two or more competing models based
on the posterior distributions of the deviance where they identify ‘fit’ as the
posterior mean of the deviance, and ‘complexity’ (i.e. the effective number of
parameters, pD) as the difference between the posterior mean of the deviance
and the deviance based on the posterior means of the parameters. The ‘fit’
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and ‘complexity’ are then added to form a DIC which may be used for model
comparison. These quantities can be obtained easily from an MCMC chain.
Detailed discussion can be found in Spiegelhalter et al. (2002) and Best et al.
(1998). For our Poisson model, the deviance D(p) is defined (McCullagh and
Nelder, 1989) as

D(p) = 2
∑

i

∑
j

∑
k

[
yijk log

yijk

nijkpijk
− (yijk − nijkpijk)

]
.

First, we compute the ‘fit’ of a model as D̄ = Ep|Y [D(p)] and the ‘complexity’
as pD = D̄ − D(p̄). Then, we compute a DIC as DIC = D̄ + pD = D(p̄) +
2pD. In Table 4, we present the summaries of deviance statistic for competing
models. The values of pD show that Poisson-Gamma structure has fewer effective
parameters (total number of second and third stage parameters is 243), so it
may be regarded as more parsimonious. As a whole, all models are virtually
indistinguishable in terms of fittings since the differences in DICs, D̄s, and pDs
are not large across competing models.

Table 4: Summary of Deviance Statistic based on 8 different models

model D̄ D(θ̄) pD DIC

P G C 1880.621 1636.588 244.033 2124.654
P G S 1880.484 1636.406 244.078 2124.562
P L C 1866.436 1613.662 252.774 2119.210
P L S 1865.907 1615.908 249.999 2115.906

PGC with ρ2 = 0 1880.151 1636.683 243.468 2123.619
PGS with ρ2 = 0 1879.557 1635.434 244.123 2123.680
PLC with ρ2 = 0 1867.611 1613.662 253.949 2121.560
PLS with ρ2 = 0 1867.699 1619.331 248.368 2116.067

5. Conclusions

Four spatio-temporal models discussed fit well in stabilizing the mortality
rates though differences exist such that the Poisson-Gamma has more emphasis
on providing shrinkage. All four procedures lead to provide more smooth and ac-
curate maps of rates, especially in less populated areas. As discussed, the spatial
effects for the same Poisson-Gamma or Poisson-Lognormal structure are very sim-
ilar regardless of the choice of a CAR or an SAR model. On the other hand, those
for the different structures under the same CAR or SAR model are different. That
is, error structures cause the differences in the spatial effects. Poisson-Gamma
structure has more tendency to shrink the posterior estimates toward the overall
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mean rates than does the Poisson-Lognormal structure. As a whole, there exist
more differences due to error structures (Lognormal vs. Gamma) than due to
spatial correlations (SAR vs. CAR). During MCMC chains, the computational
methods for SAR and CAR are almost identical except the values of γ in the
covariance matrix of spatial effects. Our choice of CAR model improves the ef-
ficiency of the computation greatly over other forms of CAR models appearing
in the literature. All posterior means except estimates for spatial correlations ρ,
based on four different models, are about the same. It is worthwhile to note that
posterior standard deviations from Poisson-Gamma structure are smaller than
those from Poisson-Lognormal structure.

In conclusion, due to the richness of hierarchical settings, easy interpretation
of parameters and ease of implementation, any models proposed in this paper
can be applied generally to other sets of data. We may also use one model to
validate the performance based on other model.

Appendix A. Available full conditional distributions for Poisson-lognormal
structure

We now give the full conditional distributions for our hierarchical structures.
Note that the Poisson-Lognormal structure shares the same full conditional dis-
tributions except for the choice of γ in the covariance structures of spatial effects
described in earlier section. This is also true for the Poisson-Gamma structure.

(i) For any (i, j, k), the conditional posterior distribution of vijk = log(pijk)
given others (i.e., other parameters) is proportional to

exp
{

yijkvijk − nijke
vijk − 1

2δ0
(vijk − aijk)2

}
, (5.1)

where

aijk = Zi + θj + (µj + Wi)(tk − t̄). (5.2)

(ii) For any j = 1, · · · , J ,

(θj | others) is N
( ξmj

δmj
+ 1

δ0

∑
i

∑
k(vijk − Zi)

(IK/δ0) + (1/δmj)
,

1
(IK/δ0) + (1/δmj)

)
.(5.3)

(iii) Define ci = δ−1
0

∑
j,k(vijk − θj) and c = (c1, · · · , cI)′. Then

(Z| others) is MVN I

((JK

δ0
I +

1
δ1

Aγ
1

)−1
c,

(JK

δ0
I +

1
δ1

Aγ
1

)−1)
. (5.4)



Comparison of Spatio-Temporal Models 205

(iv) The conditional distribution of (δ1| others) is IG(a1 + 1
2I, b1 + 1

2Z
′Aγ

1Z).

(v) The conditional density of (ρ1| others) is proportional to

|I − ρ1C|γ/2 exp
{
− 1

2δ1
Z′(I − ρ1C)γZ

}
. (5.5)

(vi) Let s2
t =

∑K
k=1(tk − t̄)2. Then

(µj |others) is N
( ξsj

δsj
+ 1

δ0
[
∑

i

∑
k vijk(tk − t̄) − s2

t

∑
i Wi]

(s2
t /δ0) + (1/δsj)

,
1

(s2
t /δ0) + (1/δsj)

)
.(5.6)

(vii) Define di = δ−1
0 [

∑
j

∑
k vijk(tk − t̄) − µjs

2
t ] and d = (d1, · · · , dI)′. Then

(W| others) is MVN I

((Js2
t

δ0
I +

1
δ2

Aγ
2

)−1
d,

(Js2
t

δ0
I +

1
δ2

Aγ
2

)−1)
. (5.7)

(viii) The conditional distribution of (δ2| others) is IG(a2+ 1
2I, b2+ 1

2W
′Aγ

2W).

(ix) The conditional density of (ρ2| others) is proportional to

|I − ρ2C|γ/2 exp
{
− 1

2δ2
W′(I − ρ2C)γW

}
. (5.8)

(x) The conditional distribution of (δ0| others) is IG(a0+1
2IJK, b0+1

2

∑
i

∑
j

∑
k

(vijk −aijk)2), where aijk is given by (5.2).

Appendix B. Available full conditional distributions for Poisson-gamma
structure

(i) For any (i, j, k), the conditional distribution of (pijk| others) is G(ψ−1 +

yijk, cijk + nijk) where cijk =
{

ψZ∗
i θ∗j (µ

∗
jW

∗
i )(tk−t̄)

}−1
.

(ii) For any j, the conditional distribution of (θ∗j | others) is IG(aθj
+ IK

ψ , bθj
+

1
ψ

∑
i

∑
k

pijk

Z∗
i θ∗j (µ∗

j W ∗
i )(tk−t̄) ). Since θj=log(θ∗j ), the Jacobian transformation

gives the desired conditional posterior distribution of θj .

(iii) For any j, the conditional density of (µj | others) is proportional to

exp

[
− 1

ψ

I∑
i=1

K∑
k=1

pijk

Z∗
i θ∗j W

∗
i

(tk−t̄)
e−µj(tk−t̄) − aµjµj − bµje

−µj

]
. (5.9)
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(iv) We can rewrite A1 as Aγ
1 = Γdiag [(1 − ρ1λ1)γ , · · · , (1 − ρ1λI)γ ]Γ′ ≡ [Sil]IxI .

Then, for any i, the conditional density of (Zi| others) is proportional to

exp

−JKZi

ψ
− e−Zi

ψ

J∑
j=1

K∑
k=1

pijk

θ∗j (µ
∗
jW

∗
i )(tk−t̄)

− 1
2δ1

SiiZ
2
i +

Zi

δ1

I∑
l=1
l6=i

ZlSli

.(5.10)

(v) The conditional distribution of (δ1| others) is IG(a1 + I
2 , b1 + 1

2Z
′Aγ

1Z).

(vi) Given the eigenvectors of adjacency matrix C, write |Aγ
1 | =

∏I
i=1 (1 − ρ1λi)

γ/2

and Γ′Z = (f1, · · · , fI)
′. The conditional density of (ρ1| others) is propor-

tional to

exp

[
γ

2

I∑
i=1

log(1 − ρ1λi) −
1

2δ1

I∑
i=1

(1 − ρ1λi)γf2
i

]
. (5.11)

(vii) Write Aγ
2 = Γdiag [(1 − ρ2λ1)γ , · · · , (1 − ρ2λI)γ ]Γ′ ≡ [Til]IxI . Then, for

any i, the conditional density of (Wi| others) is proportional to

exp

− 1
ψ

J∑
j=1

K∑
k=1

pijk

Z∗
i θ∗j µ

∗
j
(tk−t̄)

e−Wi(tk−t̄) − 1
2δ2

TiiW
2
i +

Wi

δ2

I∑
l=1
l6=i

WlTli

.(5.12)

(viii) The conditional distribution of (δ2| others) is IG(a2 + I
2 , b2 + 1

2W
′Aγ

2W).

(ix) Write |Aγ
2 | =

∏I
i=1 (1 − ρ2λi)

γ/2 and Γ′W = (g1, · · · , gI)
′. The conditional

density of (ρ2| others) is proportional to

exp

[
γ

2

I∑
i=1

log(1 − ρ2λi) −
1

2δ2

I∑
i=1

(1 − ρ2λi)γg2
i

]
. (5.13)

(x) Define

Sψ =
I∏

i=1

J∏
j=1

K∏
k=1

pijk

Z∗
i θ∗j (µ

∗
jW

∗
i )(tk−t̄)

, Tψ = bψ +
I∑

i=1

J∑
j=1

K∑
k=1

pijk

Z∗
i θ∗j (µ

∗
jW

∗
i )(tk−t̄)

.(5.14)

Then, the conditional density of (ψ| others) is proportional to

1
Γ( 1

ψ )IJK

(
1
ψ

) IJK
ψ

+aψ+1

S
1
ψ

ψ e
−

Tψ
ψ . (5.15)
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Appendix C. Generating random samples

It is easy to generate random samples from normal (univariate or multivari-
ate) as well as gamma and inverse gamma distributions. If we use the parameter
pijk in the computation of Poisson-Lognormal structure, we can show that the
conditional density of pijk given other parameters is not of a closed form, not even
log-concave. Thus, sampling from the conditional density of pijk given other pa-
rameters is not trivial (cf. rejection/acceptance sampling, Metropolis algorithm).
However, as shown below, in Poisson-Lognormal structure, vijk = log(pijk) has
a log-concave density since vijk is a monotone (one-to-one) transformation of
pijk. We will also see that the conditional densities of ρ1 and ρ2 in all models
are log-concave. Additionally, µj , Zi, Wi and η=1/ψ in Poisson-Gamma struc-
ture are log-concave. The adaptive rejection sampling method proposed by Gilks
and Wild (1992) was used to generate random samples from these log-concave
densities.
Fact 1 The conditional density of vijk = log(pijk) given in Poisson-Lognormal
structure is log-concave.

Proof. Let h(vijk) be the exponent in (5.1). The second derivative of h(vijk)
with respect to vijk is −nijk exp(vijk) − δ−1

0 , which is negative.

Let Γ be an I × I orthogonal matrix such that the adjacency matrix C can
be decomposed as Γdiag(λ1, · · · , λI)Γ′. Let Λ = diag(λ1, · · · , λI) and S = Γ′Z =
(s1, · · · , sI)′. Then we have the following equalities,

Z′Aγ
1Z = Z′(I − ρ1C)γZ = Z′Γ(I − ρ1Λ)γΓ′Z =

I∑
i=1

(1 − ρ1λi)γs2
i . (5.16)

Fact 2 (a) The conditional density of ρ1, given in (5.5), is equivalent to

h(ρ1) ∝ exp
{γ

2

I∑
i=1

log(1 − ρ1λi) −
1

2δ1

I∑
i=1

(1 − ρ1λi)γs2
i

}
, ρ1 ∈ (λ−1

1 , λ−1
I ).(5.17)

(b) The conditional density of ρ2 given in (5.8) is log-concave.
(c) The conditional densities of ρ1 and ρ2 given in (5.11) and (5.13) are also log-
concave.

Proof. Part (a) follows from (5.16). For Part (b), the first and second derivatives
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of h(ρ1) are

∂

∂ρ1
log[h(ρ1)] = −γ

2

I∑
i=1

λi

{ 1
1 − ρ1λi

− 1
δ1

(1 − ρ1λi)γ−1s2
i

}
, (5.18)

∂2

∂ρ2
1

log[h(ρ1)] = −γ

2

I∑
i=1

λ2
i

{ 1
(1 − ρ1λi)2

+
γ − 1

δ1
(1 − ρ1λi)γ−2s2

i

}
. (5.19)

Here, when γ=1 or 2, the second derivative of h(ρ1) is negative. In general, the
conditional density of ρ1 is log-concave if γ ≥ 1. The proof of part (c) follows
directly from that of part (b). This proves the results.
fact

For Poisson-Gamma structure,
(a) The conditional density of µj is log-concave.
(b) The conditional density of Zi is log-concave.
(c) The conditional density of Wi is log-concave.
(d) The conditional density of η=1/ψ is log-concave.

Proof. For part (a),

∂

∂µj
log[h(µj)] =

1
ψ

I∑
i=1

K∑
k=1

pijk(tk − t̄)

Z∗
i θ∗j W

∗
i

(tk−t̄)
e−µj(tk−t̄) − aµj + bµje

−µj ,

∂2

∂µ2
j

log[h(µj)] = − 1
ψ

I∑
i=1

K∑
k=1

pijk(tk − t̄)2

Z∗
i θ∗j W

∗
i

(tk−t̄)
e−µj(tk−t̄) − bµje

−µj < 0.

For part (b),

∂

∂Zi
log[h(Zi)] = −JKψ + e−Zi

J∑
j=1

K∑
k=1

pijk

θ∗j (µ
∗
jW

∗
i )(tk−t̄)

− Sii

δ1
Zi −

1
δ1

I∑
l=1
l6=i

ZlSli,

∂2

∂Z2
i

log[h(Zi)] = −e−Zi

J∑
j=1

K∑
k=1

pijk

θ∗j (µ
∗
jW

∗
i )(tk−t̄)

− Sii

δ1
< 0.

For part (c),

∂

∂Wi
log[h(Wi)] =

J∑
j=1

K∑
k=1

pijk(tk − t̄)

Z∗
i θ∗j µ

∗
j
(tk−t̄)

e−Wi(tk−t̄) − 1
δ2

TiiWi −
1
δ2

I∑
l=1
l6=i

WlTli,

∂2

∂W 2
i

log[h(Wi)] = −
J∑

j=1

K∑
k=1

pijk(tk − t̄)2

Z∗
i θ∗j µ

∗
j
(tk−t̄)

e−Wi(tk−t̄) − 1
δ2

Tii < 0.
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For part (d), note that

log[h(η)] ∝ (IJKη + aψ − 1) log(η) + η log(Sψ) − ηTψ − IJK log[Γ(η)],
∂

∂η
log[h(η)] = IJK log(η) +

IJKη + aψ − 1
η

+ log(Sψ) − Tψ − IJK
∂

∂η
log[Γ(η)],

∂2

∂η2
log[h(η)] =

IJK

η
+

1 − aψ

η2
− IJK

∂2

∂η2
log[Γ(η)],

where Sψ and Tψ are defined in equation (5.14). From Bowman and Shenton
(1988), we have

∂2

∂x2
log[Γ(x)] =

1
x

+
1

2x2
+

2π

x

∫ ∞

0

√
te2π

√
t

(x2 + t)(e2π
√

t − 1)2
dt.

Hence,

∂2

∂η2
log[h(η)] = −

IJK − 2 + 2aψ

2η2
− 2π

IJK

η

∫ ∞

0

√
te2π

√
t

(η2 + t)(e2π
√

t − 1)2
dt < 0.

For given positive integers (I, J,K) and moderate size of aψ, the second derivative
is negative. This proves the results.
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